
An Object-Oriented Analysis and Design Model to Implement
Controllers for Quadrotor UAVs by Specializing MDA’s Features with

Hybrid Automata and Real-Time UML

DIEM P.G., HIEN N.V., KHANH N.P.
Department of Aeronautical and Space Engineering, School of Transportation Engineering

Hanoi University of Science and Technology
No1, Dai Co Viet, Hai Ba Trung, Hanoi

VIETNAM
{diem.phamgia, hien.ngovan, khanh.nguyenphu}@hust.edu.vn http://www.hust.edu.vn

Abstract: - This paper presents a new approach which is based on the specialization of the Model-Driven
Architecture (MDA) with the Real-Time Unified Modeling Language (RT UML) and hybrid automata to
effectively analyze, design and implement controllers for quadrotor UAVs (Unmanned Aerial Vehicles). It also
allows the designed elements to be customizable and re-usable in the development of new control applications
of different quadrotor UAVs. The paper shows out step-by-step the quadrotor UAV dynamic model-to-be used,
and the specialization of MDA’s features such as the Computation Independent Model (CIM) with use-cases
and hybrid automata, the Platform Independent Model (PIM) carried out by using RT UML, and its Platform
Specific Model (PSM) implemented by sub-system paradigms and object-oriented mechanisms to entirely
perform the development lifecycle of quadrotor UAV controllers. The object transformation rules are also
introduced and applied to convert the detailed control design model of PIM into the implementation model of
PSM using open-source platforms in order to quickly simulate and realize the control performance and
operational functionalities of system. Based on this approach, a trajectory-tracking controller of a mini
quadrotor UAV is completely developed and successfully taken on trial flights.

Key-Words: - Quadrotor UAV control, Autonomous flying robots, Object-oriented analysis and design, Hybrid
automata, Real-Time UML, MDA.

1 Introduction
The last decade has seen many successfully
developed platforms of micro UAVs, especially the
quadrotor UAV. Quadrotor UAVs are capable of
Vertical Take Off and Landing (VTOL), hovering
and horizontal flight, so they are ideal platforms for
various civilian and military operations such as
intelligence, surveillance, and reconnaissance, target
acquisition, traffic monitoring, resource exploration,
power line monitoring, forest fire warning, as well
as search and rescue [4], [7], [17]. They can be more
easily handled in turbulences such as wind and are
easier to design using a compact airframe. The
research on autonomous control for quadrotor
UAVs is very active now. A key characteristic of
quadrotor UAVs is that the 6 Degrees of Freedom
(DoF) dynamic model in the airframe is controlled
by tuning the rotational speed of four motors placed
symmetrically around that center at a radial
distance.
There are actually many quadrotor UAV control
applications, which have used soft computing
techniques combined with different control methods
to optimally solve the control of quadrotor UAV

dynamics. For example, Xun Gong et al. [28]
presented a Backstepping Sliding Mode attitude
control algorithm incorporating an adaptive
estimator for the attitude stability control design of a
quadrotor UAV with respect to uncertain parameters
and external disturbances. Yu Yali et al. [31]
introduced the whole control system of a quadrotor
aerial robot, which was divided into three
interconnected parts such as the attitude subsystem,
vertical subsystem and position subsystem; then
nonlinear control strategy of them was applied such
as State-Dependent Riccati Equation (SDRE) and
Backstepping. An implementation of autonomous
visual tracking and landing for a low-cost quadrotor
was shown in [30] that adopted computer vision
algorithms with classical Proportional-Integral-
Derivative (PID) controller. Different controllers
based on Lyapunov theory, PID, Linear Quadratic
(LQ), Backstepping and Sliding-Mode techniques
were developed to the control design of a miniature
quadrotor UAV, and were compared for attitude
control that could be found in [25].
However, we find that these guidance and control
models are based on structural procedures and

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 483 Issue 10, Volume 12, October 2013

implementations. Thus, they could be difficult to
customize and re-use the designed control elements
for implementing controllers of different quadrotor
UAVs into various software and hardware platforms
in order to suitably realize them. Furthermore,
modeling, identification, stability analysis,
stabilization and control of general industrial
systems are challenging and fascinating tasks in
modern systems and control theory as well as in
academic and industrial applications [23]. In fact,
the immersion in an industrial control context makes
that the designers and programmers must take into
account costs and existing standards for analyzing,
designing and implementing effectively these
systems. The customization and reutilization are
factors to be associated with the production of a new
application in order to reduce its costs, resources
and time development.
In addition, the Object Management Group (OMG)
has standardized the Model-Driven Architecture
(MDA) [18], which has been started with the well-
known and long established idea to separate the
specification of system operations from the details
of the way that system uses the capabilities of its
platform. MDA provides an approach for, and
enables tools to be provided for: specifying a system
independently of the platform that supports it;
specifying platforms; choosing a particular platform
for the system; and transforming the system
specification into one for a particular platform.
Starting from the above considerations, we have
developed an object-oriented model, which is
mainly based on the specialization of MDA’s
features with RT UML [5], [14], [20] and Hybrid
Automata (HA)) [3], [8] in order to effectively
perform an executable process for analyzing,
designing, implementing and realizing
systematically controllers of the most standard
quadrotor UAVs platforms. This paper is depicted
by the following main sections:

- Section 2 presents the overview of quadrotor
UAV dynamic model and general control structure,
which permit us to gather the requirements analysis
of a quadrotor UAV controller;

- Section 3 indicates the MDA specialization to
obtain an executable object-oriented process model
to develop controllers of quadrotor UAVs;

- Section 4 brings out the development models
and their model transformations of this process in
detail; they include the Computation Independent
Model (CIM), the Platform Independent Model
(PIM), the Platform Specific Model (PSM), and the
object transformation rules to entirely perform the
development lifecycle of quadrotor UAV
controllers.

