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Mineria 1, 08038 Barcelona

SPAIN
maria.isabel.garcia@upc.edu

Abstract: Increasing advances in materials engineering and cost reduction in their testing have lead to the study of
the stability of vibration of pipes conveying fluid an important problem to deal with. Currently, such analysis is
done either by means of simulation with costly specialized software or by making laboratory tests of the selected
material. One of the main issues with the last process is that if appears any trouble on the material selection, it is
necessary to restart all the process, and it is happening each time there is a mistake on the material selection. In
order to avoid such costly tests, a general mathematical description of the dynamic behavior of a clamped-pinned
pipeline conveying fluid is presented. The system stability has been studied by means of the eigenvalues of a
Hamiltonian linear system associated. From this analysis, characteristic expressions dependent on material con-
stants have been developed as inequalities, which ensure the stability of the material if it matches all expressions.
Finally, some specific materials are introduced as study cases to compare the mathematical description proposed
with the results obtained from specialized software as ANSYS, in order to validate the results.
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1 Introduction
The dynamics as well as the stability of pipes con-
veying fluid have been studied thoroughly in the last
decades see for example with various analysis tech-
niques for different end conditions and different mod-
els of the fluid-conveying pipeline (see for example
[8, 9, 10, 11, 13, 14, 17, 18, 19, 21]. These authors
analyze stability of pinned-pinned, clamped-clamped
and cantilevered fluid-conveying pipes, even in the
presence of a tensile force and a harmonically per-
turbed flow field.

It is well known that the dynamical behavior of
pipes of a finite length depends strongly on the type of
boundary. The type of supports considered (fixed, one
end fixed, etc.) and their position (horizontal, vertical)
must be distinguished.

The dynamics of the system can be described by
a partial differential equation [20, 23]

a4
∂4y

∂x4
+ a3

∂2y

∂x2
+ a2

∂2y

∂x∂t
+ a1

∂2y

∂t2
= 0 (1)

with boundary conditions at ends of a clamped-pinned
pipe. We find approximate solution of this equation
using Galerkin’s methode obtaining as a result a lin-
ear gyroscopic system possessing the properties of
linear Hamiltonian systems. Then, the eigenvalues
of this linear Hamiltonian system gives information

about stability: a stable Hamiltonian system is char-
acterized by pure imaginary eigenvalues. It is known
that the stability of a linear Hamiltonian system is not
asymptotic, nevertheless the study provides the nec-
essary stability condition for the original non-linear
system.

Different qualitative analysis of multiparameter
linear systems as well bifurcation theory of eigenval-
ues can be found in [4, 6, 7, 20].

The aim of the paper is by means of linear Hamil-
tonian system to model the clamped-pinned pipeline
problem and to analyze the structural stability of the
proposed model. This paper refers to a one end fixed
horizontal pipeline.

The structure of paper is as follows. Section 2
presents a mathematical statement of the problem, in-
cluding some preliminary concepts. Section 3 is de-
voted to analyze the stability of linearized system ob-
tained in subsection 2.1. Section 4 presents and a
simulation of the dynamic system using ANSYS for
some different materials used in real cases, such as
PVC, Polyethylene, Concrete, Steel and Aluminium,
in order to validate the results obtained analytically.
Finally, in Section 5, some conclusions are summa-
rized.
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2 Mathematical problem statement

The system under consideration is a straight, tight and
of finite length pipeline, passing through it a fluid. The
following assumptions are taken into account in the
analysis of the system:

i) Are ignored the effects of gravity, the coefficient
damping material, the shear strain and rotational
inertia

ii) The pipeline is considered horizontal

iii) The pipe is inextensible

iv) The lateral movement of y(x, t) is small, and
with large length wave compared with the diam-
eter of the pipe, so that theory Euler-Bernoulli is
applicable for the description of vibration bend-
ing of the pipe.

v) It ignores the velocity distribution in the cross
section of pipe.

Figure 1: Pipeline

The equation for a single span prestressed
pipeline where the fluid is transported is a function
of the distance x and time t and is based on the beam
theory, [1, 15]:

EI
∂4y

∂x4
+mp

∂2y

∂t2
= fint(x, t) (2)

where EI is the bending stiffness of the pipe (Nm2),

mp is the pipe mass per unit length (
kg

m
) and fint is an

inside force acting on the pipe.

