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Abstract: The aim of this paper is an experimental study of a discrete-time fuzzy optimal controller based on
blending of Takagi-Sugeno (T-S) fuzzy modeling and the Linear Quadratic Regulator (LQR) for an Underactuated
Mechanical System. The proposed scheme combines the optimality of the LQR in terms of a desired behavior
dynamic of the system with admissible control actions and, the approximation capability of nonlinear functions
of T-S fuzzy model. From an input-output data a T-S fuzzy model based on an improved approach of fuzzy
identification is estimated and, an extended optimal state feedback control is used in order to control stabilization
and to guarantee reference tracking of Furuta’s Pendulum. For the purpose of validating the controller scheme
proposed experimental tests on QNET Rotary Inverted Pendulum Trainer for NI ELVIS are carried out. The
performance of designed controller is compared against the classical LQR using an Integral Square Error (ISE)
index.
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1 Introduction verted pendulum until it reaches the unstable position
(swing-up), (2) maintaining the stabilization at this
position and trajectory tracking of the inverted pen-
dulum arm. Thus, several linear and non-linear con-
trol techniques have been tested. For instance, in [9],
a nonlinear optimal (H-oo) control to FP using an
approximate linearization around temporary equilib-
rium is developed. Using a Lyapunov stability theo-
rem for stabilization control of rotary inverting pen-
dulum is designed in [10]. The swing-up problem has
been addressed using different approaches based on
energy control [11,12]. In order to solve the tracking
problem of FP several new interesting approach have
been presented, for example, a composite scheme
based on input-output linearization and energy func-
tion of the system is proposed in [13], feedback lin-
earization controller techniques have been introduced
in [14,15], an adaptive network-based control scheme
is proposed in [16].

An underactuated mechanical system (UMS) has
more degrees of freedom to be controlled than inde-
pendent control actuators [1]. The effects of unmod-
eled dynamics, external forces and, non-holonomic
behavior of non-directly actuated variables represent
a challenge when experimental implementation of a
synthesized control scheme is required [2]. UMS are
being used in a lot applications, such as: mobile robot
systems, aerial vehicle systems, underwater vehicle,
[1,3-5].

Rotational inverted pendulum also called Furuta’s
Pendulum (FP) [6] is the most popular UMS, which
has been widely studied by control researchers. The
FP consists of an actuated arm which rotates in a hor-
izontal plane, and a non-actuated rotating pendulum
in the vertical plane and it only has an input actua-
tor that provides torque at the arm. The pendulum of
Furuta has been used for testing linear and non-linear

control techniques and has become a benchmark chal- On the other hand, the optimal control has been
lenge problem for designing of control systems. Due studied and was satisfactory applied on UMS [17,18].
to it is a multivariable system and, it has a highly non- Linear Quadratic Regulator is an optimal control and
linear and unstable dynamic behavior [7, 8]. it has been successfully used for the stabilization of a

The classical control objectives studied in the lit- rotating inverted pendulum [19-21], where LQR pro-
erature for FP are mainly: (1) balancing up the in- vides a compromise between the performance of the
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variables to be controlled and the control action effort.
However, designing a LQR requires a linear model of
the system, which limits the performance of this con-
troller against highly non-linear systems.

An interesting method of fuzzy systems identi-
fication using input/output data is presented in [22].
Takagi-Sugeno (T-S) fuzzy modeling has been wide
used on non-linear control systems [23-25], due to
its ability to approximate any non-linear function by
suitable linear subsystems. It has presented versatility
when it has been blended with different kinds of con-
trollers, such as: Sliding mode controllers [26], opti-
mal [27,28],and predictive model controllers [29].

Some approaches to T-S fuzzy modeling have
been implemented in FP, in [30] the inverted ro-
tary pendulum is modeled using robust fuzzy Takagi-
Sugeno descriptors, from this model a stabilization
control based on a LQR is designed. A T-S fuzzy
model is constructed from a simplified system based
on nonlinear sector is proposed in [31], then a Paral-
lel Distributed Compensation (PDC) controller is de-
signed with control input constraint using linear ma-
trix inequality (LMI) toolbox of MatLab. In these two
works the T-S fuzzy model is derived from simplified
nonlinear model , however in practical applications is
difficult to obtain an analytic model because only in-
put/output data of the process is accessible.

