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Abstract: In this paper, we propose numerical scheme for solving two point fractional Bagley-Torvik
equation (FBTE). The scheme is based on collocation and using shifted Chebyshev polynomials of the
second kind (SCPSK) orthogonal basis functions. In this case, we replace an integer order derivatives
by fractional order derivatives in Caputo sense. By using the properties of SCPSK to reduce fractional
Bagley-Torvik equation into system of algebraic equations, which can be solved by iteration method. The
error analysis and error bounds are discussed. The validation of the present algorithm is tested through
number of examples. All computational results are done in Matlab.
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1 Introduction
We consider the two point fractional Bagley-
Torvik equation in the following form[

a0D
2 + a1D

µ + a2D
]
r(t) = p(t), t ∈ [0, L],

(1)
subject to boundary conditions

r(0) = δ1, r(L) = δ2, (2)

where a0, a1, a2, δ1, δ2 are constants with a0 6= 0,
p(t) is continuous on [0,L] and fractional differ-
ential operator Dµ in Caputo sense. In similar
way we can study for the boundary conditions are

α0r(0) + γ0r
′(0) = β0, α1r(L) + γ1r

′(L) = β1,
(3)

where α0, α1, γ0, γ1, β0 and β1 are constants.
Initially, the FBTE have been invented during

the work on behaviour of real material by use
of fractional calculus [1,2]. The application of
fractional Bagley-Torvik problem in various feilds
like fluid mechanics, viscoelasticsity, digital con-
trol theory, bioengineering and biology. Many
authors have been worked on fractional Bagley-
Torvik equations[3-15].

We provide, some literature based on bound-
ary value fractional Bagley-Torvik equations. Ray
[16], used operational matrix based on Haar
wavelet for solving FBTE where as the authors

[17], developed the general solution for solving
FBTE. In [18], Čermák and Kisela used Grnwald-
Letnikov discretization to give exact and numer-
ical solution for initial FBTE. In [19], Stanek
talked over the solution of FBTE for existence and
uniqueness. In [20], the authors studied on FBTE
where fractional derivative is discretized by us-
ing finite difference method. In [21,22], Zahra
and Elkholy, approached two schemes to solve
FBTE with boundary and initial conditions. The
first technique gives the approximate solution by
using shooting method with cubic spline poly-
nomials while the other technique based on ap-
proximation of fractional order term in the sense
of Grnwald-Letnikov definition. Also in [23],
Zahra and Elkholy, to find the numerical solu-
tion for fractional boundary value problem using
quadratic spline polynomials.

In recent decades, the Chebyshev polynomi-
als are most powerful polynomial approximation
in numerical analysis we can see from theoretical
as well as practical points of view. The Chebyshev
polynomials have direct connections with Fourier
and Laurent series, due to minimality properties
in approximation theory and with orthogonality
condition holds for both discrete and continuous
in function spaces [24].

This paper is organized as follows. In Sec-
tion 2, the idea of fractional derivative and some
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properties of Chebyshev polynomials. In Section
3, we utilize approximate formula for fractional
derivative. In Section 4, error analysis and bound
of error are given. In Section 5, the collocation
method which is based on Chebyshev approxi-
mation. In Section 6, the error estimator of the
present algorithm. In Section 7, numerical exam-
ples are presented for validation of the proposed
method and finally in Section 8, conclusions are
given.

2 Preliminaries

This section is devoted to relevant definition of
Chebyshev polynomials and well known results
of Caputo fractional derivative is considered for
this work.

2.1 Fractional derivative

The definition of fractional derivatives are de-
fined in many ways such as Riemann-Liouville,
Grunwald-Letnikove and Caputo. In present
work, Caputo fractional derivative is used for ini-
tial and boundary conditions for the formulation
of the problem.

Definition 1 The fractional derivative of ϕ(t) in
the Caputo sense of order µ > 0 is defined as
[27,28]

Dµϕ(t) =
1

Γ(s− µ)

∫ t

0

ϕ(s)(y)

(t− y)(µ−s+1)
dy,

s− 1 < µ 6 s, s ∈ N, t > 0.