Finally, this approach is applied to develop a
trajectory-tracking control system, which permits a
mini quadrotor UAV to reach and follow a
geometric reference path in the Cartesian space
starting from a given initial configuration.

2 Quadrotor UAV Dynamic Model
and Control Structure

2.1 Quadrotor UAV configuration
Present quadrotor UAVs have four fixed-pitch
propellers in cross configuration as shown in Fig. 1.
There are four rotors with fixed angles which
represent four input forces {T1, T2, T3, T4} that are
basically the thrust generated by the propellers’
angular speeds {ω1, ω2, ω3, ω4}.

Fig. 1. Quadrotor UAV model.

The following explains the flight principles of a
quadrotor UAV. The motors in Fig. 1 are numbered
as No.1 at the front motor and then clockwise to
No.4. Lift is obtained from the total force by all
motors. When the rotors net thrust equals the
aircraft’s gravity force the quadrotor UAV hovers in
the air. Further increasing the net thrust accelerates
the aircraft up in the air. The moment around x-axis
is generated by the rotational speed difference
between No.2 and No.4 motors, so as the attitude
angle around x-axis of the airframe changes, the
thrust is converted into the component force on y-
direction. Using the same principle, by using the
rotational speed difference between No.1 and No.3
motors, it is possible to control the x-direction of the
airframe. Moreover, the No.1 and No.3 rotors are
rotating clockwise while the No.2 and No.4 rotors
are rotating in the opposite direction (counter-
clockwise). The rotation around z-axis of the
airframe is controlled by counterbalancing the
moment.

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 484 Issue 10, Volume 12, October 2013

2.2 Modelling Quadrotor UAV Dynamics
for Control
Modeling the rigid body dynamics aims at finding
the differential equations that relate system outputs

(position and orientation) to its inputs (force and
torque vectors). From the large field of guidance,
navigation and control of aerial vehicles [4], [7],
[15], [17], [25], [29], the 6 DoF dynamic model of
quadrotor UAVs in body coordinate frame can be
written in the following form:

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐼𝑥𝑥𝜙̈ = 𝜃̇𝜓̇�𝐼𝑦𝑦 − 𝐼𝑧𝑧� + 𝐽𝑟𝜃̇Ω𝑟 + 𝑙(−𝑇2 + 𝑇4) − ℎ�∑ 𝐻𝑦𝑖4

𝑖=1 � + (−1)𝑖+1 ∑ 𝑅𝑚𝑥𝑖
4
𝑖=1

𝐼𝑦𝑦𝜃̈ = 𝜙̇𝜓̇(𝐼𝑧𝑧 − 𝐼𝑥𝑥) + 𝐽𝑟𝜙̇Ω𝑟 + 𝑙(𝑇1 − 𝑇3)− ℎ�∑ 𝐻𝑥𝑖4
𝑖=1 � + (−1)𝑖+1 ∑ 𝑅𝑚𝑦𝑖

4
𝑖=1

𝐼𝑧𝑧𝜓̈ = 𝜃̇𝜙̇�𝐼𝑥𝑥 − 𝐼𝑦𝑦� + 𝐽𝑟Ω̇𝑟 + (−1)𝑖 ∑ 𝑄𝑖4
𝑖=1 + 𝑙(𝐻𝑥2 − 𝐻𝑥4) + 𝑙(𝐻𝑦3 − 𝐻𝑦1)

𝑚𝑧̈ = 𝑚𝑔 − (𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙)∑ 𝑇𝑖4
𝑖=1

𝑚𝑥̈ = (𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)∑ 𝑇𝑖4
𝑖=1 − ∑ 𝐻𝑥𝑖4

𝑖=1 − 1
2
𝐶𝑥𝐴𝑐𝜌𝑥̇|𝑥̇|

𝑚𝑦̈ = (−𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)∑ 𝑇𝑖4
𝑖=1 − ∑ 𝐻𝑦𝑖4

𝑖=1 − 1
2
𝐶𝑦𝐴𝑐𝜌𝑦̇|𝑦̇|

 (1)

Here: Ixx, yy, zz are inertia moments; φ, θ, ψ are
respectively Roll, Pitch, Yaw angles; Jr presents the
rotor inertia; H is a set of hub forces; Rm is a set of
rolling moments; Ti presents the thrust force (i = 1,
2, 3, 4); Ωr is the overall residual propeller angular
speed; Ac is fuselage area; C is the propulsion group
cost factor; ρ is the air density; Qi presents the drag
moment; h and l are respectively vertical distance
and horizontal distance: propeller center to Center
Of Gravity (CoG); x, y, z define the position in body
coordinate frame.
To develop controllers of quadrotor UAVs, it is
advisable to simplify the model in order to comply
with the real-time constraints of the embedded
control loop. In our model, we proposed that hub
forces and rolling moments are neglected and thrust
and drag coefficients are supposed constant. The
system can be rewritten in state-space form 𝑋̇ =
𝑓(𝑋,𝑈) with U inputs vector and X state vector
chosen as follows:

𝑈 = [𝑢1,𝑢2,𝑢3,𝑢4]𝑇 (2)
Here: ui is the control input of motor; i = 1, 2, 3, 4
(motor number).
 𝑋 = �𝜙, 𝜙̇,𝜃, 𝜃̇,𝜓, 𝜓̇, 𝑥, 𝑥,̇ 𝑦,𝑦,̇ 𝑧, 𝑧̇�𝑇 (3)
The detailed dynamics for control of quadrotor
UAVs could be seen in [4], [7], [25].

