
Mixed Sensitivity Design of Discrete Time PID Controllers  
 

TOORAN EMAMI 

Department of Engineering (Electrical Engineering Program) 

United States Coast Guard Academy 

27 Mohegan Avenue, New London, Connecticut 06320-8101 

UNITED STATES OF AMERICA 

Tooran.Emami@uscga.edu 
 

 
Abstract—The goal of this paper is to find three sets of algorithm for the coefficients of Discrete Time Proportional 

Integral Derivative (DT-PID) controllers that simultaneously stabilize the closed-loop system and satisfy a mixed 

sensitivity constraint.   Additive uncertainty modeling describes the uncertainty of perturbed single input single 

output (SISO) system with an uncertain communication time delay.  The DT-PID controllers’ coefficients are 

defined based on the bilinear transformation technique in the frequency domain.  The analysis of this procedure 

depends on the frequency response of discrete time modeling of the system.  This methodology applies to an 

experimental data from a SRV-02 DC motor to regulate the shaft position of the motor. 
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1 Introduction 
Proportional integral derivative (PID) controller has 

an extensive use in many industrial applications.  

There is a significant attempt in the literatures to 

determine the set of PID controller parameters that 
meet certain design goals.  Today, design methods 

that can be applied to an autonomous system are more 

in demand.  In most of the autonomous system design 
methods that are implemented directly in the digital 

domain are more prevalent.  One of the common 

challenges in tuning the sets of Discrete Time 
Proportional Integral Derivative (DT-PID) controller 

parameters is a communication time delay uncertainly. 

Time delays create more problem for both robustness 

and performance of the system response.   
Most of the work in this area has concentrated on 

the design of continuous-time PID controllers [1-5], 

[7]-[18], [20]-[24] and [26].  In [1], Shafiei and 
Shenton found all PID controllers that placed the 

closed-loop poles in certain D-partitions. 

Bhattacharyya and colleagues determined the PID 
controller parameters where a rational transfer 

function model of the system was known [2].   

In [3], [5], and [14]   Saeki and colleagues looked 

at different methods for H  design of PID controllers.  

Sujoldžić and Watkins in [15] and Saeki in [17] 

developed a method to determine the problem of 

stabilizing a system based on the frequency response 

of system.  In [17], Saeki introduced a method for 

finding the number of unstable poles across the 

boundary of PID controllers.   
In [18] and [22], the authors determined the 

parameters of PID controller by using a metaheuristic 

algorithm.  In [20], Žáková developed constrained 

pole assignment for the design of PD controllers for a 
double integrator plant model with time delays or time 

constant.   

In [23], the authors used a fractional PID controller 
to meet the performance requirement for an active 

magnetic bearing system.  In this paper, an adaptive 

genetic algorithm was used to determine the PID 
controller parameters that optimized a multi-objective 

cost function.   

Ho determined a generalization of the Hermite-

Biehler theorem for H  PID design [9].  Tantaris, 

Keel, and Bhattacharyya looked at a similar problem 

for first-order controllers [16].   

In [13], Keel and Bhattacharyya developed PID 
design for a weighted sensitivity and weighted 

complementary sensitivity constraint for plants with 

no poles or zero on the j  axis.  In [7], Ho and Lin 

looked at PID controller design for robust 

performance for a plant that was described by a 

rational transfer function.  Unfortunately, none of 
these methods that deal with robustness work directly 

with time-delays.   
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In [21], Keel and Bhattacharyya allowed for time 

delay in the nominal model when they investigated the 
weighted sensitivity and robust stability problems.  

However, they did not consider the mixed sensitivity 

problem.   Sipahi and Mahmoodi Nia designed the 
parameters of single-delay   system for marginally 

stable system for a known delay [26] but they did not 

consider the mixed sensitivity design.  

Today, as most controllers are implemented in the 
digital domain, design methods that are formulated 

and implemented directly in the discrete time become 

more important.  In [6], the authors used backward 
differences to design discrete time PID controllers that 

stabilize the Tchebysheve representation of a discrete 

time system.   

