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Abstract: - This paper aims to improve the performance of original particle swarm optimization (PSO) so that 

the consequent method can be more robust and statistically sound for global optimization. A variation of PSO 

called the orthogonal permutation particle swarm optimization (OPPSO) is presented. An orthogonal permutation 

strategy, based on the orthogonal experimental design, is developed as a metabolic mechanism to enhance the 

diversity of the whole population, where the energetic offspring generated from the superior group will replace 

the inferior individuals. In addition, a switching learning strategy is introduced to exploit the particles’ historical 

experience and drive individuals more efficiently. Seven state-of-the-art PSO variants were adopted for 

comparison on fifteen benchmark functions. Experimental results and statistical analyses demonstrate a 

significant improvement of the proposed algorithm. 
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1 Introduction 
Global optimization problem extensively exists in 

real-world optimization fields, such as economic and 

engineering areas [1-3]. Since real-world problems 

become increasingly complex, superior techniques are 

always needed. 

Particle swarm optimization (PSO), which was 

first proposed by Kennedy and Eberhart in 1995[4, 5], 

is a population-based stochastic optimization 

algorithm. The algorithm is inspired by the social 

choreography of birds flocking and fish schooling. 

PSO has been shown to be efficient and effective 

technique that it has been successfully applied to 

many practical areas, such as nonlinear constraint 

problems [6] and system design [7]. These 

optimization problems can be uniformly formulated 

as D-dimensional minimization problem as follows: 

 1 2minimize ( ),  [ , , , ]Df x x x x x   (1) 

Generally speaking, the advantages of PSO in 

addressing with global optimization problems include 

high convergence speed and easy implementation. 

However, it may easily be premature when solving 

complex problems. To improve the performance of 

PSO, many state-of-the-art PSO variants have been 

proposed [6, 8-16]. Qiao et al. [6] redefined personal 

best and global best to enhance the convergence rate 

of PSO. Jatmiko et al. [8] developed an modified PSO 

which follows a local gradient of the chemical 

concentration within a plume. Sabat et al. [11] 

integrated comprehensive learning strategy with 

hyper spherical manipulation to improve its 

exploration. A cooperatively coevolutionary 

algorithm based on the divide-and-conquer strategy 

has been incorporated into PSO [14], hence proposing 

two cooperative PSO models which offer remarkable 

results over the original PSO. Li and Yao [12] 

combined the cooperative coevolutionary model with 

random grouping and adaptive weighting schemes to 

develop a cooperatively coevolving PSO, which is 

promising on solving high-dimensional problem. 

What’s more, Li and Yao adopted Cauchy and 

Gaussian distributions to sample new points and 

adaptively select the coevolving subcomponent sizes 

[13]. Liang et al. developed a comprehensive learning 

PSO (CLSPO) [9]. In CLSPO, instead of learning 

from the global and personal best information, a 

particle employs all the particles’ best position to 

renew its velocity. CLPSO significantly enhances the 

performance of the original PSO on multimodal 

problems.  

Orthogonal experimental design (OED) [17] is an 

efficient method to find out the best combination 
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levels of different factor without complete tests. More 

recently, several attempts try to incorporate the idea of 

OED into PSO, thus proposing orthogonal PSO 

(OPSO) [18] and orthogonal learning PSO (OLPSO) 

[19]. OPSO employs an “intelligent move mechanism” 

(IMM) to adjust a velocity for each particle, i.e., the 

cognitive learning and social learning components are 

operated by OED to determine the next move of 

particle. In OLPSO, the traditional PSO learning 

mechanism is replaced by an orthogonal learning 

strategy. The learning exemplar that constructed by 

OED is utilized to guide the exploration and 

exploitation of population. However, existing OED-

based PSOs so depend on the operation of OED that 

increase the computation time of algorithm running. 

More exactly, OED operation generates a potential 

solution at the least cost of 2log ( 1)
2 1

D    function 

evaluations (FEs). However, there is definite 

correlation between the performance of OED and PSO 

which also relies on computational time to evolve. 

Therefore, the motivation of this paper is to design a 

novel OED-based mechanism, which can fulfill 

OED’s potential and maintain the convergence 

efficiency of PSO, to scale up PSO’s performance for 

solving global optimization problems. 
In this paper, the orthogonal permutation particle 

swarm optimizer (OPPSO) is proposed to improve 

PSO’s performance on global optimization problems. 