(4)

The Caputo fractional derivative satisfies linearity
properties in similar way to integer order differ-
entiation:

Dµ(α1p(t)+α2q(t)) = α1D
µp(t)+α2D

µq(t), (5)

For Caputo fractional derivative we have

DµK = 0, K is a constant, (6)

Dµtν =

{
Γ(ν+1)

Γ(ν−α+1) t
ν−α, ν ∈ N0 and ν > dµe

0, ν ∈ N0 and ν < dµe,
(7)

where N = {1, 2, . . .}, N0 = {0, 1, 2, . . .} and the
notation dµe is ceiling function which means the
smallest integer greater than or equal to µ.

2.2 Chebyshev polynomials of the second
kind

The Chebyshev polynomials Ui(t) are very well
known polynomials which is defined on [-1,1] by
the relation [29]

Ui(t) =
sin(i+ 1)θ

sin θ
,

of degree i in t, where t = cos(θ) and θ ∈ [0, π].
The polynomials Ui(t) is generated by the funda-
mental recurrence relations

Ui+1(t) = 2tUi(t)− Ui−1(t), i = 1, 2, . . .

together with initial conditions

U0(t) = 1, U1(t) = 2t.

The Chebyshev polynomials Ui(t) are orthogonal
polynomials on [-1,1] with the weight function
w(t)∫ 1

−1
Ui(t)Uk(t)w(t)dt =

{
0, i 6= k,
π
2 , i = k,

(8)

where w(t) =
√

(1− t2). By using the properties
of Gamma function, the analytical form of Ui(x)
is given

Ui(t) =

d i
2
e∑

k=0

(−1)k2i−2k Γ(i− k + 1)

Γ(k + 1)Γ(i− 2k + 1)
ti−2k, i > 0,

(9)
where the notation d i2e is integer part of i/2.

For the numerical study it is convenient to
use the range of interval on [0,1] instead of
[-1,1]. The U∗i (t) is defined as

U∗i (t) = Ui(2t− 1).

The orthogonality conditions of polynomials
U∗i (t) on [0,1] with the weight function w∗(t)∫ 1

0
U∗i (t)U∗k (t)w∗(t) =

{
0 i 6= k,
π
8 i = k,

(10)

where w∗(t) =
√

(t− t2). The fundamental re-
currence relation of SCPSK is defined as

U∗i+1(t) = 2(2t− 1)U∗i (t)− U∗i−1(t), i = 1, 2, . . . ,

together with the initial conditions

U∗0 (t) = 1, U∗1 (t) = 4t− 2.
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By using the properties of Gamma function, the
analytical form of U∗i (t)

U∗i (t) =
i∑

k=0

(−1)k22i−2k Γ(2i− k + 2)

Γ(k + 1)Γ(2i− 2k + 2)
ti−k, i > 0.

(11)
The square integrable function r(t) in the in-

terval [0,1] can be expanded in terms of U∗(t) as
follows

r(t) =
∞∑
i=0

ciU
∗
i (t), (12)

where the expansion coefficients ci(i = 0, 1, 2, . . .)
are unknown which is defined as

ci =
8

π

∫ 1

0
r(t)

√
t− t2U∗i (t)dt. (13)

For practical purpose we take only first (m +
1)-terms of U∗m(t) in approximation which is given

rm(t) =

m∑
i=0

ciU
∗
i (t), i = 0, 1, 2, . . . ,m. (14)

3 Fractional derivative using Chebyshev
expansion

In this section, we derive main approximate
formula for Dµr(t) which is given in Theorem 1.

Theorem 1 The approximation function r(t)
can be approximated by the second kind of
Chebyshev polynomials which is defined in (14)
and assume that µ > 0 then

Dµ(rm(t)) =

m∑
i=dµe

i−dµe∑
k=0

ciw
(µ)
i,k t

i−k−µ, (15)

where w(µ)
i,k is given by

w
(µ)
i,k =

(−1)k2(2i−2k)Γ(2i− k + 2)Γ(i− k + 1)

Γ(k + 1)Γ(2i− 2k + 2)Γ(i+ 1− k − µ)
.