In [19], the authors used delta operator to define a 
unified approach for the stability region of discrete-

time or continuous-time PID controllers design.  In 

[27], DT-PID controller parameters were designed 
that satisfied the robust stability constraint.  In [27], 

this methodology was applied to an autonomous 

SailBot real data application.   
The current paper is the extension of our previous 

techniques in [24] and [27].  The goal of current paper 

is to find all achievable DT-PID controllers that 

simultaneously stabilize the closed-loop system and 
satisfy a mixed sensitivity constraint for single input 

single output (SISO) system with an uncertain 

communication time delay.  Additive uncertainty 
modeling describes the uncertainty of perturbed 

system. Additive uncertainty modeling is much easier 

and often allows for designs with reduced 
conservativeness in the uncertainty compare to the 

results for multiplicative uncertainty in [24].  The 

objective of current paper is to find the three sets of 

algorithm for the coefficients of DT-PID controllers 
that allow the closed-loop system to satisfy the mixed 

sensitivity constraint.   

The remainder of this paper is organized in four 
main sections.  The design technique is presented in 

Section 2.  This method is applied to an experimental 

data of a SRV-02 DC motor from Quanser Consulting, 

Incorporated to regulate the shaft position of the 
motor in Section 3.  The conclusions of this paper are 

summarized in Section 4. Finally, the acknowledges 

are in Section 5. 
 

 

2 Design Technique 

This section introduces the design techniques in two 

subsections.  First the fundamental of system network 

and equations are introduced.  Next the mixed 

sensitivity design of DT-PID controller design is 
proposed in two main theorems. 

 

 

2.1 Fundamental of system network  
Consider a SISO system shown in Figure 1, where G  

presents the perturbed plant, pG  is the nominal plant, 

and cG  is the DP-PID controller.  The reference input 

and the error signals are R  and Z , respectively.  PW  

is the sensitivity function weight, AW  is the additive 

weight, and 1A   is the uncertain perturbation [12].   

 

Fig. 1   Block diagram of the system with additive 

uncertainty 

 
In this network, the nominal continuous time 

system can be written as:  

 

   ( ) ( ) ,s
p oG s G s e                                                   (1) 

 

where ( )oG s  is the system transfer function, and   is 

an uncertain time-delay.  The bilinear discrete-time 

transformation of the nominal system defines as: 

 

 ( ) ( ), ,p p sG z G s T                              (2) 

 

where   and sT  are the bilinear transformation 

notation and the sampling period, respectively.    

The bilinear transformation DT-PID controller 
parameter is defined as: 
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where pK , iK , and dK  are the proportional, integral, 

and derivative of DT-PID parameters, respectively.   
In this paper the discrete time bilinear frequency 

representation is:  

 

 

 

2 cos( ) 1 sin( )2 1
: ,

cos( ) 1 sin( )1





 
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 

 

s

s

j T
s s

j T
s s s s

T j Te

T T T j Te
  

    (4) 

 

where   is a positive, non zero frequency scale 

warping range between 0 s   , and s  is the 

Nyquist frequency.  
The equivalent discrete time bilinear model of 

system in equation (2) defines in the frequency based 

on its real and imaginary parts defines as: 

 

( ) ( ) ( ).   p p pG R j I                        (5) 

 

where ( )pR  , and ( )pI   are real and imaginary parts, 

respectively.  The DT-PID controller in equation (3) 

defines in the frequency domain such as: 

 

( ) .i

c p d

K
G K K 


                                             (6) 

 

The bilinear transformation of additive weight, AW , is 

and the  bilinear transformation of sensitivity function 

weight, PW , are defined in terms of their real, ( ),AA 

( ),PC  and imaginary ( ),AB  ( ),PD  parts such as:  

 

( ) ( ) ( ),A A AW A jB                                          (7) 

 

and  
 

( ) ( ) ( ).P P PW C jD                                          (8) 

 

The deterministic values of pK , iK , and dK  for 

which the closed-loop characteristic polynomial is 

stable has been found in [25] based on delta operator 

technique.   
 