An OED permutation strategy (OPS) is developed to 

update the relatively inferior individual and enhance 

the population’s vigorousness. Instead of frequently 

running of the OED operation, the proposed method 

uses OED as a metabolic mechanism to take place of 

the losers with more superior ones. The losers with 

inferior fitness values are identified through a 

stochastic tournament. OPPSO also has a novel built-

in learning paradigm, termed as switching learning 

strategy (SLS), which can prevent the solutions form 

falling into the local minimum and boost the global 

convergence ability. 

The rest of the paper is organized as follows. 

Section 2 introduces and develops the OPPSO. 

Section 3 presents experimental setup, comparison 

results and discussion. Finally, concluding remarks 

are given in Section 4.  
 

2. The proposed method 
OPPSO integrates several novel strategies to enhance 

the search abilities and convergence speed of PSO. 

First, a brief description of OED [17]. Second, with 

the objective of improving diversity of the whole 

population, we adopt OED as metabolic mechanism to 

generate new position for the replacement of inferior 

particles, named as OED permutation in this paper. 

This strategy makes use of the advantages of 

orthogonal experiment to encourage the swarm to get 

rid of worse individuals while avoid extra 

consumption. Lastly, instead of using the traditional 

learning scheme, a switching learning strategy is 

proposed to accelerate the global convergence whilst 

prevent premature of algorithm.  

 

2.1 OED technique 
OED is an efficient method in identifying the best 

combination levels of different factor within 

reasonable experiments. We suppose an experiment 

that involves three factors which directly affect the 

outcomes, and each factor has three possible numbers. 

In order to seek the best combination of levels for a 

predefined objective function, we can use trail-and-

error method to try every feasible combination, i.e., 

there are 33 27 combinations of experimental 

designs. For an experiment with N factors and Q levels, 

the number of combinations is NQ . Apparently, when 

the number of factors and levels are high, it is 

impossible to test all the combinations, which 

necessitates an efficient method. OED was introduced 

for this purpose[17]. It is capable of drawing a small 

but representative sample with the intention of 

reaching a dependable decision. 

We let ( )N

ML Q  represent an orthogonal array 

(OA) for N  factors and Q  levels, where 

2log ( 1)
2

N
M

    is the number of combinations of 

levels to be tested. There are M  rows in OA. For 

convenience, we let ,( ) [ ]N

M i j M NL Q a   in which 

the jth factor in the ith combination has level ,i ja  and 

 , 1,2, ,i ja Q . An orthogonal arrays 4

9 (3 )L  is 

given by (2).  

 
4

9

1 1 1 1

1 2 2 2

1 3 3 3

2 1 2 3

(3 ) 2 2 3 1

2 3 1 2

3 1 3 2

3 2 1 3

3 3 2 1

L

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2) 

Note that 4

9 (3 )L  is the well-balanced subset of 

the complete factorial combinations. In an OA, each 

column represents one factor and the values in the 

columns stand for the levels of the factor. The number 

of columns also limits the maximum factors of a 

problem. For example, the OA 4

9 (3 )L  
can be applied 
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to a problem with at most four factors. 

Table 1 presents the processes for construction of 

a two levels OA for N  factors [19]. There are basic 

columns and non-basic columns in OA, the basic 

column number is 2log ( )u M  and the non-basic 

column number is 2( 1 log ( ))M M  . 

 

Table 1 Procedure for OA construction 

Algorithm 1 - Construction of OA 

Initialization 

for 1:i M , do 

for 1:k u , do 

12kj   

 [ ][ ] ( 1) / 2 mod 2u kOA i j a      

if 1j   then 

for 1: ( 1)s j  ,  do 

 [ ][ ] [ ][ ] [ ][ ] mod2OA i j s OA i s OA i j    

and for s  

end if 

end for k  

end for i  

Output OA  

 

After evaluation of the M  combinations, factor 

analysis (FA) is used to estimate the main effect [20]. 

FA is capable of identifying better level for each factor 

through evaluation of individual factors on objective 

function.  

