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Abstract: Robots are widely used in many fields. It is important to provide many different methodologies for
robot control. This paper proposes a real time scheme for robots control and learning using recurrent neural
network. We handle a problem to control a position and a trajectory of tip of a Selective Compliance Assembly
Robot Arm(SCARA) robot. We adopt the simultaneous perturbation optimization method as a learning rule of
the recurrent neural networks(RNNs). Then the RNNs have to learn an inverse dynamics of the SCARA robot.
Position and trajectory control of a SCARA robot using RNN are considered. We could confirm that the RNNs
can learn the inverse dynamics and work as a neuro-controller. We describe details of the control scheme. Some
experimental results for these control using an actual SCARA robot are shown.
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1 Introduction
Nowadays robots have very important role in our so-
ciety and are widely used in many fields including in-
dustry, medicine and daily life. Therefore, it is crucial
to contrive novel control scheme for robots under di-
verse environments.

There are many different types of control schemes
for robots. Especially control scheme which can cope
with changing environment is attractive and interest-
ing. On the other hand, neural networks can change
their characteristic by learning. From these points of
view, it seems that control scheme using artificial neu-
ral networks are promising[1, 2, 3, 4].

In this research, we present an on-line control
and learning scheme using recurrent neural networks.
Since neural networks can change their characteristic
by learning, the control scheme presented here flexi-
bly copes with changing characteristic of the objective
robot and environments.

The control objective of this work is a
SCARA(Selective Compliance Assembly Robot
Arm) robot. We consider a position control and a
trajectory control of the robot.

We use the simultaneous perturbation optimiza-
tion method as a learning rule of the neuro-controllers.
Adopting this method, we can obtain the proper recur-
rent neural network without a prior knowledge on the
objective system.

We made experiments using actual SCARA
robot. We confirmed that we could control the actual
SCARA robot by using this control scheme.

This paper consists of six chapters. In chapter
2, we describe the presented control scheme using
recurrent neural network. Chapter 3 describes the
learning procedure using simultaneous perturbation
method. In chapter 4, we explain about simulation re-
sults based on the proposed method. In chapter 5, we
show some experimental results using actual SCARA
robot for the position control and the trajectory con-
trol. Conclusion is in chapter 6.

2 Control scheme using recurrent
neural network

Many different types of controllers are used for many
control problems including positioning or trajectory
control of robots. However, these controllers are not
sometimes suitable for robots changing their charac-
teristics, for example, changing of payload. With
characteristics change, it is necessary to readjust their
parameters to maintain their performance.

One approach for the problem is to utilize artifi-
cial neural networks[5]. One interesting characteristic
of neural networks is their flexibility. Control scheme
using neural networks, that is, neuro-controllers can
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change their characteristics by learning. Therefore,
the neuro-controllers can cope with control of the
robots under changing environment.

We handle a problem to control a tip of a SCARA
robot. We would like to control the tip of the SCARA
robot using neuro-controller.

2.1 System configuration
Our control objective is a SCARA robot with two
joints shown in Figure 1. Their arms are rigid and tip
of the arm moves only in the XY-plane.A schematic
diagram of our system is shown in Figure 2.

Target signals are for two joint angles θ1 and θ2 of
the SCARA robot. Target signals and state quantities
of the robot are fed to a recurrent neural network. The
recurrent neural network receives them and produces
two controlling torques τ1 and τ2 corresponding to the
two arms of the SCARA robot. The SCARA robot re-
ceives them and the tip of the arm moves . Therefore,
the recurrent neural network have to learn an inverse
dynamics of the SCARA robot and works as a con-
troller.
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Figure 1: SCARA

2.2 Recurrent neural network

Figure 3 shows the recurrent neural network used as a
controller of the SCARA robot.

This neural network has one middle layer. In-
put layer has 14 neurons, middle layer has 20 neu-
rons and output layer has two neurons. Inputs of the
network are desired two joint angles θ1d and θ2d and
state quantities of the robot. Moreover, the network
has feedback of past outputs of the network.Weight

SCARA Robot

Simultaneous 

perturbation method

Time delay of torque

State quantity

dd 21
,θθ

21,θθ

yx,

+
−

RNN

Target signal

SCARA Robot

Simultaneous 

perturbation method

Time delay of torque

State quantity

dd 21
,θθ

,θθ

yx,

+
−

RNN

212121
,,,,, θθθθθθ ɺɺɺɺɺɺ
212121

,,,,,θθ

21,ττ

Figure 2: System configuration

values of the network are updated by the simultane-
ous perturbation learning rule.

3 Learning scheme
3.1 Simultaneous perturbation optimization

method

Learning scheme is one of important issues, when we
use neural networks. Also for the neuro-controller, it
is crucial to realize an on-line learning scheme.