This article contains two main parts, firstly an

experimental study is carried out based on several
tests on the FP, then from input/output data a Takagi-
Sugeno model is estimated by fuzzy identification sys-
tem [35,36]. Secondly, the T-S fuzzy model is blend-
ing with an optimal controller based on an extended
LQR controller (FCL-LQR) in order to guarantee a
stabilization and reference tracking control of the sys-
tem.
The article is organized as follows, in section 2 a brief
description and nonlinear model of FP is presented.
An identification T-S fuzzy modeling method for mul-
tivariable system is presented in section 3. In section 4
an optimal controller based on an extended LQR con-
troller is designed based on T-S fuzzy model. In sec-
tion 5 a T-S fuzzy model and LQR extended control
laws are obtained using MatLab, and experimental re-
sults based on step change references, parametric vari-
ation and external disturbance tests are carried out. In
section 6 conclusions are presented.

2 Furuta Pendulum Nonlinear

Model

In this work, QNET Rotary Inverted Pendulum
Trainer for NI ELVIS [32] is used. In Fig.1, the
scheme of FP is illustrated; this is composed of a pil-
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lar with moment of inertia .J, connected to a horizon-
tal arm of length [, of mass m, and a pendulum of
length [, of mass m,,. By considering that the weights
are evenly distributed.

7 A

MOTOR

Figure 1: Furuta’s pendulum scheme

where, « is pendulum angular position and 6 is
arm angular position. Taking the states vector as fol-
lows:

[$1 o I3 $4]T:[9 9 « d}T (1)

the space-state representation of nonlinear FP
model [20] is given by:
T1 = T9
By’ (sin2 €T3 — 1) sin x3
©B —n*+ (8% +n?)sin*a
2321914 COS T3 Sin T3
w8 —n? + (52 +n?)sin® a
Bnais? sin zz — nd cos 3 sin x3 + By

©B—n?+ (B2 + n?)sin’ a

g =

+

T3 = 14

B2 (gp + Bsin? :1:3) COos T3 sin x3

e P —n? + (B2 +1%)sin” a
2012123 (1 — sin 3:3) sin x3
+ 0B —n?+ (B2 4+ n?)sin? (2)
n :I'32 COS T3 sin T3
@B+ (B2 4P sin?a
N 1) (gp + Bsin? ”L’g) sin x3 — 17y COS T3
0B —n? + (B2 +1?)sin® a
with:
8= %mplf,, 7 %mplalp, 6= %mpglp
o= %V— K;%Kte =J+ (?+mp)12
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Table 1 Furuta’s Pendulum Parameters [20]

Parameter Unit Description

mp = 0.027 [Kg] Mass of pendulum and weight
combined

mq = 0.008 [Kg] Mass of the horizontal arm

l, =0.191 [m] Total pendulum length

lo = 0.0826 [m] Length of horizontal arm

J=18¢"° [kg-m?] | Motor-rotor moment of inertia

g=938 [m/s?] | Gravity

K;=0.03334 | [N-m] | Motor current-torque constant

K. =0.03334 | [N -m] | Motor back-emf constant

R, = 8.6 [ Motor armature resistance

The nonlinear FP model (2) considers the input
of system is the DC motor voltage (V). The physical
parameters and its values of Quanser QNET Rotary
Inverted Pendulum are listed in the Table 1, [32].