Let mf  denotes the function value of the mth 

combination, where 1, ,m M . Define the main 

effect of the factor n with level q as nqS  where 

1, ,n N  and 1,2q  . 1,2q   is given as 

follows: 

 
1

M

nq m mm
S f z


   (3) 

where 1mz   if the mth experimental test is with the 

level q  of the factor n , otherwise 0mz  . For a 

minimization optimization, the level 1 of factor n  

makes a better contribution to the objective function 

than level 2 of factor n  does while 1 2n nS S , and 

vice versa. If 1 2n nS S , levels 1 and 2 make the same 

contribution. With the best levels of each factor are 

determined, a new combination with better 

contribution can be easily obtained. The new one 

potentially approaches the best one in the 2N
 

combinations.  

 

2.2 OED permutation 

We employ OED method to establish a particle 

permutation strategy which acts as an incentive 

mechanism. The main motivation for OED 

permutation strategy (OPS) is based on the principle 

that PSO is a cooperatively search algorithm, where 

the communication and interaction among particles 

guide the whole population to evolve.  

There are a superior set and an inferior set that 

with k  particles each (both excluding the gbest ) in 

OPS. OPS combines information of gbest  and 

ipbest  of the selected particle i  from the superior 

set to produce a promising particle. Each of the D  

dimensions is regarded as a factor and hence there are 

D  factors with two levels per factor. With an OA of 

D  factors, we build an OA 1(2 )M

ML   with M  

rows and 1M   columns according to Table 1, 

where 2log ( 1)
2

D
M

    and 1 2D M D   . In our 

approach, we regard each dimension as one factor. 

The detailed steps of OPS are presented in Table 2. 
 

Table 2 Process of OED permutation strategy 

Algorithm 2 - OED permutation strategy 

if  permutation criterion  met then  

Step 1: 
 ( 1 ),

, ( );

superior set pbest rand ps

pbest randk ps

   

  
, 

 ( 1 ),

, ( );

inferior set pbest rand ps

pbest randk ps

   

  
 

Step 2: Execute tournament selection on superior set 

to select the superior particle ip ; 

Step 3: Generate M  solutions jX (1 j M  ) on 

basis of OA (2 )D

ML  which is generated by 

 1Algorithm ; 

Step 4: Evaluate jX (1 j M  ) and record the best 

solution 
bX ; 

Step 5: Compute the main effect nqS , where 

1, ,n D  and 1,2q  ; 

Step 6: Determine the best level for each factor and 

form the potential solution pX ; Compare 

( )bf X  with ( )pf X  and output the best 

solution 
OAX ; 

Step 7: Execute tournament selection for inferior set 

to select the worse particle wp ; 

Step 8: Verify that ( )OAf X  is superior to 

( ( ))wFitness pbest p , if it is true, use OAX  to 

take place of wp , otherwise go to step 10 ; 

Step 9: Update ( )wpbest p  and gbest ; 

Step 10: Initialize  permutation criterion . 

end if 
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In Table 2,  permutation criterion  is used to 

judge whether the OPS is executed or not. To ensure 

the population benefiting from OED operation and to 

minimize the computational time, OPS will not be 

initiated until the gbest  is stagnant for a certain 

number of generations called the trigger gap T . The 

appropriate selection of T  value is given in Section 

2.5. 

 

2.3 Switching learning strategy 
In our SLS, the velocity formula is modified as  

 
1( 1) ( ) ( )

        ( ( ) ( )),  if 

d d d

i i i

d d

f i

V t w t V t c rand

pbest t X t rand Pr

    

  
 (4-a) 

 
2( 1) [ ( )

        ( ( ) ( ))],  if 

d d d

i i i

d d

i

V t V t c rand

gbest t X t rand Pr

    

  
 (4-b) 

where 
d

fpbest  represents the corresponding 

dimension of the fth particle’s personal best which can 

be any particle’s pbest  including its own, Pr  

represents the learning rate of particle i  that decides 

the ith particle’s flying trajectory, and   is 

constriction factor. 

Prior to the calculation of velocity, a random 

number is generated to decide which equation is 

adopted for the ith particle in the tth generation. 

Formula (4-a) is similar to comprehensive learning 

strategy [9], and (4-b) is proposed in this paper that 

aims at improving population’s global convergence 

ability by making use of the gbest  information. In 

(10-b), particle only learns from gbest  experience 

with the adjustment of  . 