(16)

Proof. Since the Caputo’s fractional derivative
satisfies linear properties, we have

Dµ(rm(t)) =
m∑
i=0

ciD
µ(U∗i (t)). (17)

Applying Eqs. (6) and (7) we get

Dµ(U∗i (t)) = 0, i = 0, 1, . . . , dµe − 1, µ > 0.
(18)

Also, for i = dµe, dµe + 1, . . . ,m, and by using
Eqs.(6) and (7), we get

Dµ(U∗i (t)) =

i∑
k=0

(−1)k2(2i−2k)Γ(2i− k + 2) ·(19)

1

Γ(k + 1)Γ(2i− 2k + 2)
Dµti−k

=

i−dµe∑
k=0

(−1)k2(2i−2k)Γ(2i− k + 2)

Γ(i+ 1− k − µ)
·

Γ(i− k + 1)ti−k−µ

Γ(k + 1)Γ(2i− 2k + 2)

A combination of Eqs. (17)-(19) we obtain

Dα(rm(t)) =
m∑

i=dµe

i−dµe∑
k=0

ci(−1)k

2(2i−2k)Γ(2i− k + 2)Γ(i− k + 1)

Γ(k + 1)Γ(2i− 2k + 2)Γ(i+ 1− k − µ)
ti−k−µ,

(20)

the Eq. (20) can be rearranged in the following
form

Dµ(rm(t)) =
m∑

i=dµe

i−dµe∑
k=0

ciw
(µ)
i,k t

i−k−µ,

where w(µ)
i,k is given by

w
(µ)
i,k =

(−1)k2(2i−2k)Γ(2i− k + 2)Γ(i− k + 1)

Γ(k + 1)Γ(2i− 2k + 2)Γ(i+ 1− k − µ)
.

4 Error analysis

Theorem 2 (Chebyshev truncation theorem) The
error in approximation r(t) by the sum of its first
m terms is bounded by the sum of the absolute
values of all the neglected coefficients. If

rm(t) =

m∑
i=0

ciU
∗
i (t) (21)

then

ET (m) ≡| r(t)− rm(t) |≤
∞∑

i=m+1

| ci |, (22)

for all r(t), all m, and all t ∈ [0, 1].
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Proof. The maximum value of U∗i (t) is one,
that is |U∗i (t)| ≤ 1 for all t ∈ [0, 1] and for all i.
Therefore the approximating function of the ith
term is bounded by coefficients ci and subtracting
the (m + 1)-terms series from the infinite series,
which gives the difference of each terms is
bounded by the coefficients and summing the
difference of bounding of each terms get the
desired result.

Convergence analysis

Theorem 3 Let us assume Dµr(t) ∈ S2[0, 1]
and Dµrm(t) be the mth approximation. Assum-
ing that |Dµ+2r(t)| < M where M is constant,
as m → ∞ the approximate solution Dµrm(t)
converges to Dµr(t), i.e.,

|cm| ≤
M

8m2
.

Let,

Dµr(t) =
∞∑
i=0

ciUi(t) (23)

The mth approximation of Eq. (23) is written as

Dµrm(t) =
m∑
i=0

ciUi(t) (24)

From Eqs. (23)-(24), we get

Dµr(t)−Dµrm(t) =

∞∑
i=m+1

ciUi(t) (25)

Hence from Eq. (23), we obtain∫ 1

0
Dµr(t)Tm(t)w(t)dt =∫ 1

0

( ∞∑
i=0

ciUi(t)

)
Tm(t)w(t)dt (26)

The relation between Chebyshev first kind and
second kind polynomial is given by

Ui(T ) = 2Ti(T ) +
∑
j<i

ajTj(t) (27)

