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Abstract: - The present paper contains an investigation results for the attitude motion of a magnetic dual-spin 

spacecraft (DSSC) in the geomagnetic field at the realization of the orbital motion of its mass center along an 

equatorial circular orbit. Exact analytical solutions for the attitude motion parameters are obtained in the elliptic 

Jacobi functions including the angular momentum components, the directional cosines and the Euler angles. 

These analytical exact solutions correspond to generating dependences which make possible the advanced 

research of the DSSC perturbed motion cases. The considering task of the DSSC angular motion can be 

characterized as the Lagrange top generalization for the coaxial bodies system – the corresponding case of the 

magnetic DSSC motion occurs under the influence of external restoring/overturning torques (like in the 

Lagrange heavy top motion). This paper's results also can be directly reduced to the Euler coaxial top's (Euler's 

case of the rigid body and coaxial bodies motion) general exact explicit solutions; this circumstance can be 

consider as a generalization of the Euler coaxial top's problem. An important “dynamical equivalence” between 

the magnetic and gyroscopic DSSC attitude stabilization factors is illustrated. 
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1 Introduction 
The study of various aspects of the attitude/angular 

motion of a dual-spin spacecraft (DSSC) and 

gyrostat-satellites still remains one of the important 

parts of modern orbital dynamics and spacecraft 

attitude dynamics. This research area is closely 

connected with classical tasks of the rigid bodies’ 

angular motion [1-6]. Regular and irregular 

(chaotic) motion modes, the attitude control of 

gyrostats and a coaxial spacecraft are being 

examined by many scientists [7-40]. Important 

research results corresponding to the rigid body and 

gyrostats motion are presented in many papers, for 

example, in [1-7]. In [8, 9] the torque-free motion 

dynamics of the gyrostats is studied.  

An analysis of the angular motion of coaxial 

bodies and the dual-spin spacecraft in different 

problem formulations was conducted, for example, 

in [10-20] including perturbed motion regimes. In 

[16-19] investigation results for the DSSC attitude 

motion at the rotor-body spinup maneuver 

realization were collected. In [20-33] the 

gyrostats/DSSC compound motion modes were 

considered at the absence/presence of perturbations 

and control torques.  

The attitude dynamics/control of the magnetic 

spacecraft was considered, for example, in [26-33]. 

New aspects of the angular motion of a satellite 

equipped with the active magnetic attitude control 

system were examined in [27]. 

In [34, 35] the angular motion of the variable 

mass dual-spin spacecraft was investigated. The 

mass changing in [34, 35], first of all, is connected 

with the solid propellant engine operating of the 

DSSC which implements an interorbital transfer 

maneuver [e.g. 40]. The attitude motion of the 

DSSC with the operating engine at nonzero values 

of angles of the nutation and the precession can 

increase a final error of the transfer impulse (due to 

sputtering of the engine thrust) – it leads to an error 

in the final orbit. 

In the paper [36] the gyrostats’ chaotic motion in 

resistant environments was considered based on the 

well-known dynamical systems with strange 

attractors (e.g. Lorenz, Rössler, Newton–Leipnik 

and Sprott attractors). In [37, 38] the local 

heteroclinic chaotization of the torque-free dual-spin 

spacecraft was examined with the help of the 

Melnikov and Wiggins methods.  

In [39] the coaxial Lagrange top was fully 

considered in the case of the dynamical symmetry of 

both coaxial bodies. 
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In other words, the problem of the DSSC attitude 

dynamics is the wide independent area of the 

spaceflight and classical mechanics, which includes 

many important aspects of the 

unperturbed/perturbed motion under influence of 

different external/internal disturbances. But 

especially we should emphasize the analytical study 

problem.  

Analytical exact solutions play the particular role 

in the motion analysis (and also in the synthesis). 

The analytical exact solutions make possible the 

advanced investigation of the motion features – we 

can use these solution as the generating solutions for 

the perturbed modes study, including the 

irregular/chaotic behavior of systems [41-45]. The 

important analytical investigations of the rigid 

body/DSSC/gyrostat motion are presented in [1-12]. 

