Login



Other Articles by Authors

Siavash H. Sohrab



Authors and WSEAS

Siavash H. Sohrab
 


WSEAS Transactions on Applied and Theoretical Mechanics


Print ISSN: 1991-8747
E-ISSN: 2224-3429

Volume 13, 2018

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.


Volume 13, 2018



An Invariant Model of Boltzmann Statistical Mechanics and some of its Implications to Thermodynamics and Quantum Nature of Space and Time

AUTHORS: Siavash H. Sohrab

Download as PDF

ABSTRACT: Further implications of a scale invariant model of Boltzmann statistical mechanics to generalized thermodynamics and quantum nature of space and time are described. Scale invariant definition of absolute thermodynamic temperature identified as Wien wavelength of thermal oscillations is applied to introduce internal dependent measures of space and time called spacetime. The internal spacetime measures w 1 w 1 ( , )     allow for definition of external independent measures of space and time coordinates (x , t )   for the description of system dynamics. Because of its hyperbolic geometry, its discrete or quantum fabric, and its stochastic atomic motions, physical space is called Lobachevsky-Poincaré-Dirac-Space.

KEYWORDS: - Generalized thermodynamics; quantum nature of space and time; spacetime, relativity; TOE

REFERENCES:

[1] de Broglie, L., Interference and Corpuscular Light, Nature 118, 441-442 (1926) ; Sur la Possibilité de Relier les Phénomènes d'Interférence et de Diffraction à la Théorie des Quanta de Lumière, C. R. Acad. Sci. Paris, 183, 447-448 (1927) ; La Structure Atomique de la Matière et du Rayonnement et la Mécanique Ondulatoire, 184, 273-274 (1927) ; Sur le Rôle des Ondes Continues en Mécanique Ondulatoire 185, 380- 382 (1927).

[2]. de Broglie, L., Non-Linear Wave Mechanics: A Causal Interpretation, Elsevier, New York, 1960.

[3] de Broglie, L., The Reinterpretation of Wave Mechanics, Found. Phys. 1, 5, 5-15 (1970).

[4] Madelung, E., Quantentheorie in Hydrodynamischer Form, Z. Physik. 40, 332- 326.( 1926).

[5] Schrödinger, E., Über die Umkehrung der Naturgesetze, Sitzber Preuss Akad Wiss PhysMath Kl, 144-153 (1931).

[6] Fürth, R., Über Einige Beziehungen zwischen klassischer Staristik und Quantenmechanik, . Phys. 81, 143-162, (1933).

[7] Bohm, D., A Suggested Interpretation of the Quantum Theory in Terms of “Hidden Variables' I, Phys. Rev. 85, 2, 166-179, (1952).

[8] Takabayasi, T., On the Foundation of Quantum Mechanics Associated with Classical Pictures, Prog. Theor. Phys. 8, 2, 143-182, 1952.

[9] Bohm, D. , and Vigier, J. P., Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations, Phys. Rev. 96, 1, 208-217 (1954).

[10] Nelson, E., Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys. Rev. 150, 4, 1079-1085 (1966).

[11] Nelson, E., Quantum Fluctuations, Princeton University Press, Princeton, New Jersey, 1985.

[12] de la Peña, L., New Foundation of Stochastic Theory of Quantum Mechanics, J. Math. Phys. 10, 9, 1620-1630 (1969).

[13] de la Peña, L., and Cetto, A. M., Does Quantum Mechanics Accept a Stochastic Support? Found. Phys. 12, 10, 1017-1037 (1982).

[14] Barut, A. O., Schrödinger’s Interpretation of  as a Continuous Charge Distribution, Ann. der Phys. 7, 4-5, 31-36 (1988).

[15] Barut, A. O., and Bracken, A. J., Zitterbewegung and the Internal Geometry of the Electron, Phys. Rev. D 23, 10, 2454-2463 (1981).