2.3 Control Structure of Quadrotor UAVs
Various components that make up the autonomy
architecture of quadrotor UAVs are the guidance
system, navigation system, and control system. Fig.
2 shows out a functional block diagram, which
captures how these sub-systems interact. Here, the
guidance system is responsible for producing the
desired trajectory for the vehicle to follow; the
navigation system addresses the task of determining
the current state of the quadrotor UAV. The
controllers are responsible for providing the

corrective signals and events to enable the quadrotor
UAV to follow a desired trajectory. This is achieved
by receiving the desired state of the quadrotor UAV
from the guidance system, and its current state
combining the altitude, position, attitude and
velocity from the navigation system.

Fig. 2. Block diagram of guidance, navigation and
control for quadrotor UAVs.

Environmental disturbances such as winds are
extremely complex and highly dynamic, and make
the control of a quadrotor UAV highly challenging
tasks. These disturbances appear and must be taken
into account for a quadrotor UAV in order to
traverse such environments.
In addition, control systems of actual machines or
actuators generally take account of models with
discrete events and continuous behaviors that are
called Hybrid Dynamic Systems (HDS) [3], [8],
[10]. These behaviors are distributed on different
operating modes, which are associated with
processes related to the interactivity with users such
as the designer, supervisor, maintainer etc.
Furthermore, controlled systems do not always have
the same behavior because they are associated with
validity hypotheses to check at any moment; the
security requirement forces to envisage events, and
behaviors different from nominal behaviors. The
behaviors of such systems are thus complex; their
behaviors can be modeled by HA [8], [10] for

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 485 Issue 10, Volume 12, October 2013

modeling completely requirements in the
development lifecycle of these systems.
From the described above quadrotor UAV dynamic
model (1) or (2) and (3) together with its general
control structure and characteristics of HDS, we find
that controllers of quadrotor UAVs are HDS whose
dynamic behaviors can be modeled by HA. These
control system have the continuous/discrete parts
and their interactions such as the motional
components, e.g. horizontal transferring, VTOL,
rotation, roll, pitch and yaw and external interacting
events from the guidance and navigation system,
and environmental disturbances. In our approach,
we are interested in developing the trajectory-
tracking controller of quadrotor UAVs, so we can
use this hybrid dynamic model to find out the
control algorithms with a specific guidance law such
as the Line-Of-Sight (LOS) guidance presented in
[2], [27], [29].

3 MDA Process to Develop Controllers
of Quadrotor UAVs

3.1 Overview of MDA specification
MDA is an approach to system development, which
increases the power of models in that work. The
three main goals of MDA are portability,
interoperability and reusability through architectural
separation of concerns. Here, the portability allows
the same solution to be realized on new or multiple
platforms; the interoperability creates systems that
can easily integrate and communicate with other
systems and uses a variety of resource applications;
the reusability builds solutions that can be reused in
many applications in different contexts [18].
MDA contains three models (Fig. 3) to separate the
specification of the operation of a system from the
details of the way that system uses the capabilities
of its platform.

Fig. 3. Models in MDA.

The CIM is referred to as a domain model; it
presents the system at the highest level of
abstraction. The goal of the CIM is to model the

problem entirely in business terms and without
getting into the solution or how it might be
implemented.
The PIM is used by software architects and
designers to describe the software solution at a high
level, independent of the solution’s deployment
platform. This high-level definition of the solution
can then be translated into multiple platform-
specific models.
The PSM specifies a combination between the
details found in the PIM with the details
representing how a solution can be implemented on
a platform.
Furthermore, MDA also supports for model
transformations. The model transformation is the
process of converting one model to another model
of the same system. The input to the transformation
is the marked PIM and the mapping. The result is
the PSM and the record of transformation.

3.2 Executable MDA Process for Developing
Controllers of Quadrotor UAVs
Starting from MDA specifications and
characteristics of the quadrotor UAV dynamic
model (1), (2) and (3), we define here an executable
process (Fig. 4), which permits us to quickly
analyze, design, implement controllers of quadrotor
UAVs modeled by HA and to re-use them for new
control applications of different quadrotor UAVs.

Fig. 4. Executable MDA process for developing
quadrotor UAV controllers.

This process includes the following main activities
and artifacts:

- Object collaborations with UML [19], which
are based on the use case model, interaction
diagrams and state machines, are used to present the
structural and behavioral analysis of a quadrotor
UAV. In CIM, HA are used to describe
mathematical behaviors [8], i.e. the dynamic model
of quadrotor UAV including Situations, Continuous

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 486 Issue 10, Volume 12, October 2013

State Variables, Events, Transitions, Global
Continuous Behavior and Invariants of its HA for
this system.

- Real-Time UML (RT UML) models indicate
the PIM, which permit us to cover the design phase
of the developed system. These models are
described by using the ‘capsules, ports, and
protocols’ concept that we adapted by specializing a
set of capsules in precise behaviors.

- Object-Oriented (OO) simulation models firstly
are used to introduce the PSM of this system in
order to verify and validate the identified control
design model into the specific software platforms
that permits us to theoretically evaluate the control
performance and functionalities, and to easily
identify control design elements of this system
before we decide to realize and deploy it. Then OO
realization models are developed in the PSM in
order to carry out its implementation phase with
specific platforms, which can support object-
oriented programming languages such as C++, Java,
Ada, etc., and upload the implemented control
program to compatible microcontrollers.
There are transformation rules, which allow the
identified CIM to be transformed into a PIM, and to
convert the PIM into a PSM. It also contains
transformation-tracks, which permit the models to

track their transitions. This process will be gone into
detail in next sections for describing entirely the
development of a quadrotor UAV controller.

4 Implementing MDA Process to
Develop Controllers of Quadrotor
UAVs

4.1 CIM for a Quadrotor UAV Controller

4.1.1 Capturing the requirements
To capture the general requirements in the object-
oriented paradigm, we present here a model, which
consists of the abstract classes by using UML
stereotypes and class diagram [19] in order to
describe the main functional components for
quadrotor UAVs (Fig. 5). In UML models, a
stereotype is a model element that is an extensibility
mechanism, which we can use to identify the
purpose of the model element to which we apply it.
For example, the <<Guide>> stereotype can be
applied to the abstract Guidance System’s class in
order to indicate that it is an instruction function for
the quadrotor UAV.