The internal fluid flow is approximated as a plug
flow, so all points of the fluid have the same velocity
U relative to the pipe. This is a reasonable approx-
imation for a turbulent flow profile. Because of that
the inside force can be written as:

fint = −mf
d2y

dt2

∣∣∣∣
x=Ut

(3)

where mf is the fluid mass per unit length (
kg

m
) and

U is the fluid velocity (
m

s
).

Total acceleration can be decomposed into local
acceleration, Coriolis and centrifugal.

mf
d2y

dt2

∣∣∣∣
x=Ut

= mf

[
d

dt

(
∂y

∂t
+
∂y

∂x

dx

dt

)∣∣∣∣
x=Ut

]
=

= mf

[
d

dt

(
∂y

∂t
+ U

∂y

∂x

)∣∣∣∣
x=Ut

]
=

= mf

[
∂2y

∂t2
+ 2U

∂2y

∂x∂t
+ U2 ∂

2y

∂x2

]
(4)

The internal fluid causes an hydrostatic pressure
on the pipe wall.

T = −AiPi (5)

whereAi is the internal cross sectional area of the pipe
(measured in m2) and Pi is the hydrostatic pressure
inside the pipe (measured in Pa).

Finally if by considering that the total accelera-
tion is equal to the composition of local, coriolis and
centrifugal acceleration. The resulting equation de-
scribing the oscillations of the pipe is (1):

EI
∂4y

∂x4
+ (mfU

2 − T )
∂2y

∂x2
+ 2mfU

∂2y

∂x∂t
+

(mp +mf )
∂2y

∂t2
= 0

(6)

2.1 Linear approximation

To find approximate solution to equation (6), the
method used is the Galerkin’s method with two co-
ordinate function, that is to say, taking n = 2 with

respect
{

sin
iπ

L
x

}
i=1,2,...

basis defined over a open

set Ω ⊂ Rn and the inner product < f, g >=
∫ L
0 fg

the approximate solution is:

y(x, t) = ϕ1(t)sen
π

L
x+ ϕ2(t)sen

2π

L
x

Replacing the solution in the equation (6), it is
obtained that:
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EIϕ1(t)

(
π4

L4
sen

π

L
x+ ϕ2(t)

16π4

L4
sen

2π

L
x

)
+

(mfU
2 − T )·(

−ϕ1(t)
π2

L2
sen

π

L
x− ϕ2(t)

4π2

L2
sen

2π

L
x

)
+

2mfU

(
ϕ̇1(t)

π

L
cos

π

L
x+ ϕ̇2(t)

2π

L
cos

2π

L
x

)
+

(mp +mf )

(
ϕ̈1(t)sen

π

L
x+ ϕ̈2(t)sen

2π

L
x

)
= 0

(7)

Making the scalar product by sen
π

L
ξ and

sen
2π

L
ξ, respectively, it can be obtain:

L

2
(mp +mf )ϕ̈1(t)−

8

3
mfUϕ̇2(t)+

(
EI

π4

2L3
−

(mfU
2 − T )π2

2L

)
ϕ1(t) = 0

L

2
(mp +mf )q̈2(t)−

8

3
mfUϕ̇1(t)+

(
EI

8π4

L3
− (mfU

2 − T )
4π2

L2

)
ϕ2(t) = 0

(8)

The previous equation system can be written as
matrix form like:

Mϕ̈+Bϕ̇+ Cϕ = 0

that corresponds to lineal system:

ẍ+Gẋ+Kx = 0 (9)

with M−1/2ϕ = x (we write the variable as x if con-
fusion it is not possible),

G = M−1/2BM−1/2 =
16mf

L(mf +mp)

(
0 −1
1 0

)

K = M−1/2CM−1/2 =
2

L(mf +mp)

(
K1 0
0 K2

)
and

K1 = EI
π4

2L3
−

(mfU
2 − T )π2

2L

K2 = EI
8π4

L3
− (mfU

2 − T )
4π2

L2

Introducing the vector:(
x
y

)
=

(
x

ẋ+Gx/2

)
and calculating the derivatives of x and y it can be
found ẋ = y−Gx/2, ẏ = ẍ+Gẋ/2 and considering
that ẍ = −Gẋ − Kx and linearizing the system a
linear equation is obtained:(

ẋ
ẏ

)
=

(
−G/2 I2

G2/4−K −G/2

)(
x
y

)
= A

(
x
y

)
.