Now combing Eqs.(26)-(27), we obtain

cm =
1

π

∫ 1

0
Dµr(t)Tm(t)w(t)dt (28)

Putting 2t− 1 = cos(θ), in Eq. (28), we obtain

cm =
1

2π

∫ π

0

(
Dµr

(
1 + cos(θ)

2

))
cos(mθ)dθ

(29)
Now integration by parts two times in Eq. (29),
we get

cm =
1

16mπ

∫ π

0

(
Dµ+2r

(
1 + cos(θ)

2

))
δmdθ,

(30)
where

δm = sin(θ)

[
sin(m− 1)θ

m− 1
− sin(m+ 1)θ

m+ 1

]
.

Taking the modulus on both side of Eq. (30) and
using |Dµ+2r(t)| < M, we get

|cm| =
∣∣∣∣ 1

16mπ

∫ π

0

(
Dµ+2r

(
1 + cos(θ)

2

))
δmdθ

∣∣∣∣
≤ M

16mπ

∫ π

0
|δm|dθ

≤ M

16m

[
1

m− 1
− 1

m+ 1

]

≤ M

16m

[
m+ 1−m+ 1

(m− 1)(m+ 1)

]

≤ M

8m(m− 1)(m+ 1)
.

Hence, m > 1, and for large m,

|cm| ≤
M

8m2
. (31)

Hence, Dµrm(t) converges to Dµr(t).

Error bounds

Theorem 4 Suppose that Dµrm(t) be the
mth approximation of Dµr(t) ∈ S2[0, 1], then
following error estimate

e2
mD

µr(t) ≤ πM2

3072
F3(1 +m),

where Fm(z) is the Poly Gamma function defined
by,

Fm(z) = (−1)m+1Γ(m)
∞∑
k=0

1

(z + k)m+1
.
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Proof: The error term is given as

e2
mD

µr(t) =

(∫ 1

0
|Dµr(t)−Dµrm(t)|2w(t)dt

) 1
2

=

∫ 1

0

∣∣∣∣∣
∞∑
i=0

ciU(t)−
m∑
i=0

ciUm(t)

∣∣∣∣∣
2

w(t)dt

 1
2

=

∫ 1

0

∣∣∣∣∣
∞∑

i=m+1

ciU(t)

∣∣∣∣∣
2

w(t)dt

 1
2

Now using the orthogonality condition for second
kind of Chebyshev polynomials, we obtain

e2
mD

µr(t) =

(
π

8

∞∑
i=m+1

|ci|2
)

(32)

Now using the results of Theorem 3, i.e., |ci| ≤ M
8i2

in Eq. (32), we get

e2
mD

µr(t) =
πM2

512

∞∑
i=m+1

1

i4
(33)

Summing the series in Eq. (33), we get the fol-
lowing error estimate

e2
mD

µr(t) ≤ πM2

3072
F3(1 +m).

Function approximation

Theorem 5 [30] Let us suppose a function
r(t) ∈ [0, L] be m times continuously differen-
tiable. Let rm(t) =

∑m
i=0 ciU

∗
i (t) = ∧Tφm(t)

be the best square approximation function
of r(t), where ∧ = [c0, c1, . . . , cm]T , and
φm(t) = [U∗0 (t), U∗1 (t), . . . , U∗m(t)]T , then

‖r(t)− rm(t)‖ 6 MSm+1L

(m+ 1)!

√
π

8
, (34)

where M = maxt∈[0,L] r
m+1(t) and S =

max[t0, L− t0].
Proof. We consider the following Taylor polyno-
mial, we have

r(t) = r(t0) + r′(t0)
(t− t0)

1!
+ · · ·+

rm(t0)
(t− t0)m

m!
+ rm+1(ξ)

(t− t0)m+1

(m+ 1)!
,

where t0 ∈ [0, L] and ξ ∈ [t0, t].
Let

Pm(t) = r(t0) + r′(t0)
(t− t0)

1!
+ · · ·+ (35)

rm(t0)
(t− t0)m

m!
, (36)

then

|r(t)− Pm(t)| =
∣∣∣∣rm+1(ξ)

(t− t0)m+1

(m+ 1)!