Fig. 5. A UML class diagram for presenting the main functional components for quadrotor UAVs.

The Guidance System’s class is responsible for
giving the desired trajectory for a quadrotor UAV to
follow. This responsibility is completed by taking
the desired waypoints defining pre-mission with the
possible inclusion of external environmental
disturbances issued from the Air Environment’s
class; then it generates a path for this quadrotor
UAV to follow in order to reach each successive

waypoint. The Navigation System’s class addresses
the task of determining the current state (i. e., the
combination of the current altitude, position, attitude
and velocity) of the quadrotor UAV. It has to
provide a best estimation of the current state of this
system, regardless of what sensor information is
available. The Controllers’ class is responsible for
providing the corrective signals and events to enable

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 487 Issue 10, Volume 12, October 2013

the quadrotor UAV to follow a desired trajectory.
This is achieved by receiving the desired state from
the Guidance System’s class, and the current state of
the quadrotor UAV from the navigation system’s
class. This Controllers’ class then calculates and
applies the correcting forces, through use of
actuators combining the four motors with their
propellers on the quadrotor UAV, to minimize the
difference between desired and current states. The
Actuators’ class is used to represent the forces
applied to the quadrotor UAV.

4.1.2 Building the CIM for a quadrotor UAV
controller
Main steps to construct the CIM for a quadrotor
UAV controller are the followings:

i) Identifying complex behaviors of the quadrotor
UAV being developed by using the use case model.
The use case represents a set of functions or
behaviors being provided by the developed system
to actors with its stereotype relationships of include,
extend and generalization [18], [19]. From the
above dynamic model (2) (3), general control
structure (Fig. 2) and main functional components
(Fig. 5) for quadrotor UAVs, we present the main
use case model of controllers as shown in Fig. 6.
Here, MDS is the Measurement and Display System
combined with the guidance and navigation system;
AES is the Air Environment System including
disturbances generated by the weather. In this step,
it is necessary to provide industrial control
constraints, e.g. the maximum tilted angle, velocity,
altitude and other safe flying modes of the
developed Quadrotor UAV in order to ensure the
operational safety of this system.

Fig. 6. Main use case model for a quadrotor UAV.

We find that the “Drive” use case is oriented
towards control modes; its complex behaviors must
be specified by using sequence diagrams and local
state machine in the RT UML convention [5], [14],
[20]. The local state machine of this use case will be
used to build HA for control. An example of
specified dynamic behaviors is shown in Fig. 7 and
Fig. 8 for this use case. In our model, we use the
above quadrotor UAV dynamic model (2), (3) and
Line-Of-Sight (LOS) guidance [2], [27], [29]
because we are interested in the trajectory-tracking
control.

Fig. 7. A scenario of trajectory-tracking control of
the “Drive” use case.

Fig. 8. Local state machine for the “Drive” use case.

ii) Defining an implemented functional block
diagram, which permits us to model
transformational activities of the quadrotor UAV
with events coming from outside; because UML
lacks the constructs for modeling internal
continuous behaviors for each state on the state
machine diagram. Starting from the considered

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 488 Issue 10, Volume 12, October 2013

dynamic model of quadrotor UAVs, the general
control structure, the industrial control constraints,
and the identified use case model with LOS

guidance, we propose an implemented functional
diagram for the quadrotor UAV controller as shown
in Fig. 9.

Fig. 9. An implemented functional block diagram for the quadrotor UAV controller

Here, Desired trajectory and Take-off/Landing
actions respectively give the desired position (xd, yd)
altitude (zd) to the position and altitude controller;
ΣTd is the desired overall thrust; the position
controller receives the quadrotor UAV’s position (x,
y) and desired thrust, it outputs desired roll (φd) and
pitch (θd) while desired yaw (Ψd) comes directly
from the guidance system; the attitude controller
gives then the desired motor speeds (ωd1, ωd2, ωd3,
ωd4) to the motor controllers; τφ,θ,Ψ and ΣT are
respectively the overall torque and thrust acting on
the quadrotor UAV. In our current model, the
Integral Backstepping (IB) technique [2], [25], [28],
[31] combined with Kalman filtering algorithm [22]
are used for attitude, altitude and position control,
and PID regulators are applied to the block of motor
speed control.

iii) Building a global state machine in order to
entirely bring out the global dynamic behavior of
the quadrotor UAV being developed from all local
identified state machines. The specific rules which
permit us to discover this global state machine can
be found in [9]. The detailed global state machine,
which corresponds to the above use case model and
implemented functional diagram, is shown in Fig.
10.

iv) Specifying the HA to carry out the control
evolution of the quadrotor UAV controller. This
evolution is modelled and implemented by the
specialization the HA’s formalism and its realization
hypotheses introduced in [8], [9]. In addition, HA
has only one global continuous behavior at time

given, contains the invariant notation to verify
hypotheses on the continuous state, is derived from
an automaton to also model the dynamic behavior of
general interactive software systems, and can be
verified with proof tools such as HyTech,
CheckMate, HSolver [3] and OpenModelica [21].
So, it is suitable to use HA to model and implement
the control evolution of a quadrotor UAV controller.
A HA of the Quadrotor UAV controller is defined
by data of

HUAV = (Q, X, ∑, A, Inv, F, qo, xo) (4)
Where:

- Q is a set of states describing flying modes of
HUAV, e.g. the motion in horizontal translations,
hovering, VTOL, rotations, roll, pitch, and yaw,
which are combined with the local state machine
oriented towards control modes (Fig. 8) in
permutations. Q can be called situations of the
Quadrotor UAV controller; qo is the initial situation.