In this paper the analytical exploration of the 

attitude dynamics problems with the focus on the 

magnetic DSSC motion investigation under 

influence of the constant magnetic field is 

continued – this case describes the attitude motion 

of the magnetic DSSC in the geomagnetic field at 

the realization of the orbital motion of its mass 

center along an equatorial circular orbit. This regime 

of the magnetic DSSC angular motion is quite 

important for the practice because it corresponds (in 

ideal conditions) to one of the preferred regimes of 

the stationary attitude motions with the conservation 

of the spatial orientation of the longitudinal axes of 

the satellite (and especially the communication 

satellite) – these regimes represent so-called 

“cylindrical precessions” of the spin-stabilized 

satellites. As a part of the article research results we 

can indicate the consideration of the “dynamical 

symmetry/equivalence” between the magnetic and 

gyroscopic DSSC attitude stabilization factors. 

Also it is very important to underline that the task 

of the magnetic DSSC attitude motion is connected 

with such classical problems of the rigid body 

mechanics like the integrable cases of rigid body 

angular motion (the Euler, the Lagrange and the 

Kovalevskaya tops).  

 

2 The angular motion equations of the 

magnetic DSSC and the coaxial 

Lagrange top 
Let us consider the attitude dynamics of the 

DSSC (coaxial bodies) which include the internal 

permanent magnet or the current-carrying inductive 

coil (with the magnetic dipole moment m) under the 

influence of the external restoring/overturning 

torque Mθ from the magnetic field. Assume that the 

DSSC’s mass center is moved on the circular 

equatorial orbit of the Earth which has the ideal 

single dipole magnetic field; the corresponding to 

this equatorial orbit magnetic field vector we denote 

as Borb (Fig.1-a). It is needed to underline that in this 

case along the whole circle equatorial orbit 

magnetic vector Borb is constant and orthogonal to 

the orbit plane (Fig.1) (Borb is the tangent vector to 

the surface of the magnetic field (Fig.1-b); the 

magnitude of this vector corresponds to the altitude 

of the circle orbit).  

The DSSC consist from two coaxial bodies 

(body #1 is a rotor; body #2 is a main/core/carrier 

body). The rotor-body rotates in the inertial space 
with an angular velocity ω1, and the main carrier 

body rotates with an angular velocity ω2. The 

angular velocity of the rotor-body differs from the 

angular velocity of the main carrier body on a vector 

of a relative rotation angular velocity σ about a 
common longitudinal DSSC axes (ω1= ω2+σ).  

 

Fig.1 Single dipole model of the Earth’s magnetic 

field (a) and the constant magnetic field vector 

corresponding to the circle equatorial orbit (b) 

 
Let us introduce the following coordinate frames 

(Fig.2-a): OXYZ is the inertial system of 

coordinates, where the axis OZ is collinear with the 

constant magnetic vector (k’ is the unit vector of the 

OZ axis) and then 
orbB

orb
B k' ; Ox2y2z2 is the 

connected principal system of coordinates of the 

carrier body (i, j, k are the corresponding unit 

vectors); and Ox1y1z1 – the connected principal 

(a) 

(b) 
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system of coordinates of the rotor body. The vectors 

,k k'  are the unit vectors of the axes OZ and Oz2 

respectively. 

 

(a) 

 

(b) 

Fig.2 The magnetic DSSC coordinate frames (a) 

and the "heavy coaxial top" (b) with the 

Andoyer–Deprit coordinates 

 

The axes Oz1 and Oz2 of the connected systems 

are identical to the common longitudinal rotation 

axis of the DSSC coaxial bodies. We assume that 

the main body has a triaxial inertia tensor and the 

rotor is a dynamically symmetrical body, and that 

the DSSC intrinsic permanent magnet is aligned 

with the DSSC’s longitudinal axis  mm k . 

The system motion can be described on the base 

of the Euler dynamical equations [3-5], which 

correspond to the angular momentum changing 

low/theorem writing in an arbitrary rotating 

coordinate fame  
e

K +Ω×K = M   (1) 

where K is the system angular momentum, Ω  is the 

angular velocity of the “selected rotating coordinate 

frame” (it can be differ from the bodies coordinate 

frames), 
e

M  – is the vector of external torques. 

