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Abstract: - In this paper we focus on the state estimation of a nonlinear system described by a Takagi-Sugeno 
multiple model submitted to unknown inputs and outputs. The proposed approach consists on a mathematical 
transformation which enables to consider the unknown outputs as unknown inputs that can be eliminated by a 
designed multiple observer. To evaluate the efficiency of the proposed approach, the convergence conditions of 
the state estimation error are formulated as linear matrix inequalities (LMI). Simulation Examples are given to 
illustrate the proposed methods. 
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1 Introduction 
The state estimation of a system is an analytical 
source of redundancy which makes it possible to 
generate failure symptoms of the system by making 
a comparison between the real signals of the system 
and the estimated signals. A not desired variation 
between these signals indicates the possible 
presence of defects affecting the operation of the 
system. The generation of the residuals is based on 
the use of the state observers.  

An observer is generally a dynamical system 
allowing the state reconstruction from the system 
model and the measurements of its inputs and 
outputs [28]. 

A physical process is often subject to 
disturbances, which can result from fault of 
actuators and/or sensors and which may have 
harmful effects on the normal behavior of the 
process. The disturbances are called unknown inputs 
when they affect the input of the system and their 
presence can complicate the state estimation. 
Various studies dealing with the presence of 
unknown inputs acting on the system have been 
proposed in the literature [3, 12, 19, 34]. 

Over the past decades, many researchers have 
paid attention to the problem of state estimation of 
dynamic linear systems subjected to both known and 
unknown inputs [11, 8, 33, 36]. They can be 
classified in two categories [4]. The first one 

supposes an a priori knowledge of information on 
these non measurable inputs. The second category 
proceeds either by estimation of the unknown 
inputs, or by their complete elimination from the 
system equations [16]. 

However, the physical systems are often 
nonlinear. As it is difficult to synthesize an observer 
for an unspecified nonlinear system [1], the multiple 
model approach constitutes a tool which is largely 
used in the modeling of nonlinear systems [10, 29]. 
The multiple model approach consists in 
representing the nonlinear system by an 
interpolation of different local linear models. Each 
one is a linear time invariant system valid in a 
particular zone of operation. The global model is the 
sum of the local models weighted by respective 
weighting functions [24]. These weighting functions 
quantify the relative contribution of each local 
model to the global model according to the 
corresponding operating point of the system [30]. 
The Takagi-Sugeno (T-S) structure is the most used 
in the multiple model approach [18, 20, 22, 31]. The 
main advantage of T-S structure is its simplicity as it 
results from the interpolation between linear systems 
and therefore the analysis and the design methods 
developed for linear systems can be generalized to 
nonlinear systems [17]. 

The state estimate of the multiple model is 
carried out in general by using a proportional 
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multiple observer. However, other types of multiple 
observers were developed (for example with 
unknown inputs [6, 7, 21]). 

In this paper, the proposed technique for state 
estimation consists in associating to each local 
model a local unknown input observer. The 
considered observer is then a convex interpolation 
of these local observers. This interpolation is 
obtained throughout the same activation functions as 
the T-S model [2]. Our contribution lies in the 
design of unknown input multiple observers for 
Takagi-Sugeno multiple model subject to unknown 
inputs and outputs. 

In the case of a nonlinear system affected by 
unknown inputs and described by a multiple model, 
a technique for multiple model state estimation by 
using a multiple observer has already been proposed 
[6, 26, 27]. In order to extend the use of this 
unknown input multiple observer in the case of 
systems subjected to unknown inputs and outputs, a 
mathematical transformation, which is proposed in 
the linear system case in [12] is used allowing us to 
consider unknown outputs as unknown inputs. 

The paper is organized as follows. Section 2 
presents an overview of the multiple model 
approach. In section 3, the multiple observer of a 
system with unknown inputs is presented. Section 4 
presents the main results concerning the synthesis of 
an observer to estimate the state of linear system in 
the first part and the state of nonlinear system 
submitted to unknown outputs in the second part. 
Numerical example is given in section 5 to illustrate 
the result. The design of a multiple observer with 
unknown inputs and outputs is studied is section 6. 
Simulation example is given in section 7 to show the 
validity of the proposed method. 
 
 
2 On the multiple model approach  
The principle of the multiple model approach is 
based on the reduction of the system complexity by 
the decomposition of its operation space in a finite 
number of operation zones, each one is 
characterized by a local model or sub-model that 
describes the system behavior around an operation 
point. The behavior of the nonlinear system is 
obtained by the sum of those of the local models 
each weighted by its respective weighting function. 

Two main structures of multiple models, 
uncoupled structure and coupled one can be 
distinguished according to nature of the coupling 
between local models [31, 14]. The coupled 
structure or the Takagi-Sugeno structure provides a 
useful tool to represent with a good precision a large 
class of nonlinear systems [35]. 

The multiple model representation is given by: 

[ ]

[ ]

M

m i i m i i
i 1
M

m i i m i i
i 1

x (t)   ( (t)) A  x (t)  B  u(t)  D
 

y (t)   ( (t)) C  x (t)  E  u(t)  N

=

=


= µ ξ + +


 = µ ξ + +


∑

∑



 (1) 

where µi(ξ(t)) are the activation functions and ξ(t) is 
the decision vector which may depend on the known 
input and/or the measured state variables. 

