WSEAS Transactions on Environment and Development


Print ISSN: 1790-5079
E-ISSN: 2224-3496

Volume 13, 2017

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.


Volume 13, 2017



Environmental Conditions and Oak Barrels Timber Quality: Which is the Influence in the Quercus petraea Matts. Liebl. Forests in the Iberian Peninsula?

AUTHORS: Pablo Vila-Lameiro P., Ignacio J. Díaz-Maroto

Download as PDF

ABSTRACT: The autoecology of the oak Quercus petraea in the northwest Iberian Peninsula was investigated in the present study by applying the methodology developed in previous studies of other species of the genus Quercus. For this, the distribution of the species was firstly determined so that a minimum number of representative species could be selected. A total of 52 plots were chosen and in each one, 41 biotype parameters were established (6 physiographic, 17 climatic and 18 edaphic), along with 19 dendrometric and silvicultural parameters. The study of the variability of these parameters allowed description of both central and marginal physiographic-climatic and edaphic habitats of the sessile oak (Q. petraea) in the northwest Iberian Peninsula and an assessment of the effect of environmental factors on its present silvicultural status. The species is indifferent to the type of substrate, tolerates and even prefers lime soils. Within the area of study, sessile oak forests occur at altitudes of between 540 to 1400 m, a range that corresponds to a difference in mean annual temperature of more than 6ºC; however, the main climatic feature that defines the stands under study is the abundance of precipitations, with a annual mean precipitation of 1589.8 mm and a summer mean precipitation of 303.6 mm. The species is less resistant to low temperatures than the pedunculate oak (Q. robur) and generally shows a longer growth period.

KEYWORDS: Environmental, Quercus petraea, site, ecological limit, Iberian Peninsula, timber

REFERENCES:

[1] Ceballos L., Ruiz de la Torre J., 1979. Árboles y arbustos, E.T.S.I. Montes, Madrid.

[2] Bary-Lenger A., Nebout J.P., 1993 Le chêne pédonculé et sessile en France et en Belguique, Gerfaut Club, Editions du Perron, Alleur-Liège.

[3] Vila P., 2003. Estudio epidométrico y xilológico de las masas de Quercus petraea (Mattuschka) Liebl. en el noroeste de la Península Ibérica, Tesis Doctoral, Universidade de Santiago de Compostela.

[4] Amaral J., 1990. Quercus, En: Castroviejo, S. et al., (eds.), Flora Ibérica II, C.S.I.C., Madrid.

[5] Ruiz de la Torre J., 1991. Mapa Forestal de España, Dirección General de Conservación de la Naturaleza, Instituto Geográfico Nacional, Ministerio de Medio Ambiente, Madrid.

[6] Vila P., Díaz-Maroto I.J., 2002. Las masas actuales de Quercus petraea en Galicia, Inv. Agr. Sis. Rec. For. Vol. 11(1): 5-29.

[7] Silva-Pando F.J., Rigueiro A., 1992, Guía das árbores e bosques de Galicia, Galaxia.

[8] Amigo J., Romero M.I., 1994. Vegetación atlántica bajo clima mediterráneo: un caso en el noroeste ibérico, Phytocoenología 22 (4): 583-603.

[9] Kremer A., Dupouey J.L., Deans J.D., Cottrell J., Csaikl U., Finkeldey R., Espinel S., Jensen J., Kleinschmit J., Van Dam B., Ducousso A., Forrest I., de Heredia U.L., Lowe A.J., Tutkova M., Munro R.C., Steinhoff, S. Badeau V., 2002. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands, Ann. Sci. For. 59 (7): 777-787.

[10] Fernández Prieto J.A., Vázquez V., 1985. Datos sobre los bosques asturianos orocantábricos occidentales, Lazaroa 7: 363-382.

[11] Rivas-Martínez S., 1987. Memoria y mapas de series de vegetación de España 1:400.000, ICONA, Ministerio de Agricultura, Pesca y Alimentación, Madrid.

[12] Díaz T.E., Fernández Prieto J.A., 1994. La vegetación de Asturias, Itinera Geobotánica 8: 243- 528.

[13] Timbal J., Aussenac G., 1996. An overview of ecology and silviculture of indigenous oaks in France, Ann. Sci. For. 53 (2-3): 649-661.

[14] Díaz-Maroto I.J., 1997. Estudio ecológico y dasométrico de las masas de carballo (Quercus robur L.) en Galicia, Tesis doctoral, Universidad Politécnica de Madrid.

[15] Allué-Andrade J.L., 1990. Atlas Fitoclimático de España. Taxonomías. Ministerio de Agricultura, Pesca y Alimentación, INIA, Madrid.