Usually the bodies’ connected coordinate frames 

are used for the dynamical equations construction as 

the “selected rotating coordinate frames” (and, 

consequently, we will use the carrier body's frame, 

then 
2Ω=ω ). Therefore, we obtain the dynamical 

Euler equations of the motion in projections on the 

axes of the DSSC main carrier body frame Ox2y2z2: 

 

 

 

 

1

1

1

1

x

y

z

Ap C B qr qC M

Bq A C pr pC M

Cr C B A pq M

C r M













 

    


   


   


 





 

 

    (2) 

where  , ,p q r  are the components of the 

carrier body's angular velocity 
2ω  in projections 

onto the axes of the Ox2y2z2 frame;   is the rotor 

angular velocity relatively the carrier body 

    ;  2 2 2 2, ,diag A B CI  is the triaxial 

inertia tensor of the carrier body in the connected 

frame Ox2y2z2;  1 1 1 1, ,diag A A CI  is the inertia 

tensor of the dynamically symmetrical rotor in the 

connected frame Ox1y1z1; 1 2 ,A A A   

1 2 ,B A B   1 2C C C   are the main inertia 

moments of the coaxial bodies system in the frame 

Ox2y2z2 (including rotor);  1C r      the 

longitudinal angular moment of the rotor along Oz1; 

11 zC h    the rotor relative angular moment in 

the carrier body frame Ox2y2z2. M   is the internal 

torque of the coaxial bodies interaction (we assume 

0M  ).  

The torque from the magnetic field influence is 

 

2 2 2

2 1

;

, ,

, ,0

T

x y zOx y z

T

orb orb

M M M

B m B m

  

 

 

   

 

oθ

θ

rbM m B

M    (3) 

The parameters γi in the vector expression (3) are 

the direction cosines of the inertial axis OZ in the 

main body frame Ox2y2z2: 
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 

 

 

1 2

2 2

3 2

cos , ,

cos , ,

cos ,

OZ Ox

OZ Oy

OZ Oz

  

  

  

i k'

j k'

k k'







 (4) 

Also equations (1) can be presented in the 

following form: 

 

 

 

2 2

2 1

2

;

;

0;

Ap C B qr q Q

Bq A C pr p Q

C r B A pq M







     

    

      





 

   (5) 

where orbQ B m .  

We assume the following conditions: 

2 2 2 1 1, const 0.A B C A C        

Also it is needed to note that kinematical 

equations should be added to description of the 

angular motion – we can use as these equations the 

well-known Poisson equations for directional 

cosines of the inertial axes in the body frame. 

Here we note that the equation system (1) 

corresponds to the motion of the coaxial bodies and 

the unbalanced gyrostat with non-constant relative 

angular moment of rotor (
1 1 const,zh C  even if 

0M  ). In this case results of the analysis for the 

Kelvin-type gyrostats [1-4, 7-8] are not applicable. 

Also we can use the Hamiltonian form of 

equations in the Andoyer–Deprit canonical 

variables. The Andoyer–Deprit variables [6, 9, 10, 

13, 14, 37, 38] (l, L, I2, I3) can be expressed with 

the help of the coaxial system's angular momentum 

2 2 22 2 2

, ,
T

x y zOx y z
K K K    K K  (Fig.2): 

2

2

3 2

3

;

;

;

T
L

l

T
I K

T
I L I


  



    



   



K k

K s K

K k











          (6) 

2

2

2

2 2

2

2 2

2

2

sin ;

cos ;

x

y

z

K Ap I L l

K Bq I L l

K C r L

  

  

   

           (7) 

The system Hamiltonian [9, 37, 38] in the 

Andoyer–Deprit phase space takes the form: 

 

1

22 2 2 2 2

2

1 2 1 2 1 2

sin cos 1
,

2 2

T P

LI L l l
T

A A A B C C

  

   
     

      

 