[16] Vigier, J. P., De Broglie Waves on Dirac Aether: A Testable Experimental Assumption, Lett. Nuvo Cim. 29, 14, 467-475, (1980); Cufaro Petroni C., and Vigier, J. P., Dirac’s Aether in Relativistic Quantum Mechanics, Found. Phys. 13, 2, 253- 286, (1983); Vigier, J. P., Derivation of Inertia Forces from the Einstein-de Broglie-Bohm (E.d.B.B) Causal Stochastic Interpretation of Quantum Mechanics, Found. Phys. 25, 10, 1461- 1494 (1995).

[17] Arecchi, F. T., and Harrison, R. G., Instabilities and Chaos in Quantum Optics, Springer-Verlag, Berlin, 1987.

[18] Reynolds, O., On the Dynamical Theory of Incompressible Viscous Fluid and the Determination of the Criterion, Phil. Trans. Roy. Soc. A 186, 1, 23-164, (1895).

[19] Enskog, D., Kinetische Theorie der Vorgange in Massig Verdunnten Gasen, by Almqvist and Wiksells Boktryckeri-A.B., Uppsala, 1917.

[20] Taylor, G. I., Statistical Theory of Turbulence-Parts I-IV, Proc. Roy. Soc. A 151, 873, 421-478 (1935).

[21] Kármán, T., and Howarth, L., On the Statistical Theory of Isotropic Turbulence, Proc. Roy. Soc. A 164, 917. 192-215 (1938).

[22] Robertson, H. P., The Invariant Theory of Isotropic Turbulence, Proc. Camb. Phil. Soc. 36, 209-223, (1940).

[23] Kolmogoroff, A. N., Local Structure on Turbulence in Incompressible Fluid, C. R. Acad. Sci. U. R. S. S. 30 (1941), pp. 301-305; A Refinement of Previous Hypothesis Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number, J. Fluid Mech. 13, 82-85, (1962).

[24] Obukhov, A. M., On the Distribution of Energy in the Spectrum of Turbulent Flow, C. R. Acad. Sci. U. R. S. S. 32, 19-22, 1941; Some Specific Features of Atmospheric Turbulence, J. Fluid Mech. 13, 77-81, (1962).

[25] Chandrasekhar, S., Stochastic Problems in Physics and Astronomy, Rev. Mod. Phys. 15, 1, 1-89 (1943).

[26] Chandrasekhar, S., Stochastic, Statistical, and Hydrodynamic Problems in Physics and Astronomy, Selected Papers, vol.3, University of Chicago Press, Chicago, 199-206, 1989.

[27] Heisenberg, W., On the Theory of Statistical and Isotropic Turbulence, Proc. Roy. Soc. A 195, 402- 406, (1948); Zur Statistischen Theorie der Turbulenz, Z. Phys. 124, 7-12, 628-657, (1948).

[28] Batchelor, G. K., The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, 1953.

[29] Landau, L. D., and Lifshitz, E. M., Fluid Dynamics, Pergamon Press, New York, 1959.

[30] Tennekes, H., and Lumley, J. L., A First Course in Turbulence, MIT Press, 1972.

[31] Sohrab, S. H., Transport Phenomena and Conservation Equations in Multicomponent Chemically-Reactive Ideal Gas Mixtures,” Proceeding of the 31st ASME National Heat Transfer Conference, HTD- 328, pp. 37-60, (1996).

[32] Sohrab, S. H., A Scale Invariant Model of Statistical Mechanics and Modified Forms of the First and the Second Laws of Thermodynamics, Rev. Gén. Therm. 38, 845-853 (1999).

[33] Sohrab, S. H., Some Implications of a Scale Invariant Model of Statistical Mechanics to Classical and Relativistic Thermodynamics, Int. J. Thermo. 17, 233-248 (2014).

[34] Sohrab, S. H., On a Scale-Invariant Model of Statistical Mechanics and the Laws of Thermodynamics, J. Energy Resource and Technol. 138, 3, 1-12 (2016).