 

2.2 Mixed sensitivity DT-PID controller design 
In this paper, the problem is to find all achievable DT-

PID controllers that satisfy the discrete time mixed 

constraint of the system in Figure 1 for all 

( ) 1.A j     

The mixed sensitivity constraint for the SISO 

system is defined as:  
 

  0( ) ( ) ( ) ( ) ( ) ,A c PW G S W S             

   (9) 

 

where 
1

( )
1 ( ) ( )p c

S
G G


 




 is the discrete time 

sensitivity function, and 0  is the mixed sensitivity 

constraint and it is a positive scalar less than one.  To 

find DT-PID controller parameters, the complex 
functions in equation  (9) are written in terms of their 

magnitudes and phase angles as: 
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If (10) holds, then for each value of   we write, 

 

  0( ) ( ) ( ) ( ) ( ) ,A Pj j
A c PW G S e W S e

         

                       (11) 

 

where ( ) ( ) ( )A A cW G S      and

( ) ( )P PW S     for some [0,2 )A   and 

[0,2 )P  .  Consequently, all DT-PID controllers 

that satisfy equation (9) must lie at the intersection of 

all controllers that satisfy equation (11) for some 

[0,2 )A   and [0,2 )P   [24]. 

To accomplish this region, for each value of 

[0,2 )A   and [0,2 )P   all DT-PID controllers on 

the boundary of equation (11) are found.  It is easy to 

show from equation (11) that DT-PID controllers on 

the boundary must satisfy the following characteristic 

equation:  
 

0( , , , ) 0,A PP                                   (12) 

 
where, 
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Note that equation (12) reduces to the frequency 

response of the standard closed-loop characteristic 

polynomial as 0  . Substituting equations (5), (6), 

(7), (8), and cos sinAj
A Ae j

    , and 

cos sinPj
P Pe j

     into equation (12), the 

frequency response of this “modified” characteristic 

polynomial can be rewritten in terms of its real and 
imaginary functions such as:  

 

,Rp p Ri i Rd d RX K X K X K Y                              (13) 

 
and 

 

,Ip p Ii i Id d IX K X K X K Y                                  (14) 
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This is a three-dimensional system in terms of the 

controller parameters pK , iK , and dK . In this paper 

two theorems present to find all achievable DT-PID 

controller parameters.   
Theorem 1:  The mixed sensitivity region and 

stability boundaries in the ( ,  )p iK K
 
plane for a fixed 

value of derivative gain obtains the following curves 

for the proportional and integral coefficients of DT- 

PID controller parameters for some 0 s   ,

[0,2 )A  , and [0,2 )P  : 

 
The discrete time proportional:  
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and the discrete-time integral:  
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              (16) 
where,  
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and,  
2 2 2( ) ( ) ( ),p p pG R I   

2 2 2( ) ( ) ( ).A A AW A B       

Proof: The boundary of characteristic equation in 

equation  (12) can be found in the ,( )p iK K  plane for 

a fixed value of dK .  After setting dK  to the fixed 

value dK , equations (13) and (14) can be rewritten as:  
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                                                                             (17)  

 

Solving equation (17) for some 0 s   ,

[0,2 ),A   and [0,2 )P  , gives the equations (15) 

and (16) for the discrete time proportional and integral 
coefficients of DT-PID controller. This is completed 

the proof.                                                                    ■ 

Theorem2:  The mixed sensitivity region and 

stability boundaries in the ( ,  )p dK K
 
plane for a fixed 

value of integral term gives the following curves for 

the derivative coefficients of DT-PID controller for 

some 0 s   , [0,2 )A  ,  and [0,2 )P  . 
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                (18) 

 

Proof: The boundary of characteristic equation in 

equation (12) can be found in the ( , )p dK K plane for 

a fixed value of iK . After setting iK  to the fixed 

value iK , equations (13) and (14) can be rewritten as: 

 
2

2
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I p idp p
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.    

                                                                             (19) 

 

Solving equation (19) for some 0 s   ,

[0,2 ) ,A   and [0,2 )P  , gives the same 

expression as equation (15) for the proportional 

coefficients, and it gives equation (18) for the 

derivative coefficients of DT-PID controller.  This is 

completed the proof.                                                    ■ 
                                                                           

 

3 Experimental Example 
In this section, a DT-PID  controller is designed to 
regulate the shaft position of a SRV-02 DC motor in 

Figure 2 from Quanser Consulting, Incorporated [28].  