Hsieh et al. [10] proposed a search range sharing 

(SRS) strategy to explore other particles’ better 

solutions. Inspired by this work, we introduced a SRS-

like operation to the (4-b) in OPPSO, and hence we 

formed the global attraction strategy (GAS). In GAS, 

when a particle is updated by (4-b), the next step is to 

perturb it and place it in the boundary between 

 min max,G G , i.e., restrict a particle to exploit the range 

that near the gbest . To improve GAS’s robustness 

and increase the probability of finding potential 

solutions, we set G  as 

 0.6 (1 )G rand gbest     (5) 

Therefore, a particle searches the space near global 

best to enhance exploitation ability. 

 

2.4 OPPSO 
The detailed procedure of OPPSO is presented in 

Table 3. As described above, the original PSO is 

modified by incorporating the OPS and the SLS.  

Let R  denotes the number of execution of OED. 

The time complexity of OPPSO is 

( 1)ps ps G M R      function evaluations, 

where ss  is swarm size, G  is the number of total 

generations. The complexity of original PSO is 

ps ps G   function evaluations. Thus, the time 

complexity of OPPSO does not obviously increase 

when comparing with PSO. 

 

Table 3 Procedure of OPPSO algorithm 

Algorithm 3 - OPPSO algorithm 

Initialize swarm size ss , T , Pr , w , and w   

Initialize 
min max[ , ]V V  and 

min max[ , ]X X  

Randomly initialize positions of all particles

1 2( , , , )ssX X X X  with size of ss  

Randomly initialize the velocity 1 2( , , , )ssV V V V   

Evaluate fitness values 0

1( ( ), , ( ))ssF f X f X  

Set
1 2( , , , )pspbest X X X , and set gbest   

for 1:t MaxGeneration , do 

for 1:i ss , do 

if rand Pr  then compute (4-a) 

( 1) ( ) ( 1)i i iX t X t V t     

else compute (4-b) 

( 1) ( ) ( 1)i i iX t X t V t     

Compute 
minG  and

maxG using Eq.(5) 

Perturb ( 1)iX t   between 
minG  and 

maxG   

end if 

Update ( 1)ipbest t   and ( 1)gbest t   

if ( 1)! ( )gbest t gbest t   then 0mark   

else 1mark mark   end if 

if mark T  then Executive  2Algorithm  end if 

if termination  not met then 1i i   end if 

end for i   

if termination  not met then 1t t   end if 

end for t  

Output results 

 

2.5 Adjusting T  and Pr  
The trigger gap T  and learning rate Pr  need to be 

predefined. In order to study the impact of T  and 

Pr , five benchmark functions are employed to carry 

out empirical studies. For convenience, the 

correlations between T  and Pr  are ignored, thus 

we set one as a fixed number when the other one is 

investigated. The OPPSO is independently run 25 

times on each of these functions and the average 

values are shown as follows. First, for 0.1Pr  , we 

tested different values of T  from 5 to 60 generations, 

and the results are plotted in Fig. 1. The curves 

indicate that OPPSO with a value of T  around 35 

offers better results. Second, we set 35T    and 

study the suitable rate Pr , as shown in Fig. 2. We 
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observe that the better results for the functions are 

obtained when Pr  is about 0.07. Therefore, the 

combination of 35T   and 0.07Pr   are adopted 

in the next experiments. 

 

 
Fig. 1 OPPSO’s performance with various T  values 

when 0.1Pr    

 
 

 
Fig. 2 OPPSO’s performance with various Pr  

values when 35T   

 

3. Experimental study and discussion 

 

3.1 Benchmark functions 
To test OPPSO’s performance for various problems, 

fifteen benchmark functions including unimodal, 

multimodal, shifted and rotated problems [9, 21], are 

employed in our experiments. These functions, as 

listed in Table 4, are widely used for testing global 

optimization algorithms. From 
1f  to 

9f  are 

shifted unimodal and multimodal functions, and 
10f  

to 
17f  are the rotated problems of 

2f  to
9f . The 

rotated functions are constructed by left multiplying 

an orthogonal matrix [9]. 
 