3 Identification of Takagi-Sugeno (T-
S) Fuzzy Model

In [22] a fuzzy identification method of systems from
data is presented. The idea of fuzzy system iden-
tification is to estimate of a multivariable nonlinear
system parameters by minimizing a quadratic perfor-
mance index. The identification of vectorial function
is equivalent to m scalar functions:
yeR, j=1,.,m (3

Yj = fj (l’l,l’g, 7:Bn)

where y; is each one system output. By choosing
[r1, 79, ..., ] numbers of fuzzy sets of [x1, z2, ..., Ty]
measurable variables of multivariable nonlinear
system. A multivarible fuzzy system Sysj“'“l" can
be defined for nth order system as follows:

(il-uin) .
Sys; :
IF w1 (k) is Mii and xy (k) is M3 and---
xy (k) is M};; THEN :

g5 (k) = pl ™) 4 plit gy 4 plin)gy 4
+p§~2"ln) n
4)
where j; is each system output estimated. For
each IF-THEN rule, a discrete-time state-space
linear model with affine term is represented by the
application of equation (4) as:

Sysigil’"i") :
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IF xy (k) s Mﬁ xo (k) is ]\4;3 and- - -
n (k) is Mjn THEN :

z (k+1) = agl-n) 4 AG-in) g (k) 4 BU1-in)y (k)

(5)
where:  qglit-in) ¢ RN, Al-in) ¢ gnan
Blit-in) ¢ gnam qpq M{'l (i1 =1,2,---,7) are the

fuzzy sets of z1(k), M (i1 = 1,2,--- ,7r1) are the
fuzzy sets of x,, (k) and, u(k) is the input system.

The fuzzy system is described in (6):

z(k+1) =30 S flinin (g) [agl-in)
+ Alinin)g (k) + Blitin)y, (k)]
(6)

where:

BU-n) (3, 4y (K)) =

_ w1, (1) Uni, (Tn) )
Zﬁl T 222:1 (utiy (1) -~ Uniy, (Tn))

where uj;; () is the membership function that

corresponds to the fuzzy set of M ;’

3.1 Estimation of T-S fuzzy model parame-
ters

The traditional method based on the estimation of T-S
fuzzy model parameters [22] presents problems and it
can not be applied to the most common case where
triangular membership functions of a fuzzy system
are overlapping by pairs. For this case, it is easy to
demonstrate that the T-S matrix is not of full rank,
therefore it is not invertible [35]. Thus, in [35], [36]
an efficient method to improve the identification and
estimation of parameters T-S fuzzy model was devel-
oped, this approach is simple, of low computational
cost and it is based on the tuning and weighting of
parameters.

In order to tune T-S model parameters; an
input/output data set {1, ", Tnk, Yikrs " > Yim}
from k samples are used to obtain affine linear model
parameters (8). These are estimated around the equi-
librium point using for instance the least squares
method:

t
Ph) ®)
This first approximation could be used as refer-

ence for all subsystems. Then, the monovariable T-S
fuzzy model can be obtained minimizing [28]:

po=[py P} PY
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m ~ 11..0n 2
J =30 (e — Ge)” + (p? —pyt ))
n i1..0n)2
Z:llzl "Z;nzl Z?:o ’V](‘“ )

=[IY = XP|* +|IT (po — p)II”

(€)

where ~ is the factor that represents the degree of
confidence of the linear estimated parameters. In this
case weights factor fy](.il"i”) are the same for initial pa-
rameters p? in each rule IF-ELSE. The I is a diagonal

matrix with weights factor ’y](il"i”). For a multivari-

able system the parameters tuning is given by the in-

dex:
Y; X
J: = J ] _ [ J] P:
’ H [ijjo r;]/

where: Y is the output, X is the input/output
fuzzy data, P; is the fuzzy T-S model parameters. pg
is the linear estimated parameters, which are repeated
as many times as fuzzy rules. It is usual in T-S fuzzy
model that the premise of fuzzy sets of all subsystems
are the same, in this case:

2
(10)

Xi=Xo=Xpm=X (11)

Thus, all subsystems can be grouped as:

J— [ Yi Yo Yy,
I'p1o Cp2o I'pimo

[

= ||Ya - XuP||2
(12)
Finally, it should be noted that the X, matrix is
of full rank, therefore the problem of traditional T-S
model is solved. The parameters of this model can be
calculated by [35]:
P=(x!x,)'xl, (13)
where,the matrix P contains the matrices of the
T-S fuzzy model for each IF-THEN rule.