The feedback loop has an uncertain communication 

delay between 0 0.2   seconds.  The goal is to find 

all DT-PID controllers that stabilize the system and 

satisfy the mixed sensitivity constraint in equation(9), 

where the mixed sensitivity constraint is 0 1  , and 

the sampling period is 0.05sT   seconds.  The closed-

loop step response is required to have an overshoot 
less than 5% and a settling time less than 5 seconds.   

 

 

 
 

Fig. 2.  SRV-02 DC motor in from Quanser Consulting, 

Incorporated 

 
The continuous time, dash line, and discrete time 

bilinear transformation, star line, experimental 

magnitude frequency response of the SRV-02 DC 
motor with the mean value of  communication delay 

of 0.1 seconds are shown in Figure 3. 

 
Fig. 3.  Open loop frequency response of SRV-02 DC 

motor with a communication delay of 0.1 seconds. 
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This frequency response is corresponded to a 

continuous time such as:  
 

 
0.11.53

( ) ,
0.024 1

s
pG s e

s s




                   (20) 

 

and discrete time bilinear transfer function of equation 
(20) is: 

 
2

2

2

0.01895 0.0379 0.01895

1.008 0.007937
( ) .p

z z
z

z z
G z 







       

         (21) 

 
The additive weight is chosen to bound the 

additive errors.  Note, additive uncertainty modeling 

often allows for designs with reduced 
conservativeness in the time delay uncertainty.  This 

will increase the size of the set of DT-PID controllers 

that robustly meet the performance requirements.  The 

bilinear discrete time transformation of additive 
weight has been designed as: 

 
2

2

0.04068 0.08136 0.04068

0.06536 0.019
( ) .

61
AW z

z z

z z

 

 
           (22) 

 

The sensitivity weight is chosen to satisfy the 
performance requirement for the closed-loop system.  

The bilinear discrete time transformation of sensitivity 

weight has been designed such as: 
 

0.018828 ( - 0.9488) ( 1)
( ) .

( - 0.9598) ( - 0.9213)

  

P
z z

W z
z z




                    (23) 

The procedures to design all PID controller 

parameters for a fixed value of derivative term using 
first theorem are as following steps: 

 

1. Equations (5), (7), and (8) are used to find the real 
and imaginary parts of equations (21), (22), and 

(23), respectively.  

2. Substitute the results of step 1 into equations (15) 

and  (16) in the ( ,p iK K ) plane for a fixed value of 

0.02dK  .   

3. All DT-PID controllers that satisfy the mixed 

sensitivity constraint in equation (9) are found by 

setting  0 1   into equations (15) and  (16)  for 

some interval of [0,2 )A  , [0,2 )P  , and the 

frequency range of 0 62.83  . 

4.  Find the intersection of all regions from step 3; as 

it shows in dark green area in Figure 4. 
5. The DT-PID stability boundary of the nominal 

system can be found by setting 0    into 

equations (15) and  (16)  as it shows in bold red 
lines in Figure 4.   

6. The region that satisfies both the mixed sensitivity 

constraint and the nominal stability boundary is 

shown in Figure 4.   
7. The intersection of all regions inside the nominal 

stability boundary of the ( ,p iK K ) plane is shown 

in the dark green is the mixed sensitivity 
constraint area.  

8. All of the selected DT-PID controllers in the dark 

green area satisfy the mixed sensitivity constraint 
in equation (9).   

To verify the results, an arbitrary controller from the 

dark green area is chosen that is giving the DT-PID 

controller such as: 
  

0.13 2 1
( ) 2.07 0.02 .