Table 4 Test functions 

Name Benchmark function 

Sphere 2

1 1
( )

D

ii
f x x


  

Rosenbrock 
1 2 2 2

2 11
( ) (100( ) ( 1) )

D

i i ii
f x x x x




     

Ackley 

21
3 1

1

1

( ) 20exp( 0.2 ) 20

exp( cos(2 ))

D

iD i

D

iD i

f x x e

x





    






 

Griewank 
2

4 1 1
( ) cos( ) 1

4000

DD
i i

i i

x x
f x

i 
     

Rastrigin 2

5 1
( ) ( 10cos(2 ) 10)

D

i ii
f x x x


    

Weierstrass 

   max

6 1 0

max

0

( ) cos 2 0.5

( cos(2 *0.5)),  

0.5,  3,  max 20

D k k k

ii k

k k k

k

f x a b x

D a b

a b k





 



 



  

 

  

Schwefel 
7 1 1
( )

DD

i ii i
f x x x

 
    

Quadric 
2

8 1 1
( ) ( )

D i

ji j
f x x

 
   

Rotated f2 

1 2 2 2

9 11
( ) (100( ) ( 1) ),  

 where *

D

i i ii
f y y y y

y M x




   



  

Rotated f3 

21
10 1

1

1

( ) 20exp( 0.2 )

exp( cos(2 ))

20 ,   where *

D

iD i

D

iD i

f y y

y

e y M x







   

  



  

Rotated f4 

2

11 1 1
( ) cos( )

4000

1,   where *

DD
i i

i i

y y
f y

i

y M x

 
 

 

 
 

Rotated f5 
2

12 1
( ) ( 10cos(2 ) 10),

  where *

D

i ii
f y y y

y M x




  



  

Rotated f6 
 

20

13 1 0

20

0

2 3
( ) 0.5 cos

0.5

(0.5 cos(2 3 *0.5)),  

where *

k
D k

i k
i

k k

k

f y
y

D

y M x





 



  
       





 

  

Rotated f7 
14 1 1

( ) ,   

where *

DD

i ii i
f y y y

y M x

 
 



 
 

Rotated f8 
2

15 1 1
( ) ( ) ,   where *

D i

ji j
f x y y M x

 
    

 

3.2 Algorithms for comparison and parameter 

settings 
In order to verify the improvement of OPPSO, night 

state-of-the-art PSO variants are adopted to compare 

with OPPSO. For OPPSO, the parameters are 

0.9 0.4w  , 0.7298  , 1 1.4945c   and 

2 2.0478c  , thus 2 1.4945c   [22], 3k  . The 

algorithms adopted for comparison are shown in Table 

5. The parameter settings of the benchmark algorithms 

are set as default values as recommended in the 
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corresponding references. 

For fair comparison, experiments are carried out 

using the same swarm size of 30 and the maximum 

FEs is set to be 51.5 10 . The dimension of test 

functions is set to be 30. Each algorithm is conducted 

30 independent runs for each test function, and all the 

process data and final results are recorded for 

comparison.  
 

Table 5 PSO variants for comparison 

Algorithm 
Reference 

Abbr. Full Name 

CPSO Cooperative based PSO [14] 

CLPSO Comprehensive learning PSO [9] 

FIPS Fully informed particle swarm [23] 

OPSO Orthogonal PSO [18] 

GPSO Global topology based PSO [22] 

PSO-cf PSO with constriction factor [22] 

UPSO Unified PSO [24] 

OPPSO The proposed method ― 

 

3.3 Experimental results and discussion 

 

3.3.1 Convergence characteristics and mean result 

The convergence curves of different PSOs on 

representative functions in terms of mean best fitness 

over 150,000 FEs for 30 trials are presented in Fig. 3 

- Fig. 6. From the figures, we observe that OPPSO 

offers better convergence rate for on most benchmark 

functions. For these functions, the curves of OPPSO 

decreased rapidly during the iterations, especially in 

the early period. However, CLPSO and CPSO provide 

faster convergence speed for function 5 followed by 

OPPSO. Overall, the proposed method has a strong 

and fast search ability for various problems, thus 

outperforms the compared algorithms on most 

functions in terms convergence rate.  

 

 
Fig. 3 Convergence curves on f1 

 

 
Fig. 4 Convergence curves on f5 

 

 

 
Fig. 5 Convergence curves on f9 

 

 

 
Fig. 6 Convergence curves on f13 

 

Table 6 presents the mean fitness values of the final 

solutions. The best means among the eight algorithms 

are highlighted in bold. From the results it can be 
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observed that the mean result of OPPSO performed 

better than the other PSO methods for the functions 1, 

3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15, i.e., 13 out of 

the 15 functions. What is more, OPPSO significantly 

enhanced the performance on functions 6, 7, 8, 11, 14 

and 15. CLPSO and CPSO outperform OPPSO on 

functions 5, which indicate their superior performance 

in solving multimodal functions. It can be observed 

that OPPSO outperforms the compared algorithms on 

most of the benchmark functions. 
 