 (8) 

where T – is the system kinetic energy; P – is the 

potential energy depending on the type of the 

external/internal influence; 
1  is the small 

perturbed part of the Hamiltonian, connected with 

small disturbances. In our case the potential energy 

corresponds to the restoring/overturning torque 

(from the magnetic field or from the system’s 

weight) and takes the form depending only on the 

nutation angle [3, 5]: 

cos ; sin
P

P Q M Q 



   


   (9) 

At the end of this section we also underscore the 

full compliance of the mechanical models (Fig.2) of 

the considering magnetic DSSC motion and the 

coaxial Lagrange top (the heavy coaxial top) motion 

(Fig.2-b). The Lagrange top in the classical 

description [5, 6] characterizes the angular motion 

of the heavy body about fixed point O when the 

gravity force W (the system weight) is applied in 

the point OW on the general longitudinal axis Oz2. 

Our models (the magnetic DSSC and the heavy 

coaxial top) can be reduced to the interconnected 

case at performing of the following notations: 

; ;orb WQ B m Q W OO    (10) 

The notations (10) also underline the common 

type of the external influence in the considering 

cases; but in the case of the magnetic DSSC the 

corresponding magnetic torque is restoring and in 

the case of the heavy coaxial top the gravity torque 

is overturning. 

Here it is worth to note that in [39] the coaxial 

Lagrange top (CLT) was fully considered in the case 

of the dynamical symmetry of both bodies (the 

carrier and the rotor): the fourth integral of the 

motion (which is necessary for the problem solving) 

were written [39] for the CLT at the presence of the 

arbitrary internal torque M∆ – it allowed to obtain 

the exact explicit solutions for all of the Euler 

angles (it is needed to underline that the exact 

explicit solutions in the form of elliptic integrals of 

the third kind [39] were obtained by V.S. Aslanov 

using approaches [10]); also Larmor’s precession 

was indicated as the possible motion regime of the 

CLT, and the "lunar motion" case was investigated. 

In the continuation of the Lagrange top 

generalization we consider in this paper the motion 

of the CLT with the general triaxial inertia tensor of 

the main body in the important case when the 

system angular momentum K is directed precisely 

along the inertial axis OZ coinciding with the vector 

of the external force field  or
orb

B W .  
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3 Explicit analytical solutions for 

angular momentum components  
Let us consider the angular motion of the 

magnetic DSSC (and the coaxial Lagrange top) with 

the respect to the initial frame OXYZ (Fig.2) in the 

case when the vector of the angular momentum K is 

directed along the inertial axis OZ 

 KK k' coinciding with the vector of the 

external force field  ;
orb

B W . Also we assume the 

absence of the internal coaxial bodies interaction 

 0M   and, consequently, the constancy of the 

rotor angular momentum Δ. This case of the motion 

of the magnetic DSSC is quite important because it 

corresponds (in ideal conditions) to one of the 

preferred regimes of the stationary motions of spin-

stabilized satellites in the orbit – these regimes 

represent so-called “cylindrical precessions” of the 

spin-stabilized satellites. 

In this case the system angular momentum K is 

constant, and we have the following expressions (4) 

for the directional cosines of the OZ axis, for 

Andoyer–Deprit momentums (6) and for the 

nutation angle: 

2

2

2

1

2

2
3

,

,

x

y

z

K Ap

K K

K Bq

K K

K C r

K K

 

 

 
 







   (11) 

2

2

2

2 3

2

;

const;

cos ,

z

z

L K C r

I I K

K C rL

K K K

   

  

 
  

 (12) 

The vector of the magnetic torque in considering 

case takes the form 

2 2

2 2 2

, ,0

, ,0

T

x y

Ox y z

T

QK QK

K K

QAp QBq

K K

 
  
 

 
  
 

θ
M

 (13) 

Then the dynamical motion equation (5) can be 

rewritten in the form 

 

 

 

2

2

2

;

;

0;

Ap C B qr q QBq K

Bq A C pr p QAp K

C r B A pq M

     

    

      





 

    (14) 

Let us obtain the analytical solutions for all of 

the angular velocity components {p, q, r, σ} by 

analogy with the previous results [12]. 