[35] Sohrab, S. H., Invariant Forms of Conservation Equations and Some Examples of Their Exact Solutions, J. Energy Resources Technology 136, 1-9 (2014).

[36] Sohrab, S. H., Solutions of modified equation of motion for laminar flow across (within) rigid (liquid) and sphere and cylinder and resolution of Stokes paradox, AIP Conference Proceedings 1896, 130004 (2017)

[37] Sohrab, S. H., Quantum Theory of Fields from Planck to Cosmic Scales, WSEAS Trans. Math. 9, 734-756 (2010).

[38] Sohrab, S. H., On a Scale Invariant Model of Statistical Mechanics, Kinetic Theory of Ideal Gas, and Riemann Hypothesis, Int. J. Mod. Communication Tech. & Research. 3 (6), 7-37 (2015).

[39] Sohrab, S. H., Scale Invariant Model of Statistical Mechanics and Quantum Nature of Space, Time, and Dimension, Chaotic Modeling and Simulation (CMSIM) 3, 231-245 (2016).

[40] de Groot, R. S., and Mazur, P., Nonequilibrium Thermodynamics, North-Holland, 1962.

[41] Schlichting, H., Boundary-Layer Theory, McGraw Hill, New York, 1968.

[42] Williams, F. A., Combustion Theory, Addison Wesley, New York, 1985.

[43] Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids, Wiley, New York, 1954.

[44] Chapman, S. , and Cowling, T. G., The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1953.

[45] van der Waerden, B. L., Towards Quantum Mechanics, in: Sources of Quantum Mechanics, van der Waerden, B. L., (Ed.), Dover, New York, 1-59, 1967.

[46] Casimir, H. B. G., On the Attraction between Two Perfectly Conducting Plates, Proc. K. Ned. Akad. Wet. 51, 793-795 (1948).

[47] Dirac, P. A. M., Is there an aether ? Nature 168, 906 (1951).

[48] Planck, M., On the Law of the Energy Distribution in the Normal Spectrum, Ann. der Phys. 4, 553-558 (1901).

[49] Darrigol, O, Statistics and Combinatorics in Early Quantum Theory, Historical Studies in the Physical and Biological Sciences, 19, 1, 17-80 (1988).

[50] Darrigol, O, Statistics and Combinatorics in Early Quantum Theory, II: Early Symptoms of Indistinguishability and Holism, 21, 2, 237-298 (1991)

[51] de Broglie, L., Matter and Light-The New Physics, Dover, New York, 1937

[52] Lochak, G., The Evolution of the Ideas of Louis de Broglie on the Interpretation of Wave Mechanics, In: Quantum, Space and Time-The Quest Continues, Asim O. Barut, Alwyn van der Merwe, and Jean-Pierre Vigier (Eds.), Cambridge University Press, pp. 11-33 (1984).

[53] Sohrab, S. H., Invariant Planck Energy Distribution Law and its Connection to the Maxwell-Boltzmann Distribution Function, WSEAS Transactions on Mathematics 6 (2), 254-262 (2007).

[54] Sohrab, S. H., Invariant Model of Statistical Mechanics, Quantum Mechanics, and Physical Nature of Space and Time, 8 th CHAOS Conference Proceedings, 26-29 May 2015, Henri Poincaré Institute, Paris, France.

[55] Whittaker, E. T., A History of the theories of Aether and Electricity, vol. 2, Tomash Publishers, New York, 1954.

[56] Euler, L., Réflexions sur l'espace et le temps, Histoire de l'Academie Royale des sciences et belles lettres 4, 324–33 (1748).

[57] Sohrab, S. H., Universality and Statistical Nature of Turbulence, Quantum Mechanics, Quantum Mechanics, and Chaos, 9 th CHAOS Conference Proceedings, 23-26 May 2016, Senate House, University of London, UK

[58] Hasenöhrl, F., Zur Theorie der Strahlung in bewegten Körpern. Ann. der Physik 15, 344-370, (1904). Zur Theorie der Strahlung in bewegten Körpern. Ann. der Phys. 16, 589-592 (1905).