4 Design of a Fuzzy Optimal Con-
troller

In order to get a control law wu(k) that allows the
system going from an initial state (ko) to a final
state (z(k1) = 0) with a dynamic behavior, a dis-
crete optimal state feedback controller based on Lin-
ear Quadratic Regulator (LQR) is chosen [20]. The
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LQR method is optimal for linear systems, however
in the case of nonlinear systems it is complex to pro-
pose a minimization of an objective function for the
global system, for which reason the solution will be
suboptimal. In this methodology, global stability is
not guaranteed and which needs be analyzed a poste-
riori [27].

By considering any subsystem represented by
equation (5) the affine term ao(*~*») can be consid-
ered as a perturbation and in order to guarantee a zero
steady state error, an integral action control based on
error signal is added:

wk+1l)=wk)+z, —z(k+1) (14

which allows to rewrite an extended system with

N new states as:
] e R W RICR
(15)

wk+1)| |1
z(k+1)|
where [ is identity matrix and 0 is null matrix.
Extended system is considered according to the fol-
lowing nomenclature:

wlk s Aa={é _ﬁ]; Bﬁ[ﬂ

z(k+1)

In order to determine the feedback optimal gains,
where the goal is to minimize the cost index J. with
extended states reference x,, = [() .CET] :

) ]
o

(a0 = () + S0 [0 1) R 1)
(16)
where @), and @), are non-negative define matri-
ces that penalize the state and state of the error respec-
tively, R is a positive define matrix that penalize the
input.
It is well known that state feedback control law is
given by:

a =

Je = 2k%0 [ (2ra — 4 (k)" [ %“’

u(k) = Ko (g — xq) (17)
where the K, can be obtained by solving the
discrete-time algebraic Riccati equation.
In order to obtain a control law for each IF-ELSE
rule C("1-#n) T-S fuzzy model, the feedback optimal

gain matrices K,ein) = [Kw(il"i") Kx(il"i”)]

are obtained for each system Sys(il"i"). The control
law of Fuzzy Logic Controller based on T-S fuzzy
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model and extended LQR is given by:

O(llln) :

IF x4y (k) is Mﬁ and xo (k) is M;g and- -
wn (k) is Mn THEN :

u (k) = Kyw (k) — Ky (2, — 2 (k)) (18)
where:
Kw = Z;ll . Z;::l ﬂ(il--in)Kw(il--in) (19)

o= 7 S S
and (1) s calculated from equation (7).

In Fig. 2 a general scheme of optimal fuzzy logic
controller based on T-S model is shown.

Xr

Reference

Figure 2: General scheme of fuzzy logic controller
based on T-S model

In Fig. 3 an internal scheme of optimal fuzzy
logic controller based on T-S model is shown.

State vector

Feedback Matrices
K“([“" i) _ [Kfi" i) K(a‘; . ;‘,)]

=
|
|
| Fuzzyfication
|
|
|
|
|

|
|
|
|
|
Fuzzy Inference ! u(k)
- X>_< i >
|
: |
|
|
|

Control action Output

e(k) |

Error |

Figure 3: Internal scheme of optimal fuzzy logic con-
troller

5 Results

This section is divided in two parts; in the first one,
it is concerned the T-S fuzzy identification and opti-
mal control laws obtained from the methodology de-
scribed in section (3) and (4). Second part a brief de-
scription of the real system is presented and the exper-
imental results are obtained by the proposed controller
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implemented on Quanser QNET Rotary Inverted Pen-
dulum Board for NI ELVIS.

5.1 T-S Fuzzy Identification and Control
Laws

Following the procedure described in section 3, the
first step is to obtain a first affine linear model (8),
this model is gotten from a linear identification on
equilibrium point of the system (discrete-time linear
model), which is taken from [20].

[1.0000  0.0099 —0.0097 —0.000
0.0005 0.9839 —1.8011 —0.008
e(k+1)="100000 00001 1.0009 0.010]%®
|—0.005 0.0102 1.8841  1.884
[ 0.0023
0.4623
1 0.0015| )
| —0.3001

The T-S fuzzy identification methodology re-
quires of input-output data set. Thus, these data set
have been generated from MatLab-Simulink simula-
tions using a dynamic nonlinear model described in
(2) as Fig. 4 shows.