In the purpose of the exact solutions obtaining 

we will use the polhodes geometry [3, 12]. The 

polhode is the fourth-order curve in 3D-space 

(Fig.3) corresponding to the intersection of a kinetic 

energy ellipsoid and an angular momentum 

ellipsoid, which are defined with the help of the 

expressions for the dynamical theorems/laws of the 

changing of the kinetic energy and the angular 

momentum [3]: 

   

2
2 2 2

2 0

1

0

2

2 2

Ap Bq C r T
C

P P


    

  

 (15) 

 
22 2 2 2 2

2A p B q C r K     (16) 

The expressions (15) and (16) with the help of 

(9) and (12) can be rewritten 

 
2

2 2 2

2 2

1

2 2Ap Bq C r E C r T
C


       (17) 

 
22 2 2 2 2

2 2A p B q C r K DT         (18) 

where the following constants take place 
2

2 2 2

0 0 0 2 0

1

2 0
0

2

2 ;

const;

;
2

T Ap Bq C r
C

C r
T T Q

K

Q K
E D

K T


   

 
  

  





 (19) 

Based on the expressions (17) and (18) 

combinations (the multiplication of (17) by A and 

the deduction of (18)) we can write the expression: 

 

 

   

2

2
2

2 2

1

2

2

2

2

B A B q

A C r E C r
C

C r T A D

 

 
      

 

    

 (20) 

The multiplication of (17) by B with the 

deduction of (18) gives  

 

 

   

2

2
2

2 2

1

2

2

2

2

A B A p

B C r E C r
C

C r T B D

 

 
      

 

    

 (21) 

The allocating of a perfect square in (21) gives 

us the equation for hyperbolae (on the coordinate 

plane Opr at the Fig.3)  

 

 

2

2

2 2

2

A A B p

EB
C B C r F

B C

  

  
    

 

 (22) 
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where   

 

 
22

2

2

1

2

1 2

F T B D

C
EB

B C

B
EB

C

  

   


  
      
  



  (23) 

The allocating of a perfect square in (20) gives 

us the equation for ellipses (on the coordinate plane 

Oqr at the Fig.3)  

 

 

2

2

2 2

2

B A B q

EA
C A C r H

A C

 

  
    

 

 (24) 

 

 
22

2

2

1

2

1 2

H T A D

C
EA

A C

A
EA

C

  

   


  
      

  



  (25) 

From the equation (22) we can obtain  

 

 

2

2 2

2

EB
C B C r F

B C
p

A A B

  
   

  


  (26) 

From (24) we can get  

 

 

2

2 2 2

H B A B qEA
r

A C C A C

  
  

 
        (27) 

With the help of (27) we can write the auxiliary 

expression 

 

 

2

2

2 2

;

EB
r

B C

H B A B q
E

C A C

 
 



 
   


 

      (28) 

2 2

2 2

;

1 1

A B

A C B C

B C A C

 
 

 
 





    

Based on the expressions (11) we can rewrite the 

second equation (5)  

 2Bq A C pr p EAp       

Taking into account (28), (26) the last equation 

can be written in the form 

     

 
 

 
 

 

 
 

 

2 1 2

22 2

1

2

2

2 2

;

;

;

Bq A C f q f q

C B C F
f q V E

A A B A A B

H B A B q
f q V V

C A C

 


    

 

 
 



 

 

(29) 

 

We can make the change of variables (case 1) 

 

 

2

2 2

H B A B q
x E

C A C

 
   


      (30) 

Then from (30) we obtain  

 
 

 

2
2

2 2

H B A B q
x E

C A C

 
  


    (31) 

  

 

 

 

 

  
 

2

2 2

2 2

2

2 2

;
H C A C x E

q
B A B

C A C x E dx
dq

B A B H C A C x E

B A B

     
  




   


     
 



 

 

 

(32) 

Also we can make the following change of 

variables (case 2) 

 

 

2

2 2

H B A B q
x E

C A C

 
   


    (33) 

As in the previous case (30), from (33) 

expressions (31) and (32) follow again. So, for both 

changes we have the interconnected equation 

 
2 2

M dx
dt

H a x b cx G
 

  
   (34) 

where  

 

 

 

 

2

2 2

2 2

; ;

; ;

B F
M C G

A B A A B

a C A C b E

C B C
c

A A B

 
 