[59] Sohrab, S. H., Invariant laws of thermodynamics and validity of Hasenöhrl mass-energy equivalence formula m = (4/3) E/c2 at photonic, electrodynamic, and cosmic scales, Bull. Amer. Phys. Soc. 62, 1, 124 (2017).

[60] Penzias, A. A., and Wilson, R. W., A Measurement of Excess Antenna Temperature at 4080 Mc/s, APJ. 142, 419-421 (1965).

[61] Poincaré, H., Sur la Dynamique de l’Electron, Rend. Circ. Mat. Palermo 21, 9-175 (1906).

[62] Minkowski, H., Space and Time, in Theory of Relativity, p. 75, Dover, New York, 1952,

[63] Poincaré, H., Science and Hypothesis, p.65, Dover, New York, 1952.

[64] Escher, M. C., The Graphic Work of M. C. Escher, p. 23, Hawthorn Books, New York, 1960.

[65] Aristotle, In: Time, Westphal J. and Levenson, C., (Eds.), Hackett Publishing Company, Indianapolis, Indiana, 1993.

[66] Augustine, St., In: Time, Westphal J. and Levenson, C., (Eds.), Hackett Publishing Company, Indianapolis, Indiana, 1993.

[67] ‘t Hooft, G., In Search of the Ultimate Building Blocks, Cambridge University press, 1998.

[68] Sohrab, S. H., Some thermodynamic considerations on physical and quantum nature of space and time, ECOS 2000 Proceedings, University of Twente, Enschede, Nederland, July 5-7, 2000; WSEAS Trans. Math. 3, 4, 764-772 (2004).

[69] Montambaux, G., Generalized Stefan-Boltzmann law, Found. Phys. 48, 395-410 (2018).

[70] Sommerfeld, A., Thermodynamics and Statistical Mechanics, Academic Press, New York, 1956.

[71] Riess, A. G., et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ. 116, 1009 (1998).

[72] Riess, A. G., et al., Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, ApJ. 607, 665 (2004).

[73] Schmidt, B. G., et al., The High-Z Supernovae Search: Measuring Cosmic Deceleration and Global Curvature Using Type Ia Supernovae, ApJ. 507, 46 (1998).

[74] Perlmutter, S., et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae, ApJ. 517, 565 (1999).

[75] Einstein, A., Do Gravitational Fields Play an Essential Part in the Structure of the Elementary Particles of Matter, in: The Principles of Relativity, Dover, 1952.

[76] Pauli, W., Theory of Relativity, p. 204, Dover, 1958.

[77] Lorentz, H., Electromagnetic Phenomena in a System Moving with any Velocity less than that of Light, in The Principles of Relativity, Dover, 1952.

[78] Poincaré, H., La Théorie de Lorentz et le Principe de Réaction. Arch. Neerland. 5, 252-278 (1900). http://www.physicsinsights.org/poincare-1900.pdf

[79] Poincaré, H., Sur la dynamique de l’électron, C. R. Acad. Sci. Paris 140, 1505 (1905).

[80] Logunov, A. A., On the Articles by Henri Poincaré, On the Dynamics of the Electron, Dubna: JINR, 2001.

[81] Jaroszkiewicz, G. Images of Time, Oxford, 2016.

[82] Hawking, S., A Brief History of Time, Bantam Book, New York, 1988.

[83] Zeh, H. D., The Physical Basis of the Direction of Time, Springer-Verlag, 1999.

[84] Kiefer, C., Does Time Exist in Quantum Gravity? www.fqxi.org/communitty/forum/topic/265 (2008).

[85] Rovelli, C., Forget Time, www.fqxi.org/communitty/forum/topic/237 (2008).

[86] Barbour, J., The Nature of Time, www.fqxi.org/communitty/forum/topic/360 (2008).