- X presents the continuous state space of HUAV,
X⊂ℜn, xo is the initial value of this space, e.g.
continuous components of the Quadrotor UAV
controller.

- ∑ is a finite set of events, e.g. external
interacting events from the guidance and navigation
system, and environmental disturbances.

- A is a set of transitions defined by (q, Guard, σ,
Jump, q’) and represented by an arc between
situations, here: q∈Q, q’∈Q; Guard is a subset of
the state space in which the continuous state must
be, so that the transition can be crossed; Jump

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 489 Issue 10, Volume 12, October 2013

represents the continuous state transformation
during the change of situation; it is expressed by a
state value function, whose result is affected like
initial value of the continuous state in the new
situation; σ∈∑ presents the event being associated
in the transition; this association does not imply to
give an input or output direction to the event.

- Inv is an application, which associates a subset
of the state space in each situation; it is called the

invariant of the situation, in which the continuous
state must remain, when the situation is q, the
continuous state must verify x∈inv(q).

- F is defined by using the 6DoF dynamic model
of Quadrotor UAV specified from (2), (3), and the
implemented functional block diagram (Fig. 9); the
evolution of continuous state is occurred when the
situation is activated. F will be named the
continuous fluid.

Fig. 10. Global state machine of the quadrotor UAV controller being developed.

4.2 PIM for a Quadrotor UAV Controller

4.2.1 Using RT UML

We find that the direct transformation of CIM to the
implementation environment must be supplemented
to carry out a quadrotor UAV controller and its re-
use in the new application development phase. For
example, the above identified CIM are not well
adapted to visualize, model interconnection types
between control objects or sub-systems. In the
detailed design phase of this system, we transform
the identified CIM into PIM, which is based on the
use case approach [18], and uses the RT UML
version [5], [14], [20].
RT UML has its own the graphical notation set to
model structures and behaviors of real-time systems.
A capsule stereotype is used to represent an active
object. A capsule can communicate with other
capsules through ports, which are boundary objects,

and a protocol associated with the port. RT UML
also defines a connector which connects ports to
provide transmission facility for supporting a
particular protocol. RT UML is more oriented
towards the actual implementation and physical
design. But RT UML lacks artifacts for modeling
system requirement analysis [11]; that's why we
launched the requirement modeling process in the
above identified CIM for the quadrotor UAV
controller in our approach.
Hence, we can use this CIM and the timing
modeling convention of RT UML to completely
depict the structures and behaviors of complex
control systems such as the quadrotor UAV
controller.

4.2.2 Constructing the PIM for a quadrotor UAV
controller
From the approach introduced in [8], [26], we
developed the 5 main control capsules of PIM,
which take part in the HA realization of the

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 490 Issue 10, Volume 12, October 2013

quadrotor UAV being developed: the continuous
part’s capsule, discrete part’s capsule, internal
interface’s capsule, external interface’s capsule and
Instantaneous Global Continuous Behavior (IGCB’s
capsule). Fig. 11 shows out the communication
pattern of these control capsules by using the RT
UML’s collaboration diagram.

- The discrete part’s capsule contains a set of
situations Q and of transitions A of HA of the
Quadrotor UAV being developed. This capsule also
contains a state machine to make its own evolution
with other capsules such as the internal interface’s
capsule and the IGCB’s capsule and to treat the
default internal event.

- The continuous part’s capsule is related to
transformational activities of an Quadrotor UAV
controller. The sequential evolution of continuous
elements is carried out by specifying the
synchronization pattern described in [5] with two
sub-capsules called RendezVous and Semaphore.
The continuous part’s capsule also has a state

machine to make its own evolution with other
capsules such as the IGCB’s capsule and the internal
interface’s capsule.

- The IGCB’s capsule contains concrete
continuous fluids of the developed control system at
time given just as F in its HA. Each fluid
corresponds to a situation in this HA. The IGCB’s
capsule has a state machine to make its own
evolution with other capsules such as the discrete
part’s capsule and the external interface’s capsule.
In this evolution, the IGCB’s capsule exchanges
periodic signals with other capsules such as the
discrete part’s capsule, continuous part’s capsule
and external interface’s capsule.

- The internal interface’s capsule can generate
internal events of a control system so that the
discrete part’s capsule can make its own evolution
by these events. It has a state machine to make its
own evolution with other capsules such as the
continuous part’s capsule and the discrete part’s
capsule.

Fig. 11. Communication pattern of main control capsules for Quadrotor UAV controllers.

- The external interface’s capsule is an intermediary,
which receives or sends episodic events and
periodic signals between the developed system and
their interacted systems. The external interface’s
capsule has a state machine to make its own
evolution with other capsules such as the discrete
part’s capsule and the IGCB’s capsule.
In addition, the re-use is very important for
developing the industrial control system; because it
makes it possible to reduce the time and

development cost. We find different re-use view in
the development phase of this system as follows:

- The re-use view based on the virtual
mechanism of objects, classes, or class hierarch;

- The re-use view based on design components.
For example, the generic state machine of main
control capsule, industrial operational constraints
can be specialized to develop different control
applications of Quadrotor UAVs.
The specialization, which makes it possible to re-use
elements of the capsule collaboration of a general

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 491 Issue 10, Volume 12, October 2013

industrial control system, can be seen in [9], [10],
[12]. The validation and verification of this
collaboration and its traceability with the above
identified use case model have been corrected by
using the software tool of IBM Rational Rose
RealTime [13].