[16] FAO, 1999. World Reference Base for Soil Resources, World Soil Resources Reports, 84.

[17] Jarret P., 1996. Sylviculture de chêne sessile, Bulletin technique 31: 21-29, Office National des Forêts.

[18] Kelly D.L., 2002. The regeneration of Quercus petraea (sessile oak) in southwest Ireland: a 25-year experimental sudy, For. Ecol. Manag. 166: 207-226.

[19] Lebourgeois F., Cousseau G., Ducos Y., 2004. Climate-tree-growth relationships of Quercus petraea Mill. stand in the forest of Bercé (“Futaie des Clos”, Sarthe, France), Ann. Sci. For. 61(4): 361-372.

[20] Le Goff N., 1984. Indice de productivité des taillis-sous-futaie de chêne dans la région Centre, Ann. Sci. For. 41(1): 1-34.

[21] Hochbichler E., 1993. Methods of oaks silviculture in Austria, Ann. Sci. For. 50 (6): 583- 591.

[22] Díaz-Maroto I.J., Vila P., Silva-Pando F.J., 2005. Autoecology of oaks (Quercus robur L.) in Galicia (Spain), Ann. Sci. For. 62 (7) (in press).

[23] Fernández Prieto J.A., Bueno A., 1996. La reserva integral de Muniellos: flora y vegetación, Consejería de Agricultura, Principado de Asturias.

[24] Zhang S.Y., Nepveu G., Eyono R., 1994. Intratree and intertree variation in selected wood quality characteristics of European oaks (Quercus petraea and Quercus robur), Can. J. For. Res. 24: 1818-1823.

[25] Duplant P., 1997. Croissance en hauteur dominante du chêne sessile (Quercus petraea Liebl.) en futaie régulière, Bulletin technique 33: 49-58, Office National des Forêts.

[26] Bergès L., Hervé J.C., Franc A., Gilbert J.M., Nepveu G., 1999. Influence of ecological factors and individual effects on radial growth and wood density components for sessile oak (Quercus petraea Liebl.) in Paris Basin and North-Eastern by use of mixed models, Proceedings Workshop IUFRO S5.01-04: 205-222.

[27] Bèrges L., 2000. Variabilité individuelle et collective de la croissance et de la densité du bois de Quercus petraea en relation avec les facteurs écologiques, Thèse doctorale, École National des Eaux et Forêts, INRA, Nancy.

[28] Polge H., 1973. Facteurs écologiques et qualité du bois, Ann. Sci. For. 30(3): 307-328.

[29] Rubio A., Escudero A., Gandullo J.M., 1997. Sweet chestnut silviculture in a ecological extreme of its range in the west of Spain (Extremadura), Ann. Sci. For. 54(7): 667-680.

[30] Gandullo J.M., Sánchez O., González S., 1983. Estudio ecológico de las tierras altas de Asturias y Cantabria, Monografías INIA 49, Madrid.

[31] Blanco A., Rubio A., Sánchez O., Elena R., Gómez V., Graña D., 2000. Autoecología de los castañares de Galicia (España), Inv. Agr. Sis. Rec. For., Vol. 9 (2): 337-361.

[32] DGCONA, 2003. Tercer Inventario Forestal Nacional, Principado de Asturias, Ministerio de Medio Ambiente.

[33] Gandullo J.M., Bañares A., Blanco A., Castroviejo M., Fernández A., Muñoz L., Sánchez O., Serrada R., 1991. Estudio ecológico de la laurisilva canaria, ICONA.

[34] Hummel F.C., 1959. Code of Sample Plot Procedure, Forestry Commission Booklet 34.

[35] Rondeux J., 1993. La mesure des arbres et des peuplements forestiers, Les Presses Agronomiques de Gembloux.

[36] Carballeira, A., Devesa, C., Retuerto, R., Santillan, E., Ucieda, F., 1983. Bioclimatología de Galicia, Xunta de Galicia-Fundación Barrie de la Maza.

[37] Castroviejo M., 1988. Fitoecología de los montes de Buio y Sierra del Xistral (Lugo), Consellería de Agricultura, Gandería e Pesca, Xunta de Galicia.

[38] Aussenac G., 2000. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture, Ann. Sci. For. 57 (3): 287-301.

[28] Guilley E., Herve J.C., Nepveu G., 2004. The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl., For. Ecol. Manag. 189 (1-3): 111-121.

[39] Retuerto R., Carballeira A., 1990. Phytoecological importance, mutual redundancy and phytological threshold values of certain climatic factors, Vegetatio 90: 47-62.