∣∣∣∣ . (37)

Since, rm(t) =
∑m

i=0 ciU
∗
i (t) = ∧Tφm(t), is the

best square approximation function of r(t), we
obtain

‖r(t)− rm(t)‖2 6 ‖r(t)− Pm(t)‖2

=

∫ L

0
w(t)[r(t)− Pm(t)]2dt

=

∫ L

0
w(t)[rm+1(ξ)

(t− t0)m+1

(m+ 1)!
]2dt

6
M2

[(m+ 1)!]2

∫ L

0
(t− t0)2m+2w(t)dt

=
M2

[(m+ 1)!]2

∫ L

0
(t− t0)2m+2

√
(Lt− t2)dt.

Since S = max[t0, L− t0], we have

‖r(t)− rm(t)‖2 6
M2S2m+2

[(m+ 1)!]2

∫ L

0

√
(Lt− t2)dt.

=
M2S2m+2

[(m+ 1)!]2
πL2

8
.

Taking square root both sides, we get

‖r(t)− rm(t)‖ 6 MSm+1L

(m+ 1)!

√
π

8
.

5 Collocation method

The Chebyshev collocation method is applied
to solve fractional Bagley-Torvik boundary value
problem

Dµr(t) = f(t, r(t)), (38)

together with boundary conditions

r(0) = δ1, r(L) = δ2. (39)

We assume that under certain condition on the
function f, the fractional Bagley-Torvik bound-
ary value problem (38)-(39) possesses unique so-
lution in r(t) in appropriate space of functions
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see [5]. The solution r(t) is approximated by
r̃m ∈ Sm,µ as the finite sum

r̃m(t) =
m∑
i=0

ciU
∗
i (t;µ), (40)

where ci are constants. If r̃m ∈ Sm,µ, then
Dµr̃m ∈ Sm,µ, this key properties is crucial appli-
cation for the collocation method to the fractional
Bagley-Torvik boundary value problem (38)-(39).
The unknown coefficients ci in approximation
(40) are obtained from boundary conditions

r̃m(0) = δ1, (41)

r̃m(L) = δ2, (42)

and the fact that r̃m(t) must satisfy the fractional
differential equation with some appropriately
chosen collocation points ηi, i = 1, 2, . . . ,m − 1,
with the relations

Dµr̃m(ηi) = f(ηi, r̃m(ηi)), i = 1, 2, . . . ,m− 1.
(43)

The convergence of numerical solution and its
computational stability gets affected by the par-
ticular choice of collocation points. In order to
find the unknown coefficients, Chebyshev collo-
cation method with collocation points ηi = 1

2 +
L
2 cos(i πm), i = 1, 2, . . . ,m − 1. Put Eq. (40) into
(41) and (42), we obtain

g0(c0, c1, . . . , cm) =

m∑
i=0

ciU
∗
i (0;µ) = δ1, (44)

gm(c0, c1, . . . , cm) =
m∑
i=0

ciU
∗
i (m;µ) = δ2. (45)

Now from Eq. (43) we have m−1 algebraic equa-
tions

gi(c0, c1, . . . , cm)

=

m∑
i=0

ciD
µU∗i (ηi;µ)−

f

(
ηi,

m∑
i=0

ciU
∗
i (ηi;µ)

)
= 0, i = 1, 2, . . . ,m− 1.

(46)

Now combining Eqs. (44)-(46), we get (m + 1)
system of algebraic equations for the unknown ci
which is written in the following form

G(c) = 0, (47)

where c = [c0, c1, c2, . . . , cm]T and G : Rm+1 →
Rm+1 is defined as

G (c) =


g0 (c0, c1, . . . , cm)
g1 (c0, c1, . . . , cm)
...
gm (c0, c1, . . . , cm)

 .

Now put the Eq. (47) into the Eq. (40), we get
the solution of fractional Bagley-Torvik problem
of Eqs. (38)-(39).