[87] Smolin, L., The Life of the Cosmos, Oxford University Press, Oxford, 1997; In: Conceptual Problems of Quantum Gravity, Ashtekar, A., and Stachel, J. (eds.), Birkhäuser, Boston, 1991.

[88] DeWitt, S. B., Quantum mechanics and reality Physics Today, 23, 9 (1970).

[89] DeWitt, S. B., Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160, 1113 (1967).

[90] Wheeler, J. A., Superspace and the nature of quantum geometro-dynamics. In: Battelle Rencontres, edited by C. M. DeWitt and J. A. Wheeler, 242-307, Benjamin, New York 1968.

[91] Ashtekar, A., Current Science 89 (12), 2064 (2005).

[92] Huygens, C., Treatise on Light, p.14, Dover, 1912.

[93] Lorentz, H. A., Selected Works of H. A. Lorentz, Neressian, N. J., and Cohen, F. H. (eds.), Palm Publications, Nieuwerkerk, 1987.

[94] Knox, A. J., Hendrik Antoon Lorentz, the Ether, and the General Theory of Relativity, In: Einstein and the History of General Relativity, Howard, D., and Stachel, J. (Eds.), 201-212, Birkhäuser, Boston, 1989.

[95] Darrigol, O., The mystery of the Einstein Poincare´ connection, Isis 95, 614-626 (2004).

[96] Galison, P., Einstein’s Clocks, Poincaré’s Maps, W. W. Norton & Company, New York, 2003.

[97] Poincaré, H., L'etat et l'avenir de la Physique mathematique, Bulletin des Sciences Mathématiques 28, 302-324 (1904), English translation in: The Monist XV, No.1, 1 (1905).

[98] Einstein, A., Zur Elecrodynamik bewegter Körper, Ann. der Physik 17, p. 891 (1905).

[99] Poincaré, H., The theory of Lorentz and the principle of reaction, Arch. Nederland. 5, 252 (1900).http://www.physicsinsights.org/poincare1900.pdf .

[100] Poincaré, H., Mathematics and Science Last Essay, p.19, General Books, Memphis, Tennessee, 2010.

[101] Verhulst, F., Henri Poincaré, Impatient Genius, p. 64, Springer, 2012.

[102] Michelson A. A., and Morley, E. W., On the relative motion of the earth and luminiferous ether, Amer. J. Sci.34, 333-345 (1887).

[103] FitzGerald, F. G., The Ether and the Earth’s Atmosphere, Science. 13, 390 (1889).

[104] Sohrab, S. H., Implications of a Scale Invariant Model of Statistical Mechanics to Nonstandard Analysis and the Wave Equation, WSEAS Trans. Math. 3, 5, 93, 2008.

[105] Sohrab, S. H., A New Physical Meaning of Sommerfeld Fine Structure Constant, Bull. Amer. Phys. Soc. 46, 2, 160 (2001).

[106] Sohrab, S. H., Some Implications of a ScaleInvariant Model of Statistical Mechanics to Classical and Black Hole Thermodynamics, Bull. Amer. Phys. Soc. 62, 1, 124 (2017).

[107] Sohrab, S. H., Modified van der Waals Equation of State, ‖ WSEAS Transactions on Biology and Biomedicine 1, 4, 422-424 (2004).

[108] Gödel, K., An example of a new type of cosmological solutions of Einstein’s field equations of gravitation Rev. Mod. Phys. 21 (3), 447 (1949).

[109] Kerr, R. P., Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Let. 11 (5), 237 (1963).

[110] Yourgrau, P., A World Without Time, Basic Books, Perseus Books Group, NY, 2005.

[111] ‘t Hooft, G., and Vandoren, S., Time in Powers of Ten, World Scientific, Singapore, 2014.

[112] Poincaré, H., The Value of Science, p. 142, Dover New York, 1958.

WSEAS Transactions on Applied and Theoretical Mechanics, ISSN / E-ISSN: 1991-8747 / 2224-3429, Volume 13, 2018, Art. #23, pp. 199-212


Copyright © 2018 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site