4.3 PIM for a Quadrotor UAV Controller

4.3.1 Model transformation
MDA’s features supports also for model
transformation. The input to the transformation is
the marked PIM and the mapping; then the result
will be the PSM and the record of transformation.
Transformations can use different mixtures of
manual and automatic transformation. Fig. 12 shows
out the general model transformation by types. A
model is prepared using platform independent types
specified in a model. The types may be part of
software framework. The elements in the PIM are
subtypes of the platform independent types. A
particular platform is chosen. A specification of a
transformation for this platform is available or is
prepared. This transformation specification is in
terms of a mapping between the platform
independent types and the platform dependent types.
The elements in the PSM are subtypes of the
platform specific types [18].

Fig 12. Model transformation by types.

To carry out control systems such as the quadrotor
UAV, the PSM is firstly implemented to the
simulation model transformed from the above
identified PIM. It is important to perform simulation
models instead of carrying out experiments on real
systems because of expensive and dangerous
experiments, investigated systems doing not yet

exist, incompatible time scale of the dynamics of the
system with the experimenter, inaccessible
variables, etc. [24]. The simulation results also
permits us to evaluate theoretically the control
performance and functionalities, and to easily
optimize control design elements of this system
before we decide to realize and deploy it. Then, the
PIM with the modifying control elements optimized
in the PSM of simulation model is adapted to obtain
the new updated PIM for realization models of
quadrotor UAV that is called PIM*. Finally, this
PIM* is converted into new PSMs by using different
specific platforms, which are based on the object-
oriented Implementation Development Environment
(IDE) in order to realize completely the quadrotor
UAV controller with compatible microcontrollers.
Fig. 13 brings out a sketch of this model
transformation.

Fig. 13. A sketch of the model transformation for
controllers of quadrotor UAVs.

4.3.2 Implementing the PSM for quadrotor UAV
simulation model
The ‘sub-system’ paradigms, which are supported
by software tools such as LabView-VI, MatLab-
Simulink, OpenModelica, etc. are used to perform
the control simulation model of quadrotor UAVs;
because they are easily adapted from the object-
oriented design elements of PIM. In this study, we
use OpenModelica [21] software tool to simulate the
control performance of quadrotor UAVs, because it
is tightly based on object-oriented mechanisms and
properties of Modelica language such as the
abstraction, encapsulation, modularity and heritance
[24].
In addition, Modelica is primarily used to quickly
solve the continuous and discrete time dynamics of
complex systems based on solving differential and
algebraic equations. So we applied the following
rules to convert the defined elements of PIM into
PSM with OpenModelica models in order to
completely simulate the controllers of quadrotor
UAVs:

- Each capsule is implemented by a class or a

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 492 Issue 10, Volume 12, October 2013

block model;
- Each sub-capsule is carried out by a component

class or block model; the super-capsule corresponds
to the composite class or block model;

- Messages are implemented by the “functions”
of classes or block models;

- Interfaces are realized by the set of inputs and
outputs of a block model;

- Passive classes such as continuous elements or
Instantaneous Global Continuous Behaviors (IGCB)
are mapped to the “expressions” terms;

- State machines of the main capsules are
implemented by state graphs.

4.3.3 Performing the PSM for quadrotor UAV
realization model
In the PSM with realization models, we have to
firstly update the PIM with the modifying control
elements optimized in the previous PSM of
simulation model, for example, the PID law and its
parameters in our case study. Then to carry out
quadrotor UAV with microcontrollers, we convert
this updated PIM into PSMs by using different
specific platforms, which support object-oriented
programming languages such as C++, Java, Ada,
etc. in order to completely realize its design model.
This conversion of updated PIM into PSMs can be
carried out by using object-oriented modeling
software tools, which support the round-trip
engineering such as IBM Rational Rose RealTime,
Telelogic Rhapsody [13]. That makes us to entirely
obtain a generated skeleton control implementation
model, which consists of the main capsules, sub-
capsules, ports, protocols and connectors in their
defined interactions.
In addition, the HA of quadrotor UAVs can be
automatically implemented in the object-oriented
convention by using the “state pattern” described in
[6]. This pattern allows an object to alter its
behavior when its internal state changes; the object
will appear to change its class. Fig. 14 shows out the
implementation structure of this pattern, which is
specified to carry out the HA of quadrotor UAVs.

Fig. 14. Implementation structure for the HA of
quadrotor UAVs.

Furthermore, the implementation pattern of traffic
packet based intrusion detection [16] can be
employed to increase detection performances for the
invariant (Inv) in the HA of quadrotor UAVs.

5. An Application
Following the above described approach, we
completely developed a trajectory-tracking
controller of an autonomous mini quadrotor UAV,
which must reach and follow a geometric reference
path in the Cartesian space starting from a given
initial configuration. Some of its characteristics are
resumed in Table 1.

Table 1. Characteristics of the developed quadrotor

UAV
Parameter Value

Distance from propeller
center to CoG

550 mm

Weight 8000 grams
Payload 4500 grams
Autonomy 20 minutes
Power Li-Po battery 22.2 V,

20000 mAh
Maximum motor speed 10000 rpm
Maximum Take-off speed 3 m/s
Maximum horizontal
translation speed

5 m/s

Maximum altitude 500 m
Maximum radius of action 4900 m

We present here some of control simulation results
performed by OpenModelica software tool that
supposed this quadrotor UAV receiving a driving
event of Taking-off with a desired altitude of 1m of
the guidance system; the transient control response
in z-direction is shown as Fig. 15.

Fig. 15. Transient control response in z-direction

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 493 Issue 10, Volume 12, October 2013

Fig 16 brings out the transient control response in y-
direction, when the quadrotor UAV received a
driving event of Transferring with a desired
distance of 1m in y-direction from the current
position.