Table 6 Optimization results 

 f1 f2 f3 f4 

CLPSO 7.54E-16 2.10E+01 9.61E-09 5.54E-11 

CPSO 1.11E-07 1.54E+01 9.57E-05 2.81E-02 

FIPS 5.68E-12 2.45E+01 4.99E-07 7.61E-05 

OPSO 4.98E-15 1.20E+01 1.18E-07 4.59E-16 

GPSO 1.07E-28 2.98E+01 5.78E-14 2.25E-02 

PSO-cf 2.63E-86 1.85E+01 1.61E+00 3.17E-02 

UPSO 1.25E-85 1.62E+01 6.21E-02 6.57E-04 

OPPSO 0.00E+00 1.55E+01 3.08E-15 0.00E+00 

 f5 f6 f7 f8 

CLPSO 6.44E-11 8.61E-10 1.85E-10 1.34E+03 

CPSO 1.01E-07 4.80E-03 8.29E-05 1.35E+03 

FIPS 7.87E+01 1.85E-01 7.91E-08 3.55E+02 

OPSO 1.74E+01 1.61E-04 8.01E-09 4.84E-14 

GPSO 3.92E+01 1.05E-01 4.79E-19 2.43E+01 

PSO-cf 6.22E+01 5.09E+00 3.72E-29 2.24E-09 

UPSO 6.58E+01 9.74E+00 7.15E-50 5.66E-04 

OPPSO 1.29E+00 0.00E+00 1.58E-110 1.11E-66 

 f9 f10 f11 f12 

CLPSO 2.76E+01 5.81E-05 4.58E-06 4.25E+01 

CPSO 3.36E+01 2.33E+00 3.64E-02 1.03E+02 

FIPS 2.56E+01 6.82E-07 2.13E-03 1.39E+02 

OPSO 8.41E+01 2.53E-05 2.24E-08 2.00E+01 

GPSO 5.17E+01 1.35E+00 1.45E-02 7.82E+01 

PSO-cf 3.22E+01 2.23E+00 1.38E-02 8.08E+01 

UPSO 2.21E+01 2.06E-01 3.86E-03 7.22E+01 

OPPSO 1.44E+01 3.32E-15 0.00E+00 2.00E+01 

 f13 f14 f15  

CLPSO 1.92E+00 1.04E-03 1.99E+03  

CPSO 1.37E+01 8.16E+00 1.58E+03  

FIPS 9.47E-01 7.67E-07 2.76E+02  

OPSO 1.79E+00 4.31E-05 6.81E-03  

GPSO 8.27E+00 2.57E-01 3.24E+01  

PSO-cf 1.10E+01 3.76E-01 1.67E-08  

UPSO 1.82E+01 6.52E-02 1.95E-03  

OPPSO 2.28E-01 6.27E-137 3.37E-80  

 

3.3.2 Solution distribution and statistical test 

The final solutions obtained by each algorithm over 

30 trials on 15 tested functions are used as samples to 

justify the performance of all approaches. Fig. 7 - Fig. 

10 present the box plots of the optimization results for 

several representative functions. From the figures, it 

can be observed that for most of the functions, the 

final solutions of OPPSO converged to the fine and 

narrow areas, which means OPPSO has robust 

performance for different problems and is capable of 

generating solutions with superior quality when 

comparing with the other algorithms.  

 
 

 
Fig. 7 Boxplot for the test results on f1 

 
 

 
Fig. 8 Boxplot for the test results on f5 
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Fig. 9 Boxplot for the test results on f9 

 
 

 
Fig. 10 Boxplot for the test results on f13 

 

In order to measure the statistical significance of 

results between OPPSO and the other algorithms, a set 

of one-tailed t-tests with 58 degrees of freedom at a 

0.05 level of significance were carried out. In Table 7, 

the t-test results regarding A versus B are denoted as 

‘s+’, ‘+’, ‘=’, ‘-’, ‘s-’ when A is significantly better 

than, insignificantly better than, equal to, 

insignificantly worse than, and significantly worse 

than B respectively. For all the statistical analysis, the 

level of significance is set to be 0.05  .  