Furuta Y
Pendulum

Non-linear Model

Figure 4: Input-output data generation from Matlab
simulations

where, v is input of system, Xy is the vector
of initial conditions, and Y is the outputs vector,
in this work it is considered that all states system
are measurable. Thus, for an ith MatLab-Simulink
simulation an u; and X, are selected randomly with
an uniform distribution function, and the output Y;
is taking after a sampling time (7s = 10[ms]) has
elapsed. In this work 2000 simulations are used. In
table 2 the range of X and u variables are presented.

Table 2 Range of variables for T-S identification

Variable | Range Unit
90 [—7/3,7/3] [rad]
0 [-1,1] [rad/s]
«Q [—7/12,7/12] | [rad]
« [-1,1] [rad/s]
0 [~20, —20] V]
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In order to estimate the T-S fuzzy model, tri-
angular membership fuzzy set with three subsets
for pendulum angular position a and arm speed
6 have been chosen as Fig. 5 shows. Thus, nine
fuzzy IF-ELSE rules are obtained. For each rule an
system Sysg“”'l”) is represented by a discrete-time
state-space linear model (5), which has been obtained
from input-output data using fuzzy identification
methodology described in section 3. It is used
weighting diagonal matrix of v = 1, therefore
matrices of each rule is given by:

08 L

06 [

0.4

02 L

Membership Function p

08

06 L

04 L

02 |

Membership Function p

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Pendulum Angular Position @ [rad]

Figure 5: (a) Arm speed fuzzy subsets, (b) Pendulum
angular position fuzzy subsets

Syst . IF x5(k) is M} and x3(k) is My THEN :

0.000 0.000
| 0001 n | 0159
% =1 9000 [ B = 0000
0.000 ~0.102
1.000  0.010 —0.003  0.000
1 | 0002 0975 —0.610 —0.014
= | 0000 0000 1.005 0.010
0.003 0018 1.172  1.014

Sys'?: IF x9(k) is M} and x3(k) is M3 THEN

0.000 0.000
12 | —0.016 12 | 0.156
aw = goo0 [* 27| o0.000
0.013 ~0.102
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1.000 0.010 —-0.003 0.000
A2 _ —0.028 0.972 —0.636 0.006
0.000 0.000 1.005 0.010
—-0.022 0.020 1.172 0.997

Sys'3 . IF xo(k) is M} and x3(k) is M3 THEN :

0.000 0.000
( —0.001 f 0.159
13 13
a =1 o000 [* B =1 0.000
0.001 ~0.102
0.999 0.010 —0.003 0.000
s _ | —0019 0976 —0.622 0.000
= | 0000 0000 1.005 0.010
0.015 0.016 1.165 1.002

Sys® . IF x9(k) is M? and x3(k) is M3y THEN

0.000 0.000
o1 | —0.006 21 | 0159
a =1 9000 |* Z7 =1 0.000
0.004 —0.102

0.999  0.009 —0.003 0.000

2t | 0011 0976 —0.622 0.000

~ | 0.000 0.000 1.005 0.010

0.008 0.016 1.165 1.002

Sys* . IF xo(k) is M and x3(k) is M3 THEN :

0.000 0.000
0.004 0.159
22 22
a =1 o000 |* BT = 0000
~0.003 —0.102
0.999  0.010 —0.003 0.000
22 _ | 0044 1003 —0.635 —0.029
= | 0000 0000 1.005 0.010
0.035 —0.004 1.171  1.026

Sys® : IF x9(k) is M and x3(k) is M3 THEN :

0.000 0.000
0.011 0.159
23 _ 23
a =1 o000 |* B = 0000
—0.008 —0.102
1.000  0.009 —0.003 0.000
28 _ | 0009 0998 —0.687 0.000
= | 0000 0000 1.006 0.010
—0.007 0.007 1.215 1.003