The back-propagation learning method is suc-
cessful learning scheme for neural networks. In many
applications of neural networks, the back-propagation
method is ordinarily used.

However, when we use neural networks as con-
troller of a certain objective, we have to know infor-
mation; sensitivity of the objective. If the sensitivity
of the plant is unknown, it is practically difficult to
apply the back-propagation method.

In this research, we used the simultaneous per-
turbation optimization method as a learning rule of
the recurrent neural network. Even the sensitivity
is unknown, the simultaneous perturbation learning
scheme is applicable, since the method uses only val-
ues of error function. The algorithm of the method is
as follows;

wt+1 = wt − α∆wt (1)

∆wt,i =
J(wt + cst)− J(wt)

cst,i
(i = 1, 2, . . . , n)

(2)
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Figure 3: Recurrent neural network for inverse dy-
namics problem

Where J denotes an evaluation or an error func-
tion. w is weight values of the neural network includ-
ing threshold. α means a learning coefficient. c means
a magnitude of the perturbation. st is a sign vector
whose elements st,i are −1 or 1.

The simultaneous perturbation method is widely
used as a stochastic gradient method in many fields.
The optimization method was introduced by J. C.
Spall[6, 7]. Y. Maeda also independently proposed
a learning rule for artificial neural networks using si-
multaneous perturbation and reported on the feasi-
bility of the learning rule for some problems[8, 9,
10]. This method is well suited to hardware imple-
mentation of learning mechanism of artificial neural
networks[9, 11, 12].

As mentioned before, the simultaneous perturba-
tion learning method does not require the Jacobian of
the objective SCARA robot. We use only two val-
ues of the error function; with the perturbation and
without the perturbation. Based on these values, the
method estimates the gradient vector of the function.
Even if we do not know the characteristics of the ob-
jective process, we can construct the learning and con-
trol scheme using this method.

Moreover it is generally difficult to construct a
learning scheme of recurrent types of neural networks,
since signals in the network go back and forth. There-
fore error propagation through time is necessary for
learning. This mechanism is actually difficult to real-
ize in real time.

On the other hand, the simultaneous perturba-
tion method is very easy to realize. Error propaga-
tion through time is not necessary even for recurrent
neural networks. Only values of the evaluation func-
tion are required to update the weights of the network.
The method is easily applicable to on-line problems

as well.

3.2 Evaluation function

We define the evaluation function J and the square
error rn as follows;

J =
∑
n

{1− exp(−gn)} (3)

gn = (θ1d − θ1n)
2 + (θ2d − θ2n)

2 (4)

Where θ1d and θ2d are desired two joint angles.
θ1n and θ2n are actual two joint angles at every sam-
pling time n. rn denotes the squared errors for the first
and the second joints.

Generally speaking, using Euclidean squared er-
ror gn is reasonable. Therefore, it seems appropriate
to use accumulated squared error for a certain period.
However, when we consider overall learning process
of the neuro-controller, the accumulated squared error
in early stage is so large that the change of the error
is very rude. Using the original accumulated squared
error, the error is so large that modifying quantities
for weights are also large. As a result, the learning
precess is getting unstable in the early stage. On the
other hand, the error is extremely small in final stage
of learning process. This results in very slow learning.
In order to obtain stable and efficient learning, scaling
or smoothing is necessary.

In order to avoid such situation, we utilize the
evaluation function J shown in Eq.(3) which is an ac-
cumulated squared error of two angles at every sam-
pling time for a certain period with scaling[5]. That
is, the evaluation function J is scaled reasonably with
exponential function.

3.3 Learning procedure

A flowchart of overall learning scheme is shown in
Figure 4. Sampling period is 0.05[sec.].

1. We set some parameters such as the perturbation,
the learning coefficient, teaching signal and so
on.

2. Initial weights of the neural network are set.

3. The robot operates without the perturbation.
Then we observe a value of the evaluation func-
tion without the perturbation.

4. The robot operates with the perturbation. Then
we observe a value of the evaluation function
with the perturbation.

5. If the evaluation function decreases enough, we
finish the learning process.
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Figure 4: Flowchart

6. Based on the two values, we modify the all
weights of the neural network using the simul-
taneous perturbation learning rule.

This learning method also has the advantage in
calculation of learning process. In order to calculate
two values of the error function with the perturbation
and without the perturbation, the overall control sys-
tem works twice. However, even the number of pa-
rameters, that is, weights is large, only twice opera-
tions realize modification of all weights in the neuro-
controller. Moreover, we can control the objective and
update the neuro-controller at the same time. That is,
online learning is possible.

Using this control scheme, the neuro-controller
copes with environmental change. Online learning ad-
justs the weight values of the network, so that control
performance is maintained.

