Other Articles by Author(s)

Zhiyong Zhu
Enmei Dong

Author(s) and WSEAS

Zhiyong Zhu
Enmei Dong

WSEAS Transactions on Systems

Print ISSN: 1109-2777
E-ISSN: 2224-2678

Volume 17, 2018

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Volume 17, 2018

Random Cutouts of the d-Dimensional Balls with i.i.d. Centers

AUTHORS: Zhiyong Zhu, Enmei Dong

Download as PDF


KEYWORDS: Fractal, Random fractal, Random measure, Random cut-out set


[1] M. F. Barnsley, Fractal everywhere, Academic Press, New York, 1988.

[2] B. B. Mandelbrot, The fractal geometry of nature, Freeman, San Francisco, 1982.

[3] B. B. Mandelbrot, Renewal sets and random cutouts, Z. Wahrscheinlichkeitstheorie verw Gebiete. 22, 1972, pp. 145-157.

[4] U. Zahle, Random fractals generated by random cutouts, Math. Nachr. 116, 1984, pp. 27-52.

[5] B. B. Mandelbrot, The fractal geometry of nature, San Francisco 1983.

[6] K. J. Falconer, Random fractals, Math. Proc. Camb. Phil. Soc.100, 1986, pp. 559-582.

[7] S. Graf, R. D. Mauldin and S. C. Williams, The exact Hausdorff dimension in random recursive constructions, Mem. Am. Math. Soc.71(381), 1988, pp. 1-121.

[8] R. D. Mauldin, S. C. Williams, Random recursive constructions: asymptotic geometric and topological properties, Trans. Am. Math. Soc. 295, 1986, pp. 325-346.

[9] N. Serban, W. Wendelin, Random soups, carpets and fractal dimension, Journal of the London Mathematical Society. DOI: 10.1112/jlms/jdq094.

[10] K. J. Falconer, Techniques in fractal geometry, Chichester: John Wiley and Sons, 1997.

[11] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd Edition, West Sussex: John Wiley and Sons, 2003.

[12] D. Gatzouras, S. P. Lalley, Statistically selfaffine sets:Hausdorff and box dimensions, J. of Th. Probab.7, 1994, pp. 437-468.

[13] S. Graf, Statistically self-similar fractals, Prob. Th. Rel. Fields.74, 1987, pp. 352-392.

[14] A. S. Besicovitch, S. J. Taylor, On the complementary intervals of linear closed sets of zero Lebesgue measure, J. London Math. Soc.29, 1954, pp. 449-459.

[15] B.B. Mandelbrot, On Dvoretzky coverings for the circle, Z. Wahrscheinlichkeitstheorie verw. Geb. 22, 1972, pp. 158-160.

[16] A. Dvoretzky, On covering a circle by randomly placed arcs, Proc. Nat. Acad. Sci.42, 1956, pp. 199C203.

[17] L. Shepp, Covering the circle with random arc, Israel J. Math. 11, 1972, pp. 328C345.

[18] L. Shepp, Covering the line with random intervals, Z. Wahrsch. Verw. Gebiete23, 1972, pp. 163C170.

[19] J. P. Kahane, Some random series of functions, Cambridge University Press, 1985.

[20] J. Barral, A. H. Fan, Covering numbers of different points in Dvoretzky covering, Bull. Sci. Math. 129, 2005, pp. 275C317.

[21] A. H. Fan, How many intervals cover a point in the Dvoretzky covering? Israel J. Math. 131, 2002, pp. 157C184.

[22] A. H. Fan, J. Wu, On the covering by small random intervals, Ann. Inst. H. Poincare Probab. Statist. 40, 2004, pp. 125C131.

[23] E. Ja¨rvenpa¨a¨, M. Ja¨rvenpa¨a¨, H. Koivusalo, B. Li, and V. Suomala, Hausdorff dimension of affine random covering sets in torus, Ann. Inst. H. Poincar Probab. Statist. 50, Number 4 ,2014, pp. 1371-1384.

[24] Robert B. Ash, and Catherine A. DoleansDade, Probability and Measure Theory, Academic Press, San Diego, 2000.

[25] M. Muresan, A Concrete Approach to Classical Analysis, Springer 2008.

WSEAS Transactions on Systems, ISSN / E-ISSN: 1109-2777 / 2224-2678, Volume 17, 2018, Art. #21, pp. 197-203

Copyright © 2018 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board


The editorial board is accepting papers.

WSEAS Main Site