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Abstract: Complex sample survey data are obtained through multistage sampling designs that involve clustering,
stratification, and non–responce adjustments. Standard statistical methods such as empirical likelihood are typi-
cally not applicable to complex samples because independent, identically distributed observations seldom result
from such data. Hence, we derive pseudo empirical likelihood confidence intervals for stratified single–stage and
stratified multistage sampling designs. Use of such designs include national health data sets.
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1 Introduction

Complex sample surveys which include a large repre-
sentative sample of various demographic groups pro-
vide excellent sources of data for accessing various
health measures. Data used to demonstrate these
methods are typically found in large data sets such
as national health surveys. Using standard statistical
methods in this context induces a nonstandard covari-
ance structure among sample quantities as patterns in
the covariance matrix are nonstandard [4].

2 Statistical Sampling

We introduce a new sampling method and evaluate
the method by determining its design effect. Estima-
tors may have a loss or gain of efficiency when sim-
ple random sampling is not used. A sequence of es-
timators is asymptotically efficient for a parameter if
the asymptotic variance of the estimator achieves the
Cramer–Rao lower bound [1]. The design effect is a
measure of the loss or gain or efficiency when sam-
pling methods other than simple random sampling are
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used. The design effect is computed by determining
two quantities: (1) the design specific estimate of the
sampling variance, and (2) the sampling variance un-
der the simple random sampling assumption, then de-
termining the ratio (1) : (2).

3 Complex Sample Survey Data

Complex survey data are obtained by stratification,
cluster sampling, or unequal probability sampling. S-
ince these procedures do not produce random sam-
ples, standard statistical methods are not appropriate
for such data sets. Complex survey data analysis in-
stead uses more suitable statistical methods. Such
methodologies include using weights to assign greater
or lesser importance to sample elements in order to
accurately represent the population. An element’s
weight is determined by taking the inverse of its in-
clusion probability which is the probability of an item
in the population becoming part of the sample during
the drawing of a single sample.

One example of a method appropriate for com-
plex survey data is pseudo–empirical likelihood, de-
veloped by [2] as a more suitable suitable methodolo-
gy for complex survey data. The empirical likelihood
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methodology was initially introduced as a sample sur-
vey method known as the scale load approach devel-
oped by [3].

4 Empirical Likelihood

Empirical likelihood has since been extended to other
data types such as biased data, incomplete data, de-
pendent data, spatial data, and complex survey data
[7], [5], [2]. In the case of independent and identi-
cally distributed data, the parametric likelihood is a
function of the parameter θ which takes values in the
space Θ.

Definition 4.1 For a random sample X =
{X1, X2, . . . , Xn} of size n, the parametric
likelihood is

L(θ) = L(θ;X1, X2, ..., Xn), θ ∈ Θ (1)

=
n∏
i=1

f(Xi; θ), (2)

if {X1, X2, . . . , Xn} are independent.
When the density function f(X; θ) is unknown

one can use the empirical likelihood to determine the
likelihood of a parameter [6], [7].

Definition 4.2 Suppose {X1, X2, . . . , Xn} is a ran-
dom sample from an unknown distribution. Let the
parameter θ denote the mean. Suppose pi is the prob-
ability mass placed on Xi,

∑n
i=1 pi = 1, pi ≥ 0. Let

t(p) =
∑n
i=1 piXi denote the value t assumes at p.

The empirical likelihood [6], [7] for θ is defined as

L(θ) = max
p,t(p)=θ

n∏
i=1

pi. (3)

For all θ in the convex hull of X,

max
p,t(p)=θ

n∏
i=1

pi ≤ max
p

n∏
i=1

pi (4)

≤
n∏
i=1

1

n

= L(θ̂),

where θ̂ =

∑n

i=1
Xi

n . Therefore, L(θ̂) = n−n =
maxθL(θ). The corresponding empirical log–
likelihood ratio is

l(θ) = log(T (θ)), (5)

where
T (θ) = L(θ)/L(θ̂). (6)

5 Pseudo Empirical Likelihood

Chen and Sitter developed a pseudo empirical like-
lihood that extended to complex surveys (Chen and
Sitter, 1999). Wu and Rao later developed pseudo–
empirical likelihood ratio confidence intervals for
complex surveys [8]. The pseudo empirical likeli-
hood, developed as a more feasible alternative for an-
alyzing survey data, is a design unbiased estimate of
the log empirical likelihood function

l̂(p) =
∑
i∈s

di log(pi), (7)

where s is the set of units selected using a complex
survey design, di = π−1i are design weights, πi are
inclusion probabilities, s is the sample, and pi is the
probability mass placed on the data. Since pseudo em-
pirical likelihood is design unbiased, the estimator is
unbiased under the design protocol.