4 Simulation results

In this Chapter, we describe some simulations and
their results. MatLab is used for the simulation.

In simulation, we have to model a control objec-
tive using mathematical equation. For target SCARA,
we have to assume dynamics of the SCARA. In our
simulation, we use the following motion equation for
the SCARA.

M (θ)

[
θ̈1
θ̈2

]
+

[
−m2l1r2 sin θ2

(
θ̇22 + 2θ̇1θ̇2

)
m2l1r2 sin θ2θ̇1

]

=

[
τ1
τ2

]
(5)

Where, l and r are dimension of the SCARA and
m are mass of the two arms. θ are angles of them(see
Figure 1). Elements of matrix M(θ) are defined as
follows;

M11 = Izzg1 + Izzg2 +m1r1
2 +m2r2

2

+m2l1
2 + 2m2l1r2 cos θ2

(6)

M12 = Izzg2 +m2r2
2 +m2l1r2 cos θ2 (7)

M21 = Izzg2 +m2r2
2 +m2l1r2 cos θ2 (8)

M22 = Izzg2 +m2r2
2 (9)

I denote motions of inertia around an axis of ro-
tation and chosen axis for the two arms.

4.1 Position control

Firstly, we handle position control of the robot using
RNN. Five target positions and initial position of the
robot arm are shown in Figure 5 and Table1.

 

x[m] 
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Figure 5: Target positions

The simulation was carried out using the proce-
dure shown in Chapter 3. Initial weight values for
the RNN were randomly generated using uniform dis-
tribution in the interval [-1 +1]. Learning coefficient
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Table 1: Target positions
targets θ1[

◦] θ2[
◦] x[m] y[m]

1⃝ -10 75 0.28159 0.1465
2⃝ 30 90 0.073425 0.273263
3⃝ -75 1 0.107146 -0.38537
4⃝ -60 25 0.26396 -0.28782
5⃝ -75 95 0.239843 -0.12478

α = 2.0 × 10−5 and perturbation c = 1.0 × 10−5.
Maximum learning iteration is 5000 times.

Results are depicted in Figure 6, Figure 7, Fig-
ure 8, Figure 9 and Figure 10. Target positions and
loci of the tip of SCARA before learning process and
after learning are depicted in these figures. We can
compare the loci before learning process with those
after learning. For initial setting, that is, before learn-
ing, the tip does not approaches to the corresponding
target positions. After learning, all results show that
the tip of the arm approaches the corresponding target
positions for all cases.
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Figure 6: Simulation result for target 1
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Figure 7: Simulation result for target 2
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Figure 8: Simulation result for target 3
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Figure 9: Simulation result for target 4
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Figure 10: Simulation result for target 5

Then final position error are shown in Table 2.
Maximum error is about 1[cm] for target 2. We can
see that the learning and control scheme proposed
here work well in the simulation.

Table 2: Error for target positions
Final position Error

targets x[m] y[m] x[m] y[m]

1⃝ 0.278471 0.150982 0.003121 0.00447
2⃝ 0.0063202 0.272685 0.010222 0.000577
3⃝ 0.0116182 -0.38261 0.00904 0.00275
4⃝ 0.265595 -0.28722 0.00165 0.00061
5⃝ 0.239057 -0.129 0.000786 0.004224

Change of the evaluation function through learn-
ing process is shown in Figure 11. After 500 times
learning, value of the error function decreses steadily.
We can see that evaluation decreses as learning pro-
ceeds.

Iteration

Evaluation

Figure 11: Change of evaluation function for position
control

4.2 Trajectory control

Next, we consider a trajectory control problem of the
SCARA robot. We set a trajectory shown in Figure
12. As in the figure, the trajectory consists of eight
transit points. The tip of the arm should trace these
points and consequently move on the trajectory.

Initial weight values for the RNN were randomly
generated using uniform distribution in the interval [-
1 +1] as well. Learning coefficient α = 1.0 × 10−5

and perturbation c = 5.0× 10−5. Maximum learning
iteration is 15000 times.

Trajectories by the simulation after 3000 times
learning, 6000 times learning and 9000 times learn-
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Figure 12: Result for trajectory control

ing are shown in Figure 12. As learning proceeds,
trajectories are approaching to the target positions.

Change of evaluation function is shown in Fig-
ure 13. After 2000 times learning, the error decreses
monotonously.

Iteration

Evaluation

Figure 13: Change of evaluation function for trajec-
tory control

Moreover, we consider two different target trajec-
tories(see Figure 14). The same RNN should learn
these two trajectories simultaneously.
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Figure 14: Two target trajectories

Trajectories by the simulation after 3000 times
learning, 9000 times learning, 12000 times learning
and 18000 times learning are shown in Figure 15 and
Figure 16. As learning proceeds, trajectories are ap-
proaching to the target positions for both two trajecto-
ries.