[40] Johnson P.S., Shifley S.R., Rogers R., 2002. The ecology and silviculture of oaks, CABI Publishing.

[42] Thornthwaite C.W., Mather J., 1955. The water balance, Climatology 8: 1-104.

[43] Gaussen H., 1955. Détermination des climats par la méthode des courbes ombrothermiques, Compt. Rend. Hebd. Séances Acad. Sci. 240: 642- 644.

[44] Bravo-Oviedo A., Montero G., 2005. Site index in relation to edaphic variables in stone pine (Pinus pinea L.) stands in Southwest Spain, Ann. Sci. For. 62 (1): 61-72.

[45] Russell J.S., Moore A.W., 1968. Comparison of different depth weightings in the numerical analysis of anisotropic soil profile data, Proc. 9th. Int. Cong. Soil Sci., 4: 205-213.

[46] Pardé J., Bouchon J., 1988. Dendrométrie, E.N.G.R.E.F., 2ª ed., Nancy.

[47] Claessens H., Pauwels D., Thibaut A., Rondeux J., 1999. Site index curves and autoecology os ash, sycamore and cherry in Wallonia (Southern Belgium), Forestry 72 (3): 171-182.

[48] Assmann E., 1970. The principles of forest yield study, Pergamon Press, Oxford, New York.

[50] Walpole R.E., Myers R.H., Myers S.L., 1999. Probabilidad y estadística para ingenieros, 6ª ed., Prentice Hall, Londres.

[51] Gaines S.D., Denny M.W., 1993. The largest, smallest, highest, lowest, longest and shortest: extremes in ecology, Ecology 74: 1677-1692.

[52] Daget Ph., Godron M., 1982. Analyse fréquentielle de l’ écologie des espèces dans les communautés, Masson.

[53] Aramburu M.P., Escribano R., Martínez E., Sáenz D., 1984. Análisis de la distribución de Quercus pyrenaica Willd en el Sistema Central, E.T.S.I.M., Madrid.

[49] Hart H.M.F., 1928. Stamtal en dunning; een orienteerend onderzoek naar de beste plantwijdte en duningswijze loor den djati, Veenman & Zonen.

[54] Hill M.O., Bunce R.G.H., Shaw M.W., 1975. Indicator species analysis: a divisive polythetic method of classification, and its application to a survey of native pinewoodws in Scotland, J. Ecol. 63: 597-613.

[55] Hix D.M., 1988. Multifactor classification and analysis of upland hardwood forest ecosystems of the Kichapoo River watershed, southwestern Wisconsin, Can. J. For. Res. 18: 1405-1415.

[56] Martínez E., Ayuga E., González C., 1992. Estudio comparativo de distintas funciones núcleo para la obtención del mejor ajuste según el tipo de datos, Qüesttió 16: 3-26.

[57] Hill M.O., 1979a. Decorana: A fortran program for detrended correspondence analysis and reciprocal averaging, Cornell Univ., New York.

[58] Hill M.O., 1979b. Twinspan: A fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes, Cornell Univ., New York.

[59] ter Braak C.J.F., 1994. Canonical community ordination. Part I: Basic theory and linear methods, Ecoscience 1: 127-140.

[60] Kent M., Coker P., 1996. Vegetation description and analysis. A practical approach. John Wiley & Sons, New York.

[61] Pisces Conservation L.T.D., 1999. Community Analysis Package versión 1.42. A program to search for structure in ecological community data, England.

[62] Ryan T.P., 1997. Modern regression methods, John Wiley & Sons.

[63] Sas Institute Inc., 2004. SAS/STAT® 9.1. User’s Guide. Cary: SAS Institute Inc.

[64] Wilde S.A., 1946. Forest soils and forest growth, Chronica Botanica Comp.

[65] Gandullo J.M., 1974. Ensayo de evaluación cuantitativa de la insolación en función de la orientación y de la pendiente del terreno, Anales INIA, Serie Recursos Naturales 1: 95-107.

[41] Thornthwaite C.W., Mather J., 1957. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balances, Centerton, New Jersey.

[66] Andre F., Ponette Q., 2003. Comparison of biomass and nutrient content between oak (Quercus petraea) and hornbeam (Carpinus betulus) trees in a coppice-with-standards stand in Chimay (Belgium), Ann. Sci. For. 60 (6): 489-502.

[67] Morh D., Topp W., 2005. Hazel improves soil quality of sloping oak stands in a German low mountain range, Ann. Sci. For. 62(1): 23-30.

WSEAS Transactions on Environment and Development, ISSN / E-ISSN: 1790-5079 / 2224-3496, Volume 13, 2017, Art. #11, pp. 85-102


Copyright © 2017 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site