Fig. 16. Transient control response in y-direction

All of obtained simulation results permit us to
theoretically evaluate the control performance of
this system within the control criteria such as the
admissible timing response, transition and static
errors. From that point, we can decide to choose the
designed control elements in the realization phase of
this system.
We have used then Arduino platform [1] to quickly
deploy the realization model of the controller.
Because Arduino is an open-source electronics
prototyping platform based on flexible, easy-to-use
hardware and software; it intended for designers and
programmers interested in creating interactive
objects or environments. Arduino can sense the
environment by receiving input from a variety of
sensors such as pressure, magnetometer, Inertial
Measurement Unit (IMU), Global Positioning
System (GPS), etc., and can affect its surroundings
by controlled actuators. Arduino Mega 2560
microcontroller [1] has been used on the board, and
can be programmed by using the Arduino
programming language based on C++ and the
object-oriented embedded programming C++.
Arduino projects can be stand-alone or they can
communicate with software running on a computer.
Arduino IDE has an easy way to include libraries in
our generated skeleton control implementation
model. There not only are the header files included
in this sketch, but the implementation files are also
compiled behind the scenes. Hence, we can develop
a more complex quadrotor UAV project that will
use a specialized library of our own. That library
will itself build on other libraries. In our realization

model, behaviors of each continuous element or
IGCB will be implemented as such library.
All of artifacts of the analysis, design and
implementation model have been created by using
the above presented approach to completely
implement the trajectory-tracking controller for this
mini quadrotor UAV. We have also performed trial
flights to test the realization model of this
application (Fig. 17). The scenarios of these tests are
based on the use case model and global state
machine. Results of trial flight tests are satisfied
with the predetermined trajectory and control
performance within control criteria such as the
admissible control duration, transition and static
errors. The detailed experimental scenarios are
currently performed to improve the performances
and features of this application in the aeronautic
laboratory.

Fig. 17. Set-up and test the trajectory-tracking
controller for the autonomous mini quadrotor UAV.

6 Discussion and Closure
In this paper, we have introduced an object-oriented
approach to develop controllers of quadrotor UAVs.
This approach is based on the specialization of
MDA’s features with RT UML, HA and
microcontrollers in order to quickly analyze, design,
implement and realize the control parts of system.
No single formalism or language of an engineering
process can possible capture all the knowledge and
information needed to solve complex control
systems such as the quadrotor UAV controller. The
quadrotor UAV dynamic model and control
structure are adapted to gather the requirement

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 494 Issue 10, Volume 12, October 2013

analysis for controllers of quadrotor UAVs. To
model industrial control systems such as the
quadrotor UAV controller, we have used HA
because there is only one global continuous
behavior at time given in a hybrid automaton; there
is the invariant notation to verify hypotheses on the
continuous state; and the hybrid automaton is
derived from an automaton, which models also the
dynamic behaviors of general interactive software
systems. So we consider that behaviors of the
quadrotor UAV controller can be modeled by HA.
The MDA’s features are specified to obtain a
general MDA process model including the CIM,
PIM and PSM to entirely develop this system. The
CIM of a quadrotor UAV controller is defined to
carry out its object-oriented analysis phase by
specializing use case model and hybrid automata.
The PIM is specified for obtaining the detailed
design model by specifying RT UML notations in
the precise behaviors and structures of the quadrotor
UAV controller. To realize quadrotor UAV
controller, the PSM is firstly implemented to
simulation model, which is transformed from the
identified PIM by applying the determined model
transformation rules. The obtained simulation
results permits us to theoretically evaluate the
system control performance and functionalities, and
to easily optimize control design elements of this
system before we decide to realize and deploy it.
Then, the PIM with the modifying control elements
optimized in the PSM of simulation model is
adapted to obtain the new updated PIM for the
realization model. This updated PIM is converted
into new PSMs by using different object-oriented
specific platforms in order to completely realize the
quadrotor UAV controller with compatible
microcontrollers. Based on this approach, a
trajectory-tracking controller of an autonomous mini
quadrotor UAV has been completely developed with
the simulation model of OpenModelica, and
Arduino Mega2560 microcontroller for the
realization model. The detailed experimental
scenarios are currently performed to improve the
performances and features of this application in the
aeronautic laboratory. This application can be
extended with the increase in the altitude, radius of
action, velocity and duration of autonomy time by
using compatible physical components such as the
engineering material, power resource, vision-based
navigation components, etc. But the activities of our
process model described in this paper do not change
of in spite of this extended quadrotor UAV control
application.
The re-use is very important to develop controllers
for different quadrotor UAVs in our approach.

Reusable views in the development phase of this
system are based on virtual mechanisms of objects
or classes, and design capsule components of CIM
and PIM. For example, the global state machine,
industrial operational constraints, communication
patterns and structures of main control capsules can
be customizable and reusable to carry out different
quadrotor UAV control applications. Furthermore,
using the approach described in this paper,
development engineers will be more capable of
managing the system complexity through the visual
modeling of artifacts and their transformations of
this process. In particular, they can handle the
defined design elements in the PIM to quickly
deploy the quadrotor UAV controller to different
object-oriented specific platforms to which they
want to suitably realize it.
In the next time, we will develop this approach
combined with various control formalisms and
architectures in order to perfectly analyze, design,
implement and realize controllers for balancing
search and target response in cooperative
autonomous quadrotor UAV teams.

References:
[1] Arduino, Open-source electronics prototyping

platform for hardware and software,
http://www.arduino.cc/, 2012.

[2] Béla L., Lorinc M., Nonlinear Control of
Vehicles and Robots, Springer, 2011.

[3] Carloni, L. P., Passerone, R., Pinto, A.,
Sangiovanni, V. A., Languages and Tools for
Hybrid Systems Design, now Publishers Inc.,
Boston, 2006.

[4] Carrillo L.R.G., Lozano R., López A.E.D.,
Pégard C., Quad rotorcraft Control: Vision-
Based Hovering and Navigation, Springer-
Verlag London, 2013.

[5] Douglass, B.P., Real Time UML: Advances in
the UML for Real-Time Systems, third edition,
Addison-Wesley, 2004.