Notice that the matrix A is a Hamiltonian matrix
because QA is symmetrical, where Q is the antisym-
metrical matrix:

Q =

(
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)
.

So, the properties of linear Hamiltonian systems
can be used for analysis of the equation (9).

In order to simplify, the following parameters
considered

Λ =
EIπ4

L3

δ = (mfU
2 − T )

π2

L

β =
1

L(mf +mp)
(10)

and the matrices G and K are written as:

G = 16mfβ

(
0 −1
1 0

)

K = 2β

1

2
Λ− 1

2
δ 0

0 8Λ− 4

L
δ

 (11)

Therefore, matrix A is:

A =


0 a 1 0
−a 0 0 1
b 0 0 a
0 c −a 0

 (12)

where:
a = 8mfβ

b = −64m2
fβ

2 − βΛ + βδ

c = −64m2
fβ

2 − 16βΛ +
8

L
βδ.

(13)
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Removing the variable change it is known that:

a =
8mf

L(mf +mp)

b =
−64m2

f

L2(mf +mp)2
− EIπ4

L4(mf +mp)
+

(mfU
2 +AiPi)π

2

L2(mf +mp)

c =
−64m2

f

L2(mf +mp)2
− 16EIπ4

L4(mf +mp)
+

8(mfU
2 +AiPi)π

2

L3(mf +mp)
.

So, the pipeline has been modeled as a linear sys-
tem.

3 Bifurcation analysis

In this section the stability properties and bifurcation
analysis at the critical points of linear dynamic sys-
tems representing the pipeline are studied. A detailed
discussion of the effect of the stabilization in terms of
the bifurcation theory of eigenvalues is presented.

A stable hamiltonian system
(
ẋ
ẏ

)
= A ( x

y ) with
A as in (12), is characterized by eigenvalues lying on
the imaginary axis. The characteristic equation of the
matrix is the following biquadratic equation:

λ4 + (2a2 − b− c)λ2 + (a2 + c)(a2 + b) = 0 (14)

then, the eigenvalues are the roots of this equation that
in terms of the parameters Λ, δ, β are

λ = ±

√
λ1 ± β

√
λ2

2
(15)

with

λ1 = −256m2
fβ

2 − 17βΛ +

(
1 +

8

L

)
βδ

λ2 = 65536m4
fβ

2 + 8704m2
fβΛ−(

512 +
4096

L

)
m2

fβδ + 225Λ2+

(
1 +

64

L2
− 16

L

)
δ2 +

(
30− 240

L

)
Λδ

(16)

As it has been said, the system is stable in Lya-
punov’s sense, if the eigenvalues lie on the imaginary
axe and they are smple or semi-simple.

The data in the system are know only approxi-
mately, the matrix A in the system can be considered
as a family of matrices depending differentiably on
parameters a, b, c in a neighborhood of a fixed point
p0. Using this family will try to study the stability
border. The point p0, in which correspond only simple
pure imaginary eigenvalues, is always an interior point
of the stability domain, while the points on the bound-
ary of the stability domain are characterized by the
existence of multiple pure imaginary or zero eigenval-
ues, (when the other eigenvalues are simple and pure
imaginary).

Stability conditions requires that the roots ob-

tained in (15), λ2 =
λ1 ± β

√
λ2

2
are real and nega-

tive. Imposing these conditions the stability zone in
the parameter space can be determined.

It can be observed that the points p = (a, b, c)
such that

2a2 − b− c = 0
(a2 + c)(a2 + b) = 0

}
, (17)

the characteristic polynomial is λ4,
The set (17) corresponds to the union of param-

eterized curves ψ(t) = (t, 3t2,−t2) and ψ(t) =
(t,−t2, 3t2). In the intersection can be found the most
degenerate case, with respect the algebraic structure
of the system as it can be seen below.