There is a modification in the estimate depending
on whether there is stratified or nonstratified, single–
stage or multi–stage sampling. The purpose of strat-
ifying is to separate the population into overlapping,
homogeneous subpopulations called strata. Indepen-
dent samples are then drawn from each stratum. Strat-
ified sampling can be done in either single or double
stage manner.

In single-stage sampling, samples are drawn in-
dependently from each stratum. All samples are not
necessarily the same size. In double–stage sampling,
data are clustered within a given stratum, then at least
two clusters are drawn from the stratum. Lastly, sub-
samples are drawn from each cluster [2].

To determine empirical likelihood confidence in-
terval for the mean for complex survey data, we use
the pseudo likelihood to expand the random sample
case to complex samples. We first discuss random
samples.

6 Random Sample Confidence Inter-
val Derivation

In the case of a random sample, the empirical like-
lihood confidence interval for the mean θ, is derived
by determining upper and lower limits θ+ and θ− for
which T (θ±) = t0 ∈ (0, 1) , where t0 is a threshold
value based on the confidence level; T (θ±) is defined
in Equation (6). Since empirical likelihood is defined
on the support, upper and lower limits are bounded by
the 1st and nth order statistic for a sample of size n,

X(1) ≤ θ− ≤ X̄ ≤ θ+ ≤ X(n). (8)

Inequality (8) can be used in two separate safeguarded
searches for the limits. However, a faster approach is
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to reformulate the problem as two optimization prob-
lems [7]:

max
p

n∑
i=1

piXi (9)

and

min
p

n∑
i=1

piXi (10)

subject to

pi ≥ 0 (11)

n∑
i=1

pi = 1 (12)

n∑
i=1

log(npi) = log(t0). (13)

Equation (9) subject to constraints given in Equation-
s (11) through (13) leads to θ+. Similarly, Equa-
tion (10) subject to the same constraints leads to θ−.
The optimal values are where the empirical likelihood
curve, which is strictly concave, and the horizontal
line y = t0 intercept.

The threshold value t0 for constructing a 100(1−
α)% confidence interval is based on limiting values of
a χ2

α(df) distribution; df represents degrees of free-
dom. Since the α = .05 quantile for establishing a
95% confidence interval is χ2

.05(1) ≈ 3.8415,

−2 log T (θ) ≈ 3.8415. (14)

Solving Equation (14) for T (θ) establishes the thresh-
old value for establishing a 95% confidence interval,
T (θ) ≈ .147 = t0.

Since the optimization problems Equation (9) and
Equation (10) are nonlinear, the optimality conditions
are the Karush Kuhn Tucker conditions. To derive the
confidence interval limits, determine the Lagargian:

G1 =
n∑
i=1

piXi (15)

−γ1

(
n∑
i=1

log(npi)− log(t0)

)
(16)

−γ2

(
n∑
i=1

pi − 1

)
, (17)

(18)

where γ1 and γ2 are Lagrange multipliers. Suppose
X∗ is a local solution of Equation (15). A first or-
der necessary condition is that the gradient of the La-
grangian equals zero,

∇G1(p
∗, γ∗1 , γ

∗
2 |X, t0) = 0, (19)

where p∗ is the optimal probability vector, and
(γ∗1 , γ

∗
2) = γ∗ are Lagrange multipliers such that

the Karush Kuhn Tucker conditions are satisfied at
(X∗, γ∗).