From Table 7, OPPSO outperforms the other 

algorithms on functions 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 

13, 14 and 15. The exception is function 5, where 

OPPSO was significantly worse than the first 

algorithms. For function 12, OPPSO obtained the 

same best results as OPSO, and they both are much 

better than the other variants. Although OPPSO 

numerically performed worse than OPSO on 

functions 2, the t-test results indicate that the 

difference is not statistically significant. 

 

Table 7 t-test results for comparing OPPSO with 

other algorithms 

 

OPPSO vs. 

 CLPSO CPSO FIPS OPSO GPSO PSO-cf UPSO 

f1 s+ s+ s+ s+ s+ s+ s+ 

f2 s+ s+ s+ - s+ s+ s+ 

f3 s+ s+ s+ s+ s+ s+ s+ 

f4 s+ s+ s+ s+ s+ s+ s+ 

f5 s- s- s+ s+ s+ s+ s+ 

f6 s+ s+ s+ s+ s+ s+ s+ 

f7 s+ s+ s+ s+ s+ s+ s+ 

f8 s+ s+ s+ s+ s+ s+ s+ 

f9 s+ s+ s+ s+ s+ s+ s+ 

f10 s+ s+ s+ s+ s+ s+ s+ 

f11 s+ s+ s+ s+ s+ s+ s+ 

f12 s+ s+ s+ = s+ s+ s+ 

f13 s+ s+ s+ s+ s+ s+ s+ 

f14 s+ s+ s+ s+ s+ s+ s+ 

f15 s+ s+ s+ s+ s+ s+ s+ 

 

The final results of fitness values are employed to 

conduct Wilcoxon test to justify whether the proposed 

algorithm is significantly different from the 

comparing algorithms. The results are shown in Table 

8. R+ and R- in Table 8 denote the sum of ranks for the 

functions where OPPSO outperforms and underperforms 

the compared algorithm. It can be observed that 

OPPSO significantly performs better than the other 

algorithms during the experiment.  

 

Table 8 Results of Wilcoxon test 

OPPSO vs. R+ R- p-value 

CLPSO 111 9 0.003772 

CPSO 105 15 0.010594 

FIPS 120 0 0.000655 

OPSO 106.5 13.5 0.011008 

GPSO 120 0 0.000655 

PSO-cf 120 0 0.000655 

UPSO 120 0 0.000655 

 

3.3.3 Discussion 

Based on the experiments and comparisons, it can be 

concluded that the proposed strategies, OED 

permutation and switching learning strategy, greatly 

improve the performance of PSO and makes OPPSO 

surpass the compared PSO variants in terms of 

solution accuracy and convergence rate. OPPSO 

provides better adaptability for unimodal, multimodal, 

shifted and rotated problems due to the introduction of 

OPS and SLS.  

In view of PSO’s dimension-wise updating rule 

and OED’s divide-and-conquer characteristic, we 

introduced OED as a population improvement 

mechanism to monitor the evolution and provide the 
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swarm with better individuals. In addition, the 

proposed SLS offers OPPSO better abilities of 

exploration and exploitation which guide the particle 

to search the promising region found by gbest, 

resulting in better convergence speed while maintain 

efficient exploration. 
 

4. Conclusion 
In this paper, we present an orthogonal permutation 

particle swarm optimizer that aiming at strengthening 

the performance of PSO on global optimization 

problems, such as unimodal, multimodal and rotated 

problems. The proposed OED permutation and 

switching learning strategies significantly improve the 

entire performance of the population and help 

individuals find the potential solutions easily. OPPSO 

makes full use of the particles’ historical experience to 

enhance exploration and exploitation, e.g., 

substituting the superior offspring for the inferior 

particles and exploiting the promising space near the 

gbest.  

Seven state-of-the-art PSO variants are used for 

comparisons, and comprehensive experiments have 

been carried out on 15 benchmark functions, including 

unimodal, multimodal and rotated problems. The 

experimental results verify that OPPSO statistically 

performs better than the other algorithms on most of 

the problems in terms of solution quality and 

convergence speed.  

Inspired by the efficient integration of OED in this 

work, we are aiming to study more intelligent 

strategies to improve the efficiency of information 

utilization for the population. Besides, applying the 

OPPSO to more real-world problems is also our 

interest.  
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