    






     (35) 

We should note differences between the initial 

values corresponding to the cases (i=1, 2): 

   
 

 

2
1 0

0

2 2

1

; 1,2

iini

i

H B A B q
x t x

C A C

E i

  
   



   
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Fig.3 The polhodes ellipsoid  

 

By full analogy with [12] we rewrite the equation 

(34) in the form with differences of squares    

 

2 2

2 2

M dx
dt

ac
H G

x b x
a c

 

   
     

   

(36) 

The next change of the variables can be used 

 

 

;

;

R x e
z

P x e

R b d e P b d e

d H a e G c






       

 

 (37) 

Then based on (37) we express relations 

 

2

22 2

4
;

R P z R ez dz
x e dx

R P z P R P z

 
 
   

  (38) 

The substitution of (38) into the equation (36) 

gives us  

22

2 2 2

2 2

2 2 2

4eMR
dt

H R R R
P ac z e z b z

a P P P

zdz

R G R
e z z

P c P

  

       
          

      


   

     
   

 
The last equation also can be written in the form  

1
2 2

2 4 2 2

1 2

1 2

3 4

2 2

1 2 1 2 4 3

2 1 1

;

;

;

R P z z
dt eM s s dz

c caG

H R H
s e b s e b

a P a

H R H
s e b s e b

a P a

c s s c s s



   
      
    

 
      

 

 
      

 

 

(39) 

We should consider two cases of the reduction of 

(39) to the elliptic integral of the first kind: 

1). If 1 2c c  then the following substitution is 
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efficient: 1z c y  and, moreover, 1 2 1k c c  . 

2). If 1 2c c  then: 2z c y  and 2 1 1k c c  . 

The equation (39) is rewritten  

  2 2 2

2 4

2 ;
1 1

1,2

jc dyR P
dt eM

aG s s y k y

j

 
 



(40) 

where the index j corresponds to the number of the 

reduction case. 

After the integration we obtain  

 
  

  

0

0 0
2 2 2

0

1

2 4

0
2 2 2

0

;
1 1

2 ;

const
1 1

y

j

y

dy
N t t I

y k y

c R P
N eM

aG s s

dy
I

y k y



     
 

 
  
  

 
 





  (41) 

The inversion of the elliptic integral gives the 

explicit solution 

    0 0sn ,y t N t t I k       (42) 

where sn(u,k) is the Jacobi elliptic sine function 

with the classical definition: 

 
 

   

    

2 2
0

1

;
1 sin

;

sn , sin ;

d
u

k

u u

u k u



  


  











 



 

Inverse transformations allow to obtain the exact 

explicit solutions for all angular velocity 

components 

 
 

    

 
 

   

        

2

2 2

2

2 2

2 1

1

1

;

q t H C A C x t S
B A B

p t C B C x t F
A A B

EA
r t x t S t r t

A C C


       




      
   
     





(43) 

where  

 
  

  

2 2

0 0

2 2

0 0

sn ,
;

sn ,

i

i

R P c N t t I k
x t e

R P c N t t I k

S E

     
     

   

(44) 

Fig. 4 demonstrates the validity of solutions (43) 

- we see the comprehensive coincidence of the 

analytical (points) and the numerical integration
1
 

results (lines).  

 

Fig.4 The numerical integration (lines) and 

analytical (points) results 

A2=15, B2=8, C2=6, A1=5, C1=4 [kg·m
2
];  

p0=0.75, q0=2, r0=5.83 [1/s];  

5  , K=50 [kg·m
2
/s];  Q=100 [kg·m

2
/s

2
] 

 

Here we should note the analogy between the 

new results (43) and the torque-free DSSC motion 

solutions [12]
2
. The difference of the results is 

defined by the presence of the additional rotational 

effect (it is described by the corresponding term 

E ). This effect is connected with the magnetic 

field influence on the magnetic DSSC. Moreover, in 

the investigated case of the magnetic DSSC attitude 

motion this effect can be considered as the 

tantamount stabilizing factor (S) in comparison with 

the gyroscopic stabilization by the partial twist of 

the DSSC’s rotors (with the relative angular velocity 

σ): we can simulate the gyroscopic stabilization as 

the magnetic stabilization (and vice versa) with the 

help of parameters Δ and E variation; also we can 

fully compensate the mutual actions of the magnetic 

and gyroscopic torques at E   . 

