**AUTHORS:**Ruijuan Liu, Li Dong, Jingyong Tang

**Download as PDF**

**ABSTRACT:**
In this paper we introduce a new smoothing function which has many nice properties. Based on this function,
a smoothing Newton method is proposed to solve the nonlinear complementarity problem with P0-function
(denoted by P0-NCP). Our method adopts a variant merit function. Moreover, we use a modified Newton equation
to obtain the search direction. Under suitable assumptions, we show that the proposed method is globally and
locally quadratically convergent. Some preliminary computational results are reported.

**KEYWORDS:**
nonlinear complementarity problem, smoothing function, smoothing Newton method, global convergence,
quadratic convergence

**REFERENCES:**

[1] L. Fang, A new one-step smoothing Newton method for nonlinear complementarity problem with P0-function, Appl. Math. Comput. 216, 2010, pp. 1087–1095.

[2] L. Fang, G.P. He and Y.H. Hu, A new smoothing Newton-type method for second-order cone programming problems, Appl. Math. Comput. 215, 2009, pp. 1020–1029.

[3] M.S. Gowda and M.A. Tawhid, Existence and limiting behavior of trajectories associated with P0-equations, Comput. Optim. Appl. 12, 1999, pp. 229–251.

[4] P.T. Harker and J.S. Pang, Finite-dimensional variational inequality and non-linear complementarity problems: A survey of theory, algorithms and applications, Math. Program. 48, 1990, pp. 161–220.

[5] Z.H. Huang, J. Han, D. Xu and L. Zhang, The non-linear continuation methods for solving the P0- functions non-linear complementarity problem, Sci. China Ser. A: Math. 44(2), 2001, pp. 1107–1114.

[6] C.F. Ma, A new smoothing and regularization Newton method for P0-NCP, J. Global Optim. 48, 2010, pp. 241–261.

[7] R.S. Palais and C.-L. Terng. Critical point theory and submanifold geometry, Lecture Notes in Mathematics, vol. 1353. Springer, Berlin, 1988.

[8] L. Qi, Convergence analysis of some algorithm for nonsmooth equations, Math. Oper. Res. 18, 1993, pp. 227–244.

[9] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Program. 58, 1993, pp. 353–367.

[10] L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities, Math. Program. 87, 2000, pp. 1–35.

[11] J.Y. Tang, L. Dong, J.C. Zhou and L. Fang. A new non-interior continuation method for solving the second-order cone complementarity problem, Appl. Math. Comput. 236, 2014, pp. 287–299.

[12] J.Y. Tang, L. Dong, J.C. Zhou and L. Fang, A smoothing Newton method for nonlinear complementarity problems, Comput. Appl. Math. 32, 2013, pp. 107–118.

[13] J. Zhang and K.C. Zhang, A variant smoothing Newton method for P0-NCP based on a new smoothing function, J. Comput. Appl. Math. 225, 2009, pp. 1–8.

[14] L. Zhang, J. Han and Z. Huang. Superlinear/quadratic one-step smoothing Newton method for P0-NCP, Acta Math. Sinica, 26(2), 2005, pp. 117–128.

[15] L.P. Zhang, S.Y. Wu and T.R. Gao, Improved smoothing Newton methods for P0 nonlinear complementarity problems, Appl. Math. Comput. 215, 2009, pp. 324–332.