If the parameter a has not zero (a 6= 0) the matrix
A under similarity relation preserving structure can be
reduced to the following normal Jordan form

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


A Jordan basis transforming the matrix in its reduced
form is

S1 =


1 0 b− a2 0
0 −a 0 −a(a2 + b)
0 b 0 c(a2 − b)
0 0 −a(b+ c) 0


if a2 + b 6= 0, and

S2 =


0 a 0 a(a2 + c)
1 0 c− a2 0
0 0 a(b+ c) 0
0 c 0 −b(a2 + c)


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if a2 + c 6= 0. (Observe that a2 + b and a2 + c can not
be zero simultaneously because a 6= 0).

If a = 0 the normal Jordan form of A is
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


In this case, a Jordan basis reducing the matrix A can
be

S =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


At the points (17) the system have singularities

of the type 04 and the more degenerate 0202 on the
stability boundary. In both cases eigenvalues lie in
imaginary axis but they are not semisimple.

Near of these singularities it is possible to find the
lest degenerate matrices, for example

A(t) =


0 t 1 0
−t 0 0 1
0 0 0 t
0 0 −t 0


where the eigenvalues are ±ti, and the stable case:

Ã =


0 −0.1 1 0

0.1 0 0 1
−0.0001 0 0 −0.1

0 −0.0001 0.1 0


where the eigenvalues (computed using Matlab) are
0 + 0.1100i, 0− 0.1100i, 0 + 0.0900i, 0− 0.0900i.

Following the analysis of eigenvalues, the eigen-
value 0 can be also obtained at the points (a, b, c) such
that

(a2 + c)(a2 + b) = 0
2a2 − b− c 6= 0

}
(18)

At the points (a, b,−a2) there are two possibili-
ties depending on b if it is equal or not to −a2

For b 6= −a2 the Jordan form is
0 1 0 0
0 0 0 0

0 0
√
−3a2 + b 0

0 0 0 −
√
−3a2 + b


For b = −a2 the Jordan form is

0 0 0 0
0 0 0 0
0 0 2ai 0
0 0 0 −2ai

 .

This case corresponds to a stability point because
of all eigenvalues are semisimple and lie in the imagi-
nary axe. It is important to note that in this case the re-
duced form is not structurally stable (a small perturba-
tion makes that the double eigenvalue bifurcates into
two distinct eigenvalues or into a double nonderoga-
tory eigenvalue of type 02.

By symmetry, at the points (a,−a2, c) there are
two cases depending on c be equal or not to −a2

For c 6= −a2 the Jordan form is
0 1 0 0
0 0 0 0

0 0
√
−3a2 + c 0

0 0 0 −
√
−3a2 + c


For c = −a2 the Jordan form coincides with the

case b = −a2.
Analogously, the case c = a2 is out of the stability

space
For the case b 6= −a2 and c 6= −a2 the system

have singularities of the type 02 in the boundary of
stability.

It remains to study the case that no eigenvalue is
zero

The roots of µ2 + (2a2− b− c)µ+ (a2 + c)(a2 +
b) = 0, are real and negative when

2a2 − b− c > 0
(a2 + c)(a2 + b) > 0
(2a2 − b− c)2 ≥ 4(a2 + c)(a2 + b)

 (19)

In the case (2a2−b−c)2 = 4(a2 +c)(a2 +b) the
eigenvalues are λ = ±i

√
2a2 − b− c = ±iω double.

Taking into account that rank (A − (±iω)I) = 3
the equivalent normal Jordan form is

iω 1 0 0
0 iω 0 0
0 0 −iω 1
0 0 0 −iω


At the points (a, b, c) with 2a2− b− c > 0, (a2 +

c)(a2+b) > 0 and (2a2−b−c)2 = 4(a2+c)(a2+b)
the system have singularities of the type ±iω2.

The last case

2a2 − b− c > 0
(a2 + c)(a2 + b) > 0
(2a2 − b− c)2 > 4(a2 + c)(a2 + b)

 (20)

determined the open set of stable points (a, b, c) re-
maining within the area bounded by the above singu-
larities.