Determining the form of the optimal probability
vector p∗ entails taking the partial derivative of the
Lagrangian Equation (15) with respect to pk, where
k = 1, 2, . . . , n, then also taking the partial derivative
of Equation (15) with respect to γ1:

∂G1

∂pk
= Xk −

nγ1
npk
− γ2

= Xk −
γ1
pk
− γ2

= 0, (20)

and
∂G1

∂γ1
=

n∑
i=1

pi − 1 = 0. (21)

From Equation (20),

pk =
γ1

Xk − γ2
. (22)

From Equation (22),
∑n
i=1 pi = 1 implies

n∑
k=1

γ1
Xk − γ2

= 1, (23)

which implies

γ1 =
1∑n

k=1
1

Xk−γ2
. (24)

From Equation (24), the kth element of the optimal
probability vector, a function of γ2, is:

pk(γ2) =
γ1

Xk − γ2
(25)

=
(Xk − γ2)−1∑n
k=1(Xk − γ2)−1

(26)

The Lagrange multiplier γ2 is determined in such a
manner that the constraints in Equations (11) through
(13) are satisfied. This can be accomplished through
a grid search.
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7 Complex Sample Confidence Inter-
val Derivation

Pseudo–empirical likelihood ratio confidence interval
derivation for complex surveys is analogous to ran-
dom sample interval derivation. However, pseudo–
empirical likelihood is separated into two cases, non-
stratified and stratified sampling.

For nonstratified sampling, the upper and lower
confidence interval bounds are determined through the
following optimization problem:

max
p

n∑
i=1

piXi (27)

and

min
p

n∑
i=1

piXi (28)

subject to

pi ≥ 0 (29)
n∑
i=1

pi = 1 (30)

n
∑
i∈s

d̃i(s) log(pi) = log(t0), (31)

where s represents the set of units selected using a
complex survey design, d̃i(s) are normalized design
weights, d̃i(s) = di∑

i∈s
di

, di = π−1i , πi represents the

inclusion probability, t0 represents the threshold value
for constructing a 100(1 − α)% confidence interval
based on limiting values of a χ2

α(df) distribution.
Equation (27) subject to constraints given in E-

quations (29) through (31) leads to θ+. Similarly,
Equation (28) subject to the same constraints lead-
s to θ−. The optimal values are where the pseudo–
empirical likelihood curve and the horizontal line y =
t0 intercept.

As in the random sample case, we have nonlin-
ear optimization problems. The optimality conditions
are the Karush Kuhn Tucker conditions and the Lagar-
gian, G2 is:

G2 =
n∑
i=1

piXi (32)

−γ1

(
n∑
i=1

d̃i(s) log(npi)− log(t0)

)

−γ2

(
n∑
i=1

pi − 1

)
. (33)

Determining the form of the optimal probability vec-
tor p∗ entails taking the partial derivative of the La-
grangian Equation (32) with respect to pk, where k =
1, 2, . . . , n, then also taking the partial derivative of
Equation (32)

∂G2

∂pi
= Xi − γ1

nd̃i(s)

pi
− γ2 = 0,

(34)

for i = 1, 2, . . . , n. Therefore,

pk =
γ1

Xk − γ2
. (35)

For stratified sampling, the upper and lower confi-
dence interval bounds are determined through an op-
timization problem similar to the nonstratified case.
The only difference is that instead of the constraint
given in Equation (31), the constraint in the stratified
case is:

n
L∑
h=1

Wh

∑
i∈sh

d̃hi(sh) log(phi) = log(t0), (36)

where n represents the stratum size for stratum h, L
is the strata, Wh is the stratum weight which is ob-
tained by dividing the stratum size by the population
size, d̃hi(sh) are the normalized design weights within
stratum h, sh is the set of sample points in stratum h,
and phi is the probability mass placed on the sample
points in stratum h. Equation (36) is the constrain-
t that represents the pseudo–empirical log–likelihood
for the stratified unistage design.

8 Conclusion

Standard methods for empirical likelihood typically
use data from a simple random sample of the popu-
lation. However, complex sample survey data require
specialized procedures designed for such data. Stan-
dard statistical software procedures do not allow ana-
lysts to take properties of survey data into account. A
failure to use more specialized procedures designed
for survey data analysis can impact both point and
interval estimation of parameter s. We derive pseu-
do empirical likelihood confidence intervals for strat-
ified single–stage and stratified multistage sampling
designs.
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