So, based on the indicated equality of the 

magnetic and gyroscopic parts in the cumulative 

                                                 
1 The numerical integration was fulfilled in the well known 

mathematical software MAPLE 11 using an Implicit 

Rosenbrock third-fourth order Runge-Kutta method with degree 

three interpolant. 

2 The article [12] contains the misprint in the expression (2.27):  

the multiplier 2

ic  before elliptic function sn2(·) was missed in 

the numerator and in the denominator of the expression (2.27).  
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stabilizing factor S we can consider the torque-free 

attitude DSSC motion as the attitude motion of the 

magnetic spacecraft on the equatorial circular orbit 

at the coincidence of the angular momentum vector 

with the vector of the magnetic field (the normal to 

the orbit plane). It defines the important “dynamical 

equivalence” between two cases of the DSSC 

attitude motion. Also we ought to underline that the 

solutions for the magnetic coaxial bodies (DSSC, 

gyrostats) attitude/angular motion (43) generalize 

the well-known results for the torque-free rigid 

bodies/gyrostats in the Euler case of motion [1-12]. 

 

 

4 Explicit analytical solutions for 

kinematical parameters 
Let us consider the kinematical aspects of the 

angular motion of the magnetic coaxial system 

(DSSC) with the respect to the initial frame OXYZ 

(Fig.2) in the case when the vector of the angular 

momentum K is directed along OZ which coincides 

with the vector of the magnetic field Borb.  

As it was indicated in the section 2 we are able to 

use the expressions (11) for the directional cosines, 

which are the main parameters describing the 

attitude of the DSSC in the inertial space OXYZ. 

Therefore, we can note that based on the solutions 

(43) we already have the analytical solutions for the 

directional cosines  1..3i i  . However, it is 

needed to make some additional comments about 

the attitude of the magnetic DSSC.  

Taking into account the components of the 

magnetic torque (13) we rewrite the vector equation 

(1) in the main carrier body frame  2
Ω=ω  in the 

form 

orbB

K
2K +ω ×K = m×K   (45) 

The equation (45) we can formally present as the 

vector equation of “the torque-free angular motion” 

considering the magnetic DSSC motion in the 

fictive coordinate frame rotating with the angular 

velocity Ω : 

K +Ω×K = 0    (46) 

orbB

K
 2Ω ω m    (47) 

However, for writing of the scalar equations 

system we can as before use the angular velocity 

parameters written in the projections onto the main 

body coordinate frame Ox2y2z2; then for the fictive 

“torque-free” coordinate frame we have the 

following angular velocity 

 
2 2 2

, ,
T

Ox y z p q r Q K Ω   (48) 

In this case we take the fictive torque-free 

angular motion with conservation of the angular 

momentum and its projection onto “vertical” inertial 

axis OZ  constOZK K  K . 

In the indicated “torque-free” coordinate frame 

we can write the well-known Poisson kinematical 

equations for the vector of the directional cosines 

 1 2 3, ,
T

  γ  of the motionless “vertical” 

inertial axis OZ: 

γ +Ω×γ = 0    (49) 

So, based on the Poisson equation (49) and on 

the solutions (43) we will have the final exact 

analytical solutions for the directional cosines 

   

   

  

1

2

3 2

,

,

t Ap t K

t Bq t K

C r t K











  

                        (50) 

Also, taking into account analytical solutions for 

the angular velocity components (43), by the full 

analogy with [12], in the considering case we can 

obtain exact solutions for the Euler angles (θ – the 

nutation angle, φ – the intrinsic rotation, ψ – the 

precession angle, δ – the relative rotation angle) as 

before considering the motion of the fictive “torque-

free” coordinate frame (not the main carrier body 

frame) rotating with angular velocity Ω  

   

 
 

 

2cos ;

tg

t C r t K

Ap t
t

Bq t

    






 (51) 

 

 

0

0

2 2

0 2 2 2 2

0

1

( ) ( )
;

( ) ( )

( )

t

t

t

t

Ap t Bq t
t K dt

A p t B q t

t r t dt
C


 



 
   

 





 

 

(52) 

Figures 5 and 6 demonstrate the validity of the 

solutions (50) and (51) as the coincidence of the 

analytical results with the numerical integration. 

