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Abstract: In this note, we consider a new nonlinear unknown input observer design for large class nonlinear sys-
tems. The principal idea consist on using estimation error and mean value theorem parameters β in proposed
observer structure, based on the feedback mechanism. This process is performed using mean value theorem and
simulated annealing algorithm. A stability study was performed using classical Lyapunov function. Numerical
examples are designed to show the effectiveness of the approach proposed for nonlinear dynamic systems con-
cerned. Proposed observer can treat nonlinear systems without a linear term (ẋ = f(x, u)) and with a linear term
(ẋ = Ax+ f(x, u)).
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1 Introduction

Nonlinear state observation has been an active field of
research. The goal is to reconstruct non-measurable
state of nonlinear system. Several types of observers
have been designed to solve this problem, and many
outstanding results have been obtained. Despite
significant progress, the main objective remains
unresolved, who consist to find generalized observer
for all nonlinear systems. We mention just a few:
The nonlinear Luenberger observer approach [1-3],
sliding mode observers [4-6], adaptive observers
[6-8] and Local unknown input observer [17].
The design of nonlinear observer has been a field
of great evolution in recent decades. It is used to
different discipline in control theory field. For these
reasons, nonlinear observers design has received
considerable attention in literature. Nevertheless,
several important problems remain unresolved. The
goal is to look for a global method for all nonlinear
systems. In some recent works [10-12], mean value
theorem is used to convergence study of estimation
error, it is considered that the system is linear with
uncertain parameters, this kind of problem is solved
thanks to tools used for linear systems. The use of
mean value theorem provides a solution even for a
large Lipschitz constant.
In this note, we consider the design of a new non-

linear observer structure. The principal idea is the
estimation error and mean value theorem parameters
(β) determination for state estimation correction,
using a feedback mechanism in observer structure.
This process is designed based on mean value
theorem and simulated annealing algorithm. The
stability study relies on use of a classical quadratic
Lyapunov function. Two numerical examples are
provided to show the performance of the proposed
approach. the first studies a chaotic system without
linear term (ẋ = f(x, u)) and the second deals with a
nonlinear system with linear term (ẋ = Ax+f(x, u)).

2 Preliminaries

We present mean value theorem and simulated anneal-
ing algorithm.

2.1 Mean-Value Theorem

Lemma 1: Mean Value Theorem for a Vector Function
[13-14]
Let f : Rn → R is differentiable at each point of
the line segment [a b], then there exists on that line
segment a point c = b+ β(a− b) between [a b] and
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β ∈ [0 1] such that

f(a)− f(b) = ∇f(c)(a− b) (1)

Note that β is a variable that changes continuously
with the values of a and b. To use the Mean-Value
Theorem, it is necessary to determine at each iteration
the value of β. In this paper, we have used simulated
annealing algorithm to solve this problem.

2.2 Particle Swarm Optimization method

The simulated annealing algorithm (SA), developed
by Kirkpatrick and his collaborators [20]. The basic
idea is to probabilistically accept worse quality can-
didate solution than the current solution in order to
escape from local minima.
These steps can be represented schematically as
shown in following Figure.

Figure 1: Diagram of simulated annealing algorithm

3 Problem formulation and main re-
sults

The nonlinear system can be described as following:{
ẋ(t) = f(x(t), u(t))
y(t) = Cx(t)

(2)

where u(t) ∈ Rk and y(t) ∈ Rm are the input and
output vectors. f(x(t);u(t)) is supposed to be con-
tinuously differentiable and C ∈ Rm×n = [Im 0]
are known constant matrices of appropriate dimen-
sions and Im is an identity matrix. We assume that
rank(C) = m.

3.1 Nonlinear Observer Proposition

In this part, we will present a nonlinear observer struc-
ture. Considering the observer of following form

˙̂x(t) = fx̂,u +Gx̂,u,ee1(t) +K(y(t)− ŷ(t)) (3)

ė(t) = (Dx(fx̂,u,e)(ci)−Gx̂,u,e)e(t)−K(y(t)− ŷ(t)) (4)

The sufficient conditions are given in following
theorem.

Theorem 1

If there exist positive constants η ≥ 1 and γ ≥ 0 such
that:

Dx(fx̂,u,e)(ci)−Gx̂,u,e − γCTC < 0 (5)

K∈Rn×m andGx̂,u,e∈Rn×n are matrices which have
to be designed such that x̂ asymptotically converges
to x, ci = x̂ + βie with βi ∈

[
0 1

]
. Gx̂,u,e is a

diagonal matrix, which can be written as follows

Gx̂,u,e = η


α1(x̂, u, e) 0 · · · 0

0 α2(x̂, u, e)
. . .

...
...