Sys3t . IF x9(k) is M3 and x3(k) is Md THEN

0.000 0.000
~0.008 0.159
31 31
@ =1 go00 [* = 0000
0.008 —0.102
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1.000

0.009

0.000
—0.008

A31 _

Sys3? . IF xo(k) is M} and x3(k) is M3 THEN :

0.000
5| —0.002

% =1 0.000
0.002

1.000

0.022

0.000
—0.018

A32 _

Sys33 . IF xo(k) is M3 and x3(k) is M3 THEN :

[ 0.000
53 0.008
0.000
| —0.006

[ 1.000
0.007
0.000
| —0.006

0.009
0.983
0.000
0.013

—0.003
—0.622
1.005
1.165

0.000
0.000
0.010
1.003

0.000
52 | 0.159
BT =1 0000

~0.102

0.010 —0.003 0.000

0.994 —0.639 0.022

0.000  1.005  0.009

0.029 1.174 1.003

0.000
53 | 0.159
BZ=1"0.000

~0.102

0.009 —0.003  0.000

0.996 —0.715 —0.015

0.000  1.006  0.010

0.027 1.239 1.0119

In order to validate the T-S fuzzy model iden-
tification, Mean Squared Error (MSE) is used,
where the errors of four system variables are:
Orse = 1151077, aysp = 7.75 - 107% and
Orrse = 0.0047, éarsp = 0.0031, where the errors
are very low.

The feedback optimal vector gains K, is calcu-
lated for each rule, where the matrices (0, () and R
are determined by trial and error:

0.01
0.00
0.00
0.00

0.00
0.01
0.00
0.00

0.00
0.00
0.01
0.00

0.00
0.00
0.00
0.01

Qw:

25 0.0 0.0 0.0
0.0 25 0.0 0.0

©=100 00 40 0ol 7!
0.0 0.0 0.0 10
The fuzzy feedback control vector gains

K, i) = [Kw(“"in) Kx(il"i")] for each rule are
given by:

C: IF x9(k)is M} and x3(k) is My THEN :
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Kl = [ 0.001 0.000 0.000 0.000 ]

K)'=[-54 —69 —181.7 —21.1 |
C12: IF z9(k) is M} and x3(k) is M2 THEN :

K2 =10.001 0.000 0.000 0.000 |
K?=[-38 —69 —187.7 —21.3 |
C13: IF z9(k)is M} and x3(k) is M3 THEN :
K =10.001 0.000 0.000 0.000 ]
Kp2?=[-57 —6.72 —181.5 —20.7 ]
C?': IF z9(k) is M} and x3(k) is My THEN :
K2!'=10.001 0.000 0.000 0.000 ]
K2l=[ -54 —6.1 -1751 -20.0 |
C?2 = IF xy(k) is M? and x3(k) is M3 THEN :
K22 =10.001 0.000 0.000 0.000 ]
K2»=[ —-67 —-57 —165.8 —19.7 |
C* = IF xy(k) is M? and x3(k) is M THEN :
K2¥=10.001 0.000 0.000 0.000 |
K2 =[-46 —6.1 -1764 —20.1 |
C3' = IF x9(k) is M} and x3(k) is M3 THEN :
K3!'=10.001 0.000 0.000 0.000 ]
K3l'=]-44 -68 —1829 -21.0 |
C32 = IF x9(k) is M3 and x3(k) is M THEN :
K32 =10.001 0.000 0.000 0.000 ]
K3?=1]-39 -59 -1753 —195 |
C33 . IF z9(k) is M} and x3(k) is M3 THEN :
K33 =11.000 0.009 —0.003 0.000 ]
KP=[-46 -74 -190.6 —21.7 |
5.2 Experimental Results

In this section experimental results are presented,
where the dynamic behavior of a classical LQR con-
troller and the proposed controller FL.C are compared.