Change of evaluation function is shown in Fig-
ure 17. After 10000 times learning, the error decreses
monotonously.
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Figure 15: Result for target trajectory 1
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Figure 16: Result for target trajectory 2
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Figure 17: Change of evaluation function for two tra-
jectories

5 Experimental results
5.1 Experimental system

Using practical robot system(see Figure 18), we car-
ried out similar experiments. The control unit is a per-
sonal computer. In this computer, the recurrent neural
network and its learning scheme are realized. The ob-
jective is SCARA (SR-402DD, Toshiba). This robot
has an encoder. Two joint angles are measured by the
encoder. The direct drive arm controller is also used
to generate actual manipulating signals.

The control unit calculates two controlling torque
τ1 and τ2 corresponding to the two arms of the
SCARA and gives the drive unit them. The drive unit

converts them into suitable manipulating signal. The
SCARA receives them and moves the tip of the arm.

The control unit updates weights of the recur-
rent neural network based on the simultaneous pertur-
bation method using observed positions of SCARA.
And the control unit calculates two controlling torque
again.

In the proposed control scheme, it is possible to
carry out the learning under operation of the system.
That is, operation and learning are simultaneously car-
ried out.

DD Arm Controller SCARA Robot

Drive unit Process

PC

Control unit

Figure 18: Practical experimental system

5.2 Position control

Firstly, in order to confirm a feasibility of the control
and learning schemes, we made experiments for posi-
tioning control. We consider five target positions.

Initial X-Y position of the tip of the arm is (0.4
0.0). Target five positions are the same used in simu-
lation and shown in Table 1 and Figure 5. In the pre-
vious Chapter, we carried out simulation for the same
task. After 15000 times learning, the RNN worked
well for the task. We use the same RNN as a con-
troller and the weight values obtained by the simu-
lation as initial values for practical SCARA system.
Learning process is shown in Figure 4 in Chapter 3.
We repeated the learning 1000 times.

Table 3 shows final positions and the correspond-
ing errors for five target positions. Maximum error for
these targets is about 4[cm].

Learning curve for the practical system is shown
in Figure 19. We use result learnt by simulation as
initial weight values. However, there exists differ-
ence. In the simulation, we assumed dynamics for the
SCARA. In other words, we modeled the SCARA by
certain motion equations. The model and the practical
system had some differences. This results in the error
shown in early stage of learning curve of Figure 19.

After 200 times learning, the error decreses
monotonously but slowly, compared with change by
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Table 3: Error for target positions by practical system
Final position Error

targets x[m] y[m] x[m] y[m]

1⃝ 0.292636 0.138297 0.011046 0.008203
2⃝ 0.027381 0.290961 0.046044 0.017698
3⃝ 0.136427 -0.37595 0.029281 0.00276
4⃝ 0.281512 -0.26996 0.001635 0.01786
5⃝ 0.2332 -0.13974 0.006643 0.01496

the simulation result.

Evaluation

Iteration

Figure 19: Change of evaluation function for position
control using practical system

5.3 Trajectory control

Next, we consider a trajectory control problem for
practical SCARA. Similar to the simulation, we set a
trajectory shown in Figure 12. The trajectory consists
of eight transit points as well.

Initial weight values for the RNN were set to
those obtained by the simulation. Maximum learning
iteration is 1000 times. Figure 20 shows result after
1000 times learning. Change of the evaluation func-
tion is depicted in Figure 21.

Consecutively we handle the same problem with
plural trajectories. Target trajectories are shown in
Figure 14 in Chapter 4. The same RNN controls the
SCARA robot for two trajectories. Results are shown
in Figure 22 and Figure 23. Change of the evaluation
function for these two trajectories is depicted in Fig-
ure 24.

y [m]

x
[m

]

target positions

1000 times

Figure 20: Result for trajectory control using practical
system

Iteration

Evaluation

Figure 21: Change of evaluation function for trajec-
tory control using practical system

6 Conclusion
We presented a control scheme using recurrent neural
network for robot arms. The simultaneous perturba-
tion learning method is applied. The method does not
require sensitivity of the controlled objective. More-
over, learning procedure is simple and easy to imple-
ment even for recurrent neural networks. As a result,
on-line learning of SCARA robot was realized.

We considered positioning control and trajectory
control of the SCARA robot. The recurrent neural net-
work learns inverse dynamics of the robot using the
simultaneous perturbation learning scheme.

For the position control, we could confirm that the
control system worked well for the target positions af-
ter about 400 times learning. Also for the trajectory
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Figure 22: Result for target trajectory using practical
system
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Figure 23: Result for target trajectory using practical
system

control, the neural network could work well for de-
sired trajectory.
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