. . . . . . 0
0 · · · 0 αn(x̂, u, e)

 (6)

with

αk(x̂, u, e) =
n∑
j=1
|gkj |+

n∑
i=1
|gik| (7)

with k = {1, 2, ..., n} , gij represent the coefficients
of the matrix Dx(fx̂,u,e)(ci), η is positive constant
η ≥ 1, e(t) ∈ Rn is the estimation error vector de-
termined by observer, y(t) − ŷ(t) ∈ Rm is the mea-
surable estimation error and e1(t) ∈ Rn is vector that
includes measurable estimation errors and the errors
determined by observer such that e1(t) = [y1(t) −
ŷ1(t), . . . , ym(t)− ŷm(t), em+1(t), . . . , en(t)]

T .

3.2 Proof of condition (3.2-3.3):

Our goal is to build an observer that ensures the re-
construction of states system (2). Consequently, we
consider the estimation error e(t):

ė(t) = ẋ(t)− ˙̂x(t) = fx,u − (fx̂,u +Gx̂,u,ee1(t)
+K(y(t)− ŷ(t))) (8)

we note that e1(t) = e(t), the observer asymptotically
reconstructs the state of the system (2), when e(t) con-
verges to zero as t tends to infinity. In this context,
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f(x, u) is expressed according to the known terms,
such that e(t) and x̂(t) will be determined by observer
(4) and (3) respectively, ci using simulated annealing
algorithm (12-13) and the input system u(t):
We can write:

fx,u = fe+x̂,u = fx̂,u +Dx(fx̂,u,e)(ci)e (9)

With ci = x̂ + βi(x − x̂) = x̂ + βie such that β ∈
[0 1] and i = {1, 2, ..., n}. Dx is the differential
operator defined by

Dx(fx̂,u,e)(ci) =
∂fx,u,e(ci)

∂x |x=ci (10)

Using mean value theorem then error dynamic equa-
tion becomes:

ė(t) = (Dx(fx̂,u,e)(ci)−Gx̂,u,e)e(t)
−K(y(t)− ŷ(t)) (11)

3.2.1 Determination of the parameters βi

For the determination of the βi parameters, we use
simulated annealing algorithm and Simulink block
(figure 1) ”Interpreted MATLAB Function”. based on
the mean value theorem (1), we consider the following
system of equations:

X(βi) = fx̂+e,u − fx̂,u −Dx(fx̂,u,e)(x̂+ βie)e = 0
(12)

X(βi) = [X1, X2, . . . , Xn]
T , fx̂+e,u =

[f1x̂+e,u, f2x̂+e,u, . . . ,

fnx̂+e,u]
T , fx̂,u = [f1x̂,u, f2x̂,u, . . . , fnx̂,u]

T ,
Dx(fx̂,u,e)(x̂ + βie) = [∇f1x̂,u,e(x̂ +

βie),∇f2x̂,u,ex̂ + βie), . . . ,∇fnx̂,u,ex̂ + βie]
T

and βi = [β1, β2, . . . , βn]
T .

The parameter estimation βi is transformed into
an optimization problem. A performance objective
function is defined for the minimization; fobj is used
as objective function and is given by:

min
βi∈[0 1]

fobj(βi) = min
βi∈[0 1]

√√√√ n∑
j=1

(Xj(βi))2


(13)

Figure 2: Determination of βi parameters

3.3 Proof of theorem 1

The aim is to define the matrix Gx̂,u,e so that the error
of estimation converges asymptotically to zero. Let

V (e) = 1
2e
T e (14)

The dynamic Lyapunov function can be writing as fol-
lows:

V̇ (e) = eT (Dx(fx̂,u,e)(ci)−Gx̂,u,e −KC)e (15)

To ensure the asymptotic convergence of e to zero, the
derivative of V must be negative, to satisfy this con-
dition. The term eTDx(fx̂,u,e)(ci)e must be increased
as follows:

eTDx(fx̂,u,e)(ci)e < |eTDx(fx̂,u,e)e| =
n∑

i,j=1
|Dx(fx̂,u,e)||eiej | (16)

We assume that Gx̂,u,e = Dx(fx̂,u,e) and |eiej | ≤
1
2(e

2
i + e2j ), consequently the inequality (16) becomes

eTGx̂,u,ee ≤
n∑

i,j=1
|gij ||eiej | (17)

with gij represent the coefficients of the matrix
Gx̂,u,e.Therefore, we obtain

eTGx̂,u,ee <
n∑
k=1

(
n∑
j=1
|gkj |+

n∑
i=1
|gik|

)
e2k (18)

Following this latest development, we can conclude
that for all (e, x̂) ∈ Rn, we find:

eTGx̂,u,ee < eTGx̂,u,ee (19)

with Gx̂,u,e is a diagonal matrix, which can be written
as follows:

Gx̂,u,e = η


α1(x̂, u, e) 0 · · · 0

0 α2(x̂, u, e)
. . .