It is needed to note that the numerical 

dependence for the intrinsic rotation angle (the 

green line at Fig.6) is continuous, but the analytical 

magnitude (51) of the intrinsic rotation angle (the 

blue color points at the Fig.6) is located into the 

interval  2 2      in the full compliance 

with the actual range of the arctangent-function: 

     arctg Ap t Bq t . 

WSEAS TRANSACTIONS on SYSTEMS Anton V. Doroshin

E-ISSN: 2224-2678 479 Issue 10, Volume 12, October 2013



 
Fig.5 The numerical integration (lines) and 

analytical (points) results for the directional cosines 

A2=15, B2=8, C2=6, A1=5, C1=4 [kg·m
2
];  

p0=0.75, q0=2, r0=5.83 [1/s];  

5  , K=50 [kg·m
2
/s]; Q=100 [kg·m

2
/s

2
]; 

10 20 300.3, 0.52, 0.8      

 

 
Fig.6 The numerical integration (lines) and 

analytical (points) results for the Euler angles 

A2=15, B2=8, C2=6, A1=5, C1=4 [kg·m
2
];  

p0=0.75, q0=2, r0=5.83 [1/s];  

5  , K=50 [kg·m
2
/s]; Q=100 [kg·m

2
/s

2
] 

0 0 00.64, 0.52, 0.0      

 

By this reason we ought to add   to the analytical 

 -value every rotational period. 

Thus, the explicit exact analytical solutions are 

found for the attitude motion of the magnetic DSSC 

and for the angular motion of the coaxial bodies 

system with four degrees of freedom 

 , , , , , , ,p q r      . These unperturbed generating 

solutions can be used for the investigation of the 

perturbed motion problems, such as the angular 

motion of the DSSC with an electromagnetic 

equipment in the geomagnetic field, the orbital 

motion of a large DSSC with the account of the 

gravity gradient influence, and also the DSSC 

attitude dynamics in the resistant perturbed 

environment and with the chaotic behavior at the 

presence of small external/internal disturbances.  

 

 

5 Conclusion 
Dynamics of the magnetic DSSC (the coaxial 

bodies system) was examined in the case of the 

coincidence of the system angular momentum 

vector with the vector of the magnetic field (the 

“vertical” inertial axes for the corresponding 

Lagrange top). The new analytical solutions for the 

angular momentum components were obtained in 

terms of the Jacobi elliptic functions. The analytical 

solutions for the directional cosines and for the 

Euler angles were found. These essential analytical 

solutions can be used for the advanced 

analysis/synthesis of the dual-spin spacecraft 

attitude dynamics. 

Also it is worth to note that the considered case 

of the magnetic DSSC attitude motion under the 

influence of the restoring/overturning magnetic 

torque can be characterized as the continuation of 

the generalization of the classical Lagrange top (and 

the coaxial Lagrange top [39]). At the same time 

this motion case can be directly reduced to the 

torque-free DSSC motion and to the previous results 

[12] at zero-value of the magnetic torque – it can be 

characterized as the generalization of the Euler case 

of the torque-free DSSC motion. Due to the 

similarity of the DSSC attitude dynamics with the 

torque-free coaxial bodies’ rotational motion as well 

as with the precession motion of the magnetic 

coaxial system (in the particular case of the 

coincidence of the magnetic field vector and the 

system angular momentum) the “dynamical 

equivalence” between the gyroscopic and magnetic 

DSSC attitude stabilization at the orbital motion 

along the circular equatorial orbit takes place. 

So, on the one hand, the considered dynamics of 

the magnetic DSSC is connected with the 

fundamental classical tasks (the Lagrange and the 

Euler tops); and, on the other hand, the studied 

coaxial system represents the important practical 

application of spaceflight dynamics. 
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