In Fig. 6 the QNET Rotary Inverted Pendulum
Trainer (h) for NI ELVIS (g), is presented. Which is
composed of: (a) DC Motor of 24[V], 286[rpm/V]
and Ipee = 3[4], (b) Arm angle encoder of
0.25[dec/count] (in quadrature mode), (c) rotary

Volume 18, 2019



WSEAS TRANSACTIONS on SYSTEMS

arm, (d) pendulum encoder of 0.0879[dec/count] (in
quadrature mode), (e) pendulum link and (f) pen-
dulum weight of mass 0.019[kg]. For this work
was used a PC Intel(R), Core(TM) i7-4900MQ CPU
@ 2.8GHZ. We used LabVIEW 2013 software with
ODE Runge — kuttal(Ewuler) solver method.

Figure 6: QNET Rotary Inverted Pendulum Trainer
for NI ELVIS, [32]

For the purpose of validating the proposed con-
troller three experimental tests are carried out. The
first is a reference change test on the arm angular posi-
tion 6 as the Fig. 7 shows, the second test is performed
in the presence of an external disturbance. Finally, a
pendulum mass change (variation parameter) is made
for the third test. For all tests the FP starts in equi-
librium point (o« = O[rad],# = 0[rad]). In order to
analyze the performance of the proposed controller,
the Integral Square Error (ISE) index is used.

Figure 7: Quanser QNET Rotary Inverted Pendulum
scheme

5.2.1 Step Change Reference Test

In this test, the pendulum begins in the upright posi-
tion (equilibrium point), then a step change of refer-
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ence on the arm angular position of 6 is applied. In
Fig. 8 the time-response of arm angular position, in
Fig. 9 the time-response of pendulum angular posi-
tion « and, in Fig. 10 the time-response of input v for
a step change reference of § = 0.872[rad] are shown.

Angle 4 [rad]

= = ‘Reference

0 1 2 3 4 5 6 7 8 9 10 "
Time [s]

Figure 8: Arm angular position # time-response for
step change reference (6 = 0.872[rad])

03
0.2

0.1

0

Angle o [rad]

o1f ¥

-0.2

= = Reference

-0.3

o 1 2 3 4 5 & 7 8 9 10 11
Time [s]

Figure 9: Pendulum angular position « time-response

for step change reference (0 = 0.872[rad))

Control Law u [V]

0 1 2 3 4 5 6 7 8 9 10 11
Time [s]

Figure 10: Input » time-response for step change ref-
erence (6 = 0.872[rad))

In Figs. 8 and 9 show that the LQR and FLC-LQR
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controllers are able to maintain balance (equilibrium
point) for a reference change of (¢ = 0.872[rad)])
with the control action « within the operating range.
In Figure 11 presents the real frame sequences of
the Furuta’s pendulum for a step change reference of
(0 = 3.577[rad)) using FLC-LQR.

Figure 11: Sequence frame of the Furuta’s pendulum
for step chance reference (6 = 0.872[rad]) with FLC

In Fig. 12 the time-response of arm angular po-
sition, in Fig. 13 the time-response of pendulum an-
gular position («) and in Fig. 14 the time-response
of input u for step change reference (0 = 3.577[rad))
are shown.

Angle 6 [rad]

o =
T T
—

v —==='LQR

FLC-LQR

-1F = = :Reference
--------- From here LQR fail

o 1 2 3 4 5 & 7 8 8 10 1
Time [s]
Figure 12: Arm angular position § evolution for step

change reference (6 = 3.577[rad)])
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FLC-LQR
03} = = :Reference
--------- From here LQR fail

0.4 . | | | L L | | | L \
0 1 2 3 4 5 6 7 8 9 10 11

Time [s]
Figure 13: Pendulum angular position « time-

response for step change reference (0 = 3.577[rad))
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Control law u [V]

Time [s]
Figure 14: Input u time-response for step change ref-
erence (6 = 3.577[rad)])

Figures 12 and 13 indicate that only the FLC
controllers are able to maintain balance (equilibrium
point) for a reference change of (§ = 3.577[rad]) and
the control action w within the operating range. Table
3 shows ISE performance index for both controllers
from step change reference tests of (§ = 0.872[rad))
and (0 = 3.577[rad]), where the FLC-LQR controller
has less ISE than LQR controller.