WSEAS TRANSACTIONS on SYSTEMS B. Mediano-Valiente, M. I. Garcia-Planas

E-ISSN: 2224-2678 58 Volume 13, 2014



4 Application to analysis of the case
of study

Taking as a constant parameters L = 1000mm, I =
2, 185 · 106, Ai = 2500π due to the geometry of the

pipe and mf = 2, 5π · 10−6 Tn

mm
assuming the fluid

is water. It is also supposed that the study is applied
to the inside wall of the pipe so U at these points are
zero.

Therefore the values a, b y c are:

a =
2π · 10−8

(2, 5π · 10−6 +mp)

b =
−4 · 10−16π2

(2, 5π · 10−6 +mp)2
− 2, 185 · 10−6Eπ4

(2, 5π · 10−6 +mp)
+

2, 5 · 10−3Piπ
3

(2, 5π · 10−6 +mp)

c =
−4 · 10−16π2

(2, 5π · 10−6 +mp)2
− 34, 96 · 10−6Eπ4

(2, 5π · 10−6 +mp)
+

2 · 10−5Piπ
3

(2, 5π · 10−6 +mp)

That permit to obtain the following relation de-
pending only on mp, E and Pi:

16 · 10−13

2.5 · 10−6π +mp
+ 37.145 · 10−3π2E − 2.52πPi > 0

15.27752 · 10−4π2E2 + P 2
i − 17.48874 · 10−1πEPi > 0(

16 · 10−13

2.5 · 10−6π +mp
+ 37.145 · 10−3πE − 2.52Pi

)2

>

4π2(76.3877 · 10−6π2E2 − 87.4437 · 10−3πEPi+

5 · 10−2P 2
i )

(21)

This study is done to show the stability of pipes
with different materials assuming in all of them that
the fluid transported is water and causes a constant
pressure on its walls of 4 bar. The geometrical con-
ditions of the pipe are the inside diameter equal to 50
mm and the thickness of the pipe which is 6 mm. The
materials chosen are PVC, Polyethylene, Concrete,
Steel, and Aluminum.

The values of E and mp of the PVC pipe are:

E = 30, 581
N

mm2

mp = 2, 76 · 10−6 Tn

mm

Applying the inequalities (21) it is found that the
solution is unstable.

The values of E and mp of the PE pipe are:

E = 9, 174
N

mm2

mp = 1, 91 · 10−6 Tn

mm

Applying the inequalities (21) it is found that the
solution is unstable.

The values of E and mp of the Concrete pipe are:

E = 221, 203
N

mm2

mp = 4, 40 · 10−6 Tn

mm

Applying the inequalities (21) it is found that the
solution is stable.

The values of E and mp of the Steel pipe are:

E = 210000
N

mm2

mp = 15, 7 · 10−6 Tn

mm

Applying the inequalities (21) it is found that the
solution is stable.

The values of E and mp of the Aluminum pipe
are:

E = 70000
N

mm2

mp = 5, 4 · 10−6 Tn

mm

Applying the inequalities (21) it is found that the
solution is stable.

In fact, the eigenvalues can be computing by us-
ing Matlab software. The eigenvalues are presented in
Table 1 for the materials considered in the analysis.

Figure 2 shows the distribution of these values
in the complex plane, where it can be seen that ex-
ist some unstable values (the ones with positive real
part in Table 1).

It is worth to say that the pipe case considering
PVC is the furthest away from stability zone.
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Material Eigenvalues
PVC −48.042 48.042 −98.936i 98.936i

PE −54.549 54.549 −56.341i 56.341i

Concrete −0.362i 0.362i −2.479i 2.479i

Steel −1.377i 1.377i −5.51i 5.51i

Aluminium −1.059i 1.059i −4.241i −4.241

Table 1: Eigenvalues obtained for different materials
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Figure 2: Representation of the eigenvalues obtained
for different materials

4.1 Simulation for some specific materials

In this section the equation (6) is solved and the struc-
tural stabilities found in the previous section with the
stability of the solution is compared. Moreover, vibra-
tion characteristics of a pipe conveying fluid is calcu-
lated using a Finite Element package called ANSYS.