6 Error estimator

The error estimator of the numerical solution
which is defines in Section 5. The scheme is based
on residual error estimation. Let u(t) be exact so-
lution and ũm(t) be the numerical solution. Then
we have

a0D
2u(t) +a1D

µu(t) +a2Du(t)−p(t) = 0, (48)

and

a0D
2ũm(t) + a1D

µũm(t) + a2Dũm(t)− p(t) = R,
(49)

where R is the residual function. Now from Eqs.
(48)-(49), we obtain

a0D
2(u(t)−ũm(t))+a1D

µ(u(t)−ũm(t))+a2D(u(t)−ũm(t)) = R.
(50)

Let ξm(t) = u(t)−ũm(t) is the error function, then
from Eq. (50)

a0D
2ξm(t) + a1D

µξm(t) + a2Dξm(t) = R. (51)

Now Eq. (51) with boundary conditions
em(0) = 0 and em(L) = 0, can be solved the Eqs.
(38)-(39). Let

E = max{|ξm| : 0 ≤ t ≤ 1}.
The above equation is error estimation of the
present method.

7 Numerical examples

In this section, we consider some numerical ex-
amples to check the accuracy and reliability of the
proposed scheme for FBTE.

If u is exact solution of a given problem, the
approximation errors on the discrimination pa-
rameter m is estimated in 2-norm

em =

√√√√ m∑
i=0

(u(ξi)− ũm(ξi))
2,
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where ũm is an approximated solution corre-
sponding to discrimination parameter m.

Example 1 Consider the fractional order
Bagley-Torvik equation [25,26]

D2u(t) +D
3
2u(t) +u(t) = 1 + t, t ∈ (0, 1), (52)

together with the boundary conditions

u(0) = 1, u(1) = 2, (53)

where the exact solution is u(t) = 1 + t. Firstly,
we approximate with m = 2,

u(t) =
2∑
i=0

ciU
∗(t) (54)

u(t) = c0U
∗
0 (t) + c1U

∗
1 (t) + c2U

∗
2 (t) (55)

u(t) = c0(1)+c1(4t−2)+c2(16t2−16t+3) (56)

Now from Eq. (53)

u(0) = c0 − 2c1 + 3c2 = 1 (57)

u(1) = c0 + 2c1 + 3c2 = 2 (58)

Now from Theorem 1 and Eqs. (43) and (52),
we get

32c2 + 36.1088c2t
0.5 + c0 + c1(4t− 2)+

c2(16t2 − 16t+ 3) = 1 + t (59)

A particular choice for the collocation points is
t = 0.5 then Eq. (59) becomes

c0 + 56.5323c2 = 1.5 (60)

Combining Eqs. (57)-(58) and (60), we get

u(t) = 1.5 + 0.25(4t− 2) = 1 + t. (61)

The results obtained by the proposed method
for m = 2 and α = 1.5 of Eq. (52), get the
exact solution where as in [25], solved this
problem with N = 9 and α = 0.5 using Bessel
collocation method and get maximum absolute
error 4.2834e − 015, it seems that the proposed
method needs only few terms of SCPSK and get
exact solution. The comparison of exact and
numerical solutions are given in Fig. 1.

t

0 0.2 0.4 0.6 0.8 1

u
(t

)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Exact solution
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Figure 1: The comparison of the numerical solu-
tion with analytical solution with m = 2 for Ex-
ample 1

Example 2 Consider the following fractional
Bagely-Torvik equation [31]

D2u(t)+D
3
2u(t)+u(t) = t2 +2+4

√
t

π
, t ∈ (0, 1),

(62)
together with boundary conditions

u(0) = 0, u(1) = 1, (63)

where the exact solution is u(t) = t2. We apply
the proposed method which is described in
Section 5 with m = 2, in this case we get the
exact solution u(t) = t2. It is noticed that the
proposed method is direct converge to the the
exact solution and only take few terms of SCPSK
see Fig. 2. Doha et al. [33] and Ramzi et
al. [32] solved this problem whose exact and
approximate solution are same.
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Figure 2: The comparison of the numerical solu-
tion with analytical solution m = 2 for Example
2