...
...

. . . . . . 0
0 · · · 0 αn(x̂, u, e)

 (20)

where

αk(x̂, u, e) =
n∑
j=1
|gkj |+

n∑
i=1
|gik| (21)

Such that k = {1, 2, ..., n}.
Now, considered e(t) ∈ Rn and research the matrix
K satisfying the condition of the convergence of e(t)
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to zero. The gain K must be chosen such that the V̇
must be negative. A structure of K is:

K = γCT (22)

We obtain the following expression:

V̇ (e) = eT (Dx(fx̂,u)(ci)−Gx̂,u,e − γCTC)e (23)

The previous expression becomes negative if η ≥ 1
and γ ≥ 0 .

4 Illustrative example

• Example 1 : Nonlinear system without linear
term

The numerical simulation example provided to verify
the effectiveness of the proposed approach is repre-
sented by ordinary differential equations. We consider
the chaotic system without linear term [18]:

ẋ(t) =

 ln(0.1 + exp(x2 − x1))
x1x3

0.2− x1x2


y(t) =

(
1 0 0
0 1 0

)
x(t)

(24)

with u(t) = 0.
We consider the initial conditions given by:
x0 = [−2 −1 −1]T , x̂0 = [−1 −0.5 −1.5]T

and e0 = x0 − x̂0 = [−1 − 0.5 0.5]T .
Two case studies are considered:
In the first, we assume that the proposed observer has
the initial estimation error of (4) equal at e0 = x0 −
x̂0 = [1 − 0.5 0.5]T and e0 = e01 = [1 −
0.5 0.2]T for the second case and we choose η = 1
and γ = 1.

4.0.1 Determination of βi parameters

Based on mean value theorem, simulated annealing
algorithm and equation (13). We note that the func-
tions X(βi) ' 0 (figure 3) at each moment of the
simulation for the βi (figure 2) parameters that evolve
between 0 and 1, such that i = 1, 2, 3.

Figure 3: Evolution of βi parameters

Figure 4: Evolution of X(βi)

4.0.2 Comparison between observer’s error for
e0, e01 and real error

As shown in fig.4, we notice that both observer’s er-
rors for e0 and real errors are confused, the observer’s
error for e01 converge to real errors. Which validates
the proposed development in the paper.

Figure 5: Evolution of observer’s error and real error

4.0.3 Comparison between two case e0 and e01
for proposed observer

Figure 5 show satisfactory of proposed observer per-
formance in dealing with a nonlinear system without
linear term.
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Figure 6: Evolution of the state x3

• Example 2 Nonlinear system with linear part
In this example, we will compare the pro-
posed observer with two recent nonlinear
observers design [15] and [16]. Consider a
single-link flexible robotic [19]: f(x, u) =

0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 3.33

x(t) +


0

21.6
0
0

u(t) +


0
0
0

−3.33sin(x3)

,

C =

 1 0 0 0
0 1 0 0
0 0 1 0

, u(t) = sin(t).

We consider the initial conditions given by:
x0 = [3 3 3 3]; x̂0 = [−1 − 2 −
0.5 − 1] and e0 = x0 − x̂0.

– Proposed observer

First case
We chosen that η = 1, γ = 1 and e0 = x0−x̂0 =
[2 1 2.5 2]T .
Second case
We chosen that η = 1, γ = 1 and e0 = e01 =
[2 1 2.5 2.5]T .

– [15] observer

We keep same condition considered in this paper,
for more details see [15].

– [16] observer

We consider the following matrices:

L =


0.5409 −0.6315 0.2392
−10.3506 21.2355 22.8782
1.8370 3.4444 10.6638
15.5282 8.49.67 62.7550

.

For more details see [16].

4.0.4 Determination of βi parameters

We note that the functions X(βi) ' 0 (figure
7) at each moment of simulation for βi (figure
6) parameters that evolve between 0 and 1, such
that i = 1, 2, 3, 4.

Figure 7: Evolution of βi parameters

Figure 8: Evolution of X(βi)

4.0.5 Comparison between evolution ob-
server’s error and real error

As shown in fig.8, we notice that both observer’s
error (for e0 and e01) follows the real errors.

Figure 9: Evolution of observer’s error and real error
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4.0.6 Comparison between [15], [16] and
proposed observer

Figure 9 show satisfactory of proposed observer
performance in dealing with a nonlinear system
with linear term.

Figure 10: Evolution of the state x4

5 Conclusion

A full order nonlinear observer was proposed for a
large class of nonlinear systems without unknown in-
puts. Mean value theorem and simulated annealing
algorithm are the tools to use for the design of this ob-
server. Numerical example is provided to show high
performances of the proposed approach and the large
class of nonlinear dynamical systems that are con-
cerned.
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