To determinate the vibration characteristics
modal analysis have been used, with this analysis you
find natural frequencies and mode shapes which are
important parameters in the design of a structure for
dynamic studies.

The simulation of the problem varies depending
on the boundary conditions. In this case the boundary
conditions considered are both sides of the pipe are
rigid support. So, the boundary conditions at ends of
a clamped-pinned pipe are given as:

y(0, t) = 0, y(L, t) = 0

∂2y(0, t)

∂t
= 0, EI

∂2y(L, t)

∂x2
= 0 (22)

where Krs is the stiffness of the rotational spring at
the right end.

The following table lists the values of natural fre-
quency and displacement in both cases:

Remark that the frequencies obtained solving lin-
ear Hamiltonian system does not coincides with fre-
quencies that can be obtained solving the second order

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0
50

100
150

200
250

300
350

400
450

500
0

0.5

1

1.5

x 10-4

Figure 3: Representation for different values of E

Figure 4: Boundary conditions

differential equation (6) with initial conditions (23),
in fact with Hamiltonian equation is studied struc-
tural stability giving information about the qualitative
changes that can be in the behavior of systems when
the systems are known only approximately.

In order to compare the stability of different types
of structures with the previous section, there has been
realized a buckling analysis that gives the following
table of frequencies:

It is observed that the values are practically the
same as in the study of the effect on stability boundary
conditions is minimal.

In the following pictures it is shown the perfor-

First shape Second shape
f dx f dx

Concrete 0.033927 0.023548 0.033927 0.023548
PE 4.916 29.75 4.916 29.75

PVC 18.205 29.171 18.207 29.171
Steel 424.28 8.767 424.256 8.767

Aluminium 417.58 14.957 417.598 14.957

Table 2: Natural frequencies and displacement ob-
tained from Ansys software analysis
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First shape Second shape
f dx f dx

Concrete 0.219495 0.025123 0.219495 0.025124
PE 0.010997 0.0253 0.010997 0.025305

PVC 0.033822 0.025258 0.033822 0.025264
Steel 219.042 0.025152 219.042 0.025153

Aluminium 74.477 0.025184 74.477 0.025185

Table 3: Frequencies and displacement obtained from
Ansys software after a buckling analysis

mance of the first and the second shapes and the natu-
ral frequencies of them.

Figure 5: First shape of PVC

As seen in picture 5, 6, 7, 8 and 9 the lowest nat-
ural frequency is the Concrete pipe (0, 033927 Hz)
and the biggest one is the Steel pipe (424, 28 Hz) but
the greater displacement of x axis is the Polyethy-
lene pipe. This combination result in instability of
Polyethylene and PVC pipe whereas in Concrete Steel
and Aluminium pipes are stable.

As seen in picture 10, 11, 12, 13 and 14 the lowest
natural frequency is the concrete pipe (0,033927 Hz)
and the biggest one is the Steel pipe (424, 256 Hz) but
the greater displacement of x axis is the PVC pipe.
This combination result in instability of Polyethylene
and PVC pipe whereas in Concrete, Steel and Alu-
minium pipes are stable.

Figure 6: First shape of Polyethylene

Figure 7: First shape of Concrete

Figure 8: First shape of Steel
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Figure 9: First shape of Aluminium

Figure 10: Second shape of PVC

Figure 11: Second shape of Polyethylene

Figure 12: Second shape of Concrete

Figure 13: Second shape of Steel

Figure 14: Second shape of Aluminium
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5 Conclusion

In this paper a non-linear dynamic model for a pipe
conveying fluid have presented. Moreover, a lin-
earization method have been done by approximation
of the non-linear system to the linear gyroscopic sys-
tem. From the linear system, the stability of the pipe is
analyzed in a general form by means of the first Lya-
punov’s methods. The stability generalization of the
system have been done obtaining the stability limits
as function of the material parameters.

In this paper the calculations and the simulation
of typical materials for a pipe used in public works
have been compared to verify the results obtained.

It have been shown that the dynamics and stabil-
ity of pipes conveying fluid not only depends on the
boundary conditions but it is also strongly important
the material of the pipe and the pressure produced by
the fluid.
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