2 1 0.05 1

0.05 1

c

z
G z

z z

z

  
     

      
  
   

     

                                                                          (24) 

 
Fig. 4.  Discrete-time stability boundary and mixed 

sensitivity region in the 

( ,K Kp i ) plane 

 

Substituting equations  (21), (22), (23), and  (24), into 

(9) gives  ( ) ( ) ( ) ( ) ( ) 0.62A c PW G S W S      . As 

the magnitude of mixed sensitivity of the system is 

less than one the design goal is met.  The closed loop 
step response with the DT-PID controller in (24) 

shown in Figure 5.  As can be seen the closed loop 

step response has a setting time of 0.651seconds and 
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an overshoot of 1.92%.  The closed loop step response 

has met all the performances requirements.  
 

 
Fig. 5.  The closed loop step response with DT-PID 

controller in (24). 

 

The second theorem follows the same procedures 
as first theorem in steps 1-8

th
, but it uses equations 

(15) and (18) in the ( ,p dK K ) plane for a fixed value 

of 0.04iK  .  As discussed previously, the DT-PID 

stability boundary of the nominal system can be found 

by setting 0    in equations (15) and (18).  In this 

plane, the DT-PID  controller is designed to satisfy the 
mixed sensitivity constraint in equation (9). This 

objective is achieved by setting the constraint,  0 1   , 

in equations (15) and (18) for some interval of 

[0,2 )A  , [0,2 )P  , 0 62.83  ,  and finding 

the intersection of all regions. 

The region that satisfied the mixed sensitivity 
constraint and the nominal stability boundary are 

shown in Figure 6.  The nominal stability boundary is 

shown in red-bold line.  The mixed sensitivity area is 

the intersection of all regions inside the nominal 

stability boundary of the ( ,p dK K ) plane as it shows 

in the dark green area.  

All of the selected DT-PID controllers in the green 
area are satisfied the mixed sensitivity constraint in 

equation (9).  To verify the results, an arbitrary 

controller from this region is chosen that is giving the 
DT-PID controller as: 
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                                                                                 (25) 

                  

Substituting equations  (21), (22), (23), and (25), into 

(9) gives  ( ) ( ) ( ) ( ) ( ) 0.61A c PW G S W S      . The 

mixed sensitivity magnitude frequency response with 
the DT-PID controller in the equation (25) is shown in 

Figure 7. As the magnitude of mixed sensitivity 

system is less than one, the design goal is met.   
 

 
Fig. 6.  Discrete-time stability boundary and mixed 

sensitivity region in the 

( ,K Kp d ) plane 

 

 
Fig. 7. The mixed sensitivity magnitude frequency response 

of the system with DT-PID controller in equation 25. 

 

The closed loop step response with DT-PID controller 
in the equation (25) is shown in Figure 8.  As can be 

seen the closed loop step response has a setting time 

of 0.76 seconds, no overshoot, and zero steady state 

error.  The closed loop step response has met all the 
performances requirements.  
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Fig. 8.  The closed loop step response with DT-PID 

controller in (25).  

 

The step responses of the closed-loop system with 

the DT-PID controller in equation  (25) for various 

time delays in the interval of (0.05,0.2) seconds are 

shown in Figure 9.   

 

 
Fig. 9.  The closed loop step response with DT-PID 

controller in (25) for various time delays 

 
As can be seen, the closed-loop step responses all 

have an overshoot less than 5% and a setting time less 

than 5 seconds, and zero steady state errors.  The 
maximum setting time is 1.04 seconds and the 

maximum percent overshoot is 4.72%, both are 

corresponded to the maximum time delay in the 

system.  
 

4 Conclusions 
In this paper three sets of algorithm were introduced 

for the coefficients of DT-PID controllers that 
stabilized and satisfy the mixed sensitivity constraint 

for the closed-loop system. Additive uncertainty 

modeling was used to describe the uncertainty of time 
delay of single-input-single-output (SISO) system 

with un uncertain time-delay.  Additive uncertainty 

modeling often allowed for designs with reduced 
conservativeness.  This modeling increased the size of 

all DT-PID controllers that met the mixed sensitivity 

constraint.  The frequency domain bilinear 

transformation of DT-PID controllers was obtained 
here since the analysis of system depends on the 

frequency response of discrete time modeling of the 

system.  An experimental data taken from a SRV-02 
DC motor with an uncertain communication time-

delay in the feedback path was used to demonstrate 

the application of this methodology.  
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