[6] Gamma, E., Helm, R., Johnson, R., Vlissides,
J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley,
1995.

[7] Guillaume J. J. D., Fault-tolerant Flight
Control and Guidance Systems: Practical
Methods for Small Unmanned Aerial Vehicles,
Springer, 2009.

[8] Hien N.V., Soriano, T., Implementing hybrid
automata for developing industrial control
systems, Proc. of 8th IEEE-ETFA, ISBN 0-
7803-7241-7, doi:10.1109/ETFA.2001.997679,
Vol. 2, 2001, pp. 129-137.

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 495 Issue 10, Volume 12, October 2013

[9] Hien N.V., Vinh H. T., Soriano T., Using
Model-Driven Architecture to Develop
Industrial Control Systems, Proc. of 4th IEEE-
RIVF, ISSN 1621-0875, 2006, pp. 75-80.

[10] Hien N.V. et al., A Method of Model-Driven
Architecture to Develop Industrial Hybrid
Dynamic Systems, Final report of research
project, code: B2010-01-354, Hanoi University
of Science and Technology, 2011.

[11] Hien N. V., Soriano T., A Model
Transformation Process to Realize Controllers
of Ship Autopilot Systems by the Specialized
MDA’s Features with UML/SysML, Proc. of
IEEE Conference on MECATRONICS-REM,
ISBN 978-1-4673-4771-6, doi:10.1109/MECA-
TRONICS.2012.6450983, 2012, pp. 20-26.

[12] Hung N.P., Diem P.G., Khanh N.P. et al.,
Research, design and manufacture a micro-
unmanned aerial flying autonomously at
desired trajectories, Final report of research
project, code: KC03.TN03/11-15, Hanoi
University of Science and Technology, 2012.

[13] IBM - IBM Rational Online Documentation,
Training Kit, Software Delivery Platforms,
https://www.ibm.com/developerworks/universit
y/, 2010.

[14] Lavagno, L., Martin, G., Selic, B. (Eds.), UML
for Real: Design of Embedded Real-Time
Systems, Kluwer Academic Publishers, 2003.

[15] Lin H.J., Tsay T.S., Modeling Identification
and Simulation of Bank to Turn Unmanned
Aerial Vehicle, WSEAS Transactions on
Systems, ISSN 1109-2777, Issue 4, Volume 10,
2011, pp. 91-103.

[16] Neri F., Traffic packet based intrusion
detection: decision trees and generic based
learning evaluation, WSEAS Transactions on
Computers, ISSN 1109-2750, WSEAS Press
(Wisconsin, USA), Issue 9, Volume 4, 2005,
pp. 1017-1024.

[17] Nonami K., Kendoul F., Suzuki S., Wang W.,
Nakazawa D., Autonomous Flying Robots -
Unmanned Aerial Vehicles and Micro Aerial
Vehicles, Springer, 2010.

[18] OMG, Specifications of MDA, ver. 1.01,
http://www.omg.org/mda/, 2003.

[19] OMG, Unified Modeling Language, ver. 2.1.1,
http://www.omg.org/spec/UML/, 2007.

[20] OMG, UML Profile for MARTE: Modeling and
Analysis of Real-time Embedded Systems, ver.
1.1, http://www.omg.org/spec/MARTE/, 2011.

[21] OpenModelica, OpenModelica Simulation
software, v1.9, http://www.openmodelica.org,
2013.

[22] Pakzad M.A., Kalman Filter Design for Time
Delay Systems, WSEAS Transactions on
Systems, E-ISSN 2224-2678, Issue 10, Volume
11, 2012, pp. 551-560.

[23] Pekar L., Neri F., An Introduction to the
Special Issue on Time Delay Systems:
Modelling, Identification, Stability, Control
and Applications, WSEAS Transactions on
Systems, E-ISSN 2224-2678, Issue 10, Volume
11, 2012, pp. 539-540.

[24] Peter F., Introduction to Modeling and
Simulation of Technical and Physical with
Modelica, John Wiley & Sons, 2011.

[25] Samir B., Design and control of quadrotors
with application to autonomous flying, PhD
Thesis, École Polytechnique Fédérale de
Lausanne, France, 2007.

[26] Soriano T., Sghaier A., Hien N.V.,
Mechatronics Design from an Object-Oriented
Point of View, WSEAS Transactions on
Communications, ISSN 1109-2742, Issue 1,
Volume 3, 2004, pp. 282-287.

[27] Tsay T.S., Intelligent Guidance and Control
Laws for an Autonomous Underwater Vehicle,
WSEAS Transactions on Systems, ISSN 1109-
2777, Issue 5, Volume 9, 2010, pp. 463-475.

[28] Xun G., Zhicheng H., et al., Backstepping
Sliding Mode Attitude Control of Quad-rotor
with Adaptive Algorithm, 2012 2nd

International Conference on Materials,
Mechatronics and Automation, Lecture Notes
in Information Technology, Vol.15, ISBN 978-
1-61275-015-6, ISSN: 2070-1918, ©2012
IERI, pp. 410-415.

[29] Yanushevsky R., Guidance of Unmanned
Aerial Vehicles, CRC Press, Taylor & Francis
Group, 2011.

[30] Yingcai B., Haibin D., Implementation of
autonomous visual tracking and landing for a
low-cost quadrotor, Optik - International
Journal for Light and Electron Optics, ISSN:
0030-4026, Volume 124, Issue 18, 2013, pp.
3296–3300.

[31] Yu. Y., Sun F., Wang Y., Controller Design of
Quadrotor Aerial Robot, Elsevier, Physics
Procedia 33, 2012, pp. 1254-1260.

WSEAS TRANSACTIONS on SYSTEMS Diem P. G., Hien N. V., Khanh N. P.

E-ISSN: 2224-2678 496 Issue 10, Volume 12, October 2013