Table 3 ISE Step change reference tests

Step Var. | ISE LQR ISE
Change LQR FLC-LQR
0=0872 | « | 0.0046 0.00057

0 | 7.9686 5.7195
0=357TT| a | ——— 0.0023

0 | -——- 107.34

5.2.2 External Disturbance Test:

In this test, an external disturbance is applied on Fu-
ruta’s pendulum as is shown in Fig. 15

Figure 15: External disturbance test scheme

Volume 18, 2019



WSEAS TRANSACTIONS on SYSTEMS

In this test a mass M = 0.1[kg] is suspended by
a cord of distance /, = 0.11[m] which forms an angle
A with respect to the vertical axis is released towards
the rotary inverted pendulum, the perpendicular force
Fjer applied is determined as [37]:

Fper = M - g - sin(\) (20)

where g is the gravitational constant.

Figure 16 presents the real sequence of the FP for
a external disturbance test using FLC-LQR.

Figure 16: Sequence of the FP for external distur-
bance test using FLC-LQR

For an angle of A = 0.6[rad], the perpendicu-
lar force is Fpe, = 0.443[N]. In Fig. 17 the time-
response of pendulum angular position, in Fig. 18 the
time-response of arm angular position (#) and in Fig.
19 the time-response of control law u for external dis-
turbance test are shown, where around of 1[s] the F),,
is applied.

05 g
= h
g R
o O \ o .
k<)
j
<
=—===| QR
FLC-LQR
- e I Here Fper
205 I H L ! ! I L L ! |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]
Figure 17: Time-response of pendulum angular posi-
tion o for a external disturbance test

Taking into consideration Fig. 17 and 18, the
LQR and FCL-LQR controllers are able to maintain
balance (equilibrium point) for a external disturbance
test and the control action u within the operating
range.
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3 FLC-LQR
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0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Time [s]
Figure 18: Time-response of arm angular position 6
for a external disturbance test

30

20

Control law u [V]

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time [s]

Figure 19: Input v time-response for a external distur-
bance test

Table 4 shows ISE performance index for both
controllers from a external disturbance test, where
the FLC-LQR controller has less ISE than LQR con-
troller.

Table 4 ISE Step external disturbance test

Forcer Var. | ISE ISE
LOQR FLC-LQR
Fper = 0.443[N] a | 0.0058 0.00036
0 0.7525 0.6858

5.2.3 Parameter Variation Test:

In this test, FP dynamic model is modified, where
a metallic piece of mass m, = 138[gr] is attached
on pendulum as Fig. 20 shows.In Fig. 21 the time-
response of pendulum angular position «, in Fig. 22
the time-response of arm angular position (#) and in
Fig. 23 the time-response of input v for parameter
variation test are shown. According to Fig. 21 and 22,

Volume 18, 2019



WSEAS TRANSACTIONS on SYSTEMS

only the FLC-LQR controller is able to maintain bal-
ance (equilibrium point) for parameter variation test.

Figure 20: Parameter variation test on Furuta’s pen-
dulum

a
W

Lk

Angle 6 [rad]
o

H =—===:LQR
3t FLC-LQR
-2 e From here LQR fail
| | L

0 2 4 6 8 10 12 14 16 18 20
Time [s]

Figure 21: Time-response of pendulum angular posi-
tion o for parameter variation test
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Figure 22: Time-response of arm angular position ¢
for parameter variation test
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Figure 23: Time-response of input for parameter vari-
ation test

6 Conclusion

In this work a fuzzy optimal (FLC-LQR) control has
been successful designed and executed for a Furuta’s
Pendulum. The FLC-LQR was obtained blending of
Takagi-Sugeno (T-S) fuzzy modeling and the Linear
Quadratic Regulator (LQR). Three experimental tests:
arm angular position reference change, external dis-
turbance and finally a test of parameter variation were
implemented. Tracking reference and disturbance re-
jection controllers comparison were done and the per-
formance measured. The FLC-LQR compared against
a classic LQR controller presented lower ISE for all
experimental test.
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