Example 3 Consider the following Baglet-
Torvik equation [34,35]

Dαu(t)−Dβu(t) = −1−e(t−1), 1 < α 6 2, 0 < β 6 1,
(64)

together with boundary conditions

u(0) = u(1) = 0. (65)

The exact solution for general values of α and β
of Eqs. (64)-(65) is not known. However, u(t) =

t(1− e(t−1)) is the exact solution for α = 2, β = 1.
The Eq. (64) is solved in [36] numerically for
integer order case and applying HPM and Green
function method. Also, in [34], solved this prob-
lem using Haar wavelet for integer order. The
numerical results are given in Table 1. In Fig. 3,
for α = 2 and different values of β, which show
that as β approaches to 1, numerical results ap-
proached to the numerical results for the integer
order differential equations. The numerical re-
sults motivate that proposed method is practically
when treating with two point fractional Bagley-
Torvik equation. The numerical results in Table
1 reveals that the proposed method demonstrate
the method [34] and [36].
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Figure 3: The behaviour of exact and numerical
solution for different values of β and α = 2 with
m = 9 for Example 3
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Figure 4: The comparison of numerical solution
with exact solution with m = 9 and α = 2, β = 1
for Example 3
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Table 1: The comparison of present method with method [36] and [34] for α = 2, β = 1 with m = 9 for
Example 3

x Exact solution Method [36] Method [34] Present Method
0.0 0 0 0 0
0.1 0.05934303 0.05934820 0.05934300 0.05934303
0.2 0.11013421 0.11014318 0.11013418 0.11013421
0.3 0.15102441 0.15103441 0.15102438 0.15102441
0.4 0.18047535 0.18048329 0.18047531 0.18047535
0.5 0.19673467 0.19673826 0.19673463 0.19673467
0.6 0.19780797 0.19780653 0.19780792 0.19780797
0.7 0.18142725 0.18142196 0.18142718 0.18142725
0.8 0.14501540 0.14500893 0.14501532 0.14501540
0.9 0.08564632 0.08564186 0.08564623 0.08564632
1.0 0 0 0 0
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Figure 5: The graph of absolute error between
exact solution and present method with m = 9
and α = 2, β = 1 for Example 3

Example 4 Consider the fractional boundary
value problem

D
3
2u(t)+u(t) = t5−t4+

128

7
√

(π)
t3.5− 64

5
√

(π)
t2.5, t ∈ [0, 1],

(66)
together with boundary conditions

u(0) = 0, u(1) = 0, (67)

whose exact solution is u(t) = t5 − t4. The nu-
merical solutions are presented in Table 2 and

Fig. 6. In Fig. 6, the behaviour of exact and nu-
merical solutions are reported for m = 10, which
shows that the numerical results achieved good
accuracy. In Table 2, the absolute error are pre-
sented for m = 10, 15, 20. In Fig. 7, the absolute
error is given for m = 15.
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Figure 6: The comparison of the numerical solu-
tion with analytical solution m = 10 for Example
4
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Figure 7: The graph of error function withm = 15
for Example 4

8 Conclusion

An efficient, Chebyshev collocation method is ap-
plied to solve FBTE with orthogonal Chebyshev
polynomials. The properties of SCPSK are used
to reduce fractional Bagley-Torvik equation into
system of algebraic equations which can be solved
numerically. The proposed method is characterise
by its simplicity, efficiency and high accuracy. For
validation of present scheme is tested through
number of examples and compared with exiting
methods. In Example 1, we compared present
method with method [25], which reveals that
the present method is high accuracy, for this we
need few terms of Chebyshew expansion. In Ex-
ample 2, the numerical result obtained by pro-
posed method good agreement with method [32]
and [33]. In Example 3, we compared present
method with method [34] and [36], which show
that the present method demonstrate the existing
methods.
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