If the output ym(t) is linear, i.e.                          
(C1 = C2 = … = CM = C), the structure of the Takagi-
Sugeno multiple model becomes: 

[ ]
M

m i i i
i 1

x (t)   ( (t)) A  x(t)  B  u(t)
 

y(t)  C x(t)
=


= µ ξ +


 =

∑

 (2) 

where nR  x(t)∈  is the state vector, mR  u(t)∈ is the 
input vector, pR  y(t)∈ represents the measured 
output. n*n

i R  (t)A ∈  is the state matrix, m*n
i R  B ∈ is 

the input matrix and n*pR C∈ is the output matrix of 
the system. x(t) represents the vector of decision 
depending on the input. M is the number of local 
models, it depends on the precision of desired 
modelling, the complexity of the nonlinear system 
and the choice of the structure of the weighting 
functions. 

The normalized weighting functions are 
nonlinear and depend on the decision variable x (t). 
They satisfy the convexity property: 

M
( (t))  1    and    0 ( (t))  1iii 1

µ ξ = ≤ µ ξ ≤∑
=

 (3) 

 
 
3 On multiple observer with unknown 

inputs. 
In this part, one considers the state estimation of a 
nonlinear system perturbed by unknown inputs. The 
structure of that observer results of the aggregation 
of local observers [10]. The design of this multiple 
observer is based on the elimination of these 
unknown inputs. 
 
 
3.1 Principle of the state reconstruction  
Consider a nonlinear system represented by the 
following Takagi-Sugeno multiple model with 
unknown inputs: 
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[

]

M
x (t)   ( (t)) A  x(t) + m i i

i 1
                     + B  u(t) + R u(t)i

y(t)  C x(t)


= µ ξ∑

 =



 =



 (4) 

where  R  (t)u q
_

∈ , q < n is the vector of unknown 
inputs and  R is the matrix summarizing the 
influence of the unknown inputs. 

The proposed observer for the multiple model (4) 
is a linear combination of local observers. It is 
described as follows [5]: 

[

]

M
z(t)   ( (t)) N  z(t) + i i

i 1
          G  u(t)  G   L  y(t)i1 i2 i

x̂(t)  z(t) - E y(t)


= µ ξ∑

 =
 + + +


 =



 (5) 

n*n
i R  N ∈ , m*n

i1 R  G ∈ , p*n
i R  L ∈ is the gain of the ith 

local observer, n
i2 R  G ∈ is a constant vector and E is 

a matrix transformation. All these matrices or 
vectors have to be defined so that the reconstructed 
state converges asymptotically to the actual state 
x(t). 

The state estimation error, e(t), is given as 
follows: 

ˆe(t)  x(t) - x(t)  (I  EC) x(t) - z(t)= = +  (6) 

The dynamic evolution of e(t) is given by: 

_M
e(t)   ( (t))   P ( A  x(t)  B  u(t)  R u (t) )i i ii 1

              P D  - N  z(t) - G  u(t) - G  - L  y(t)i i i1 i2 i

= µ ξ + +∑ =
+ 



 (7) 

where P = I + E C 

Replacing y(t) by its expression, expression (7) 
can be written as: 

[
M

i i i i i
i 1

_

i i1 i1 i2

e(t)   ( (t))  N  e(t)  (P A  - N  - K  C) x(t)  

             (P B  - G ) u(t)  (P D  - G )  PR u (t)

=

= µ ξ +

+ + + 

∑

 (8) 

If the following conditions are fulfilled [5, 13]: 

i i i

i i i

i1 i

i2 i
M

i i
i 1

P R = 0
P = I+E C
N   P A  - K  C
L   K  - N  E
G   P B
G   P D

( (t)) N stable
=




 =


=


=
 =

 µ ξ
∑

 (9) 

Equation (7) reduces to : 

M

i i
i 1

e(t)  ( (t)) N e(t)
=

= µ ξ∑  (10) 

It is important to note that the stability of 

matrices 
M

i i
i 1

e(t)  ( (t)) N e(t)
=

= µ ξ∑  does not 

guarantee the stability of the matrix 
M

i i
i 1

( (t)) N
=

µ ξ∑  [5]. 

 
 
3.2 Global convergence of the multiple 

observer  
The state estimation error between the multiple 
model (4) and the unknown input multiple observer 
(5) converges towards zero, if all the pairs (Ai, C) 
are observable and if the following conditions are 
checked { } i   1, ..., M∀ ∈  [5]: 

TN  X  X N   0ii
N   P A  - K  Ci i i
P = I + E C
P R  0
L   K  - N  Ei i i
G   P Bi1 i
G   P Di2 i

 + 〈
 =


 =


=
 =


=

 (11) 

where n*nX  R∈  is a positive definite symmetric 
matrix. 
 
 

4 Multiple observer of a system with 
unknown outputs  

This section is devoted to the synthesis of a multiple 
observer with unknown outputs. A mathematical 
transformation is used to consider unknown outputs 
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as unknown inputs of an augmented system. In so 
doing, a multiple observer based on the elimination 
of these unknown inputs is designed. 
 
 
4.1 Linear system case  

Consider the linear model affected by a sensor fault 
described by:  

x(t) A x(t) B u(t)
y(t) C x(t)  D u(t)

= +
 = +



  (12) 

where nx(t)  R∈  is the state vector, 
mR  u(t)∈ represents the input vector, pR  y(t)∈ is the 

measured output, rR  (t)u ∈ represents the sensor 
fault. A, B, C and D are known constant matrices 
with appropriate dimensions. D is of full column 
rank. 

Consider a new state z(t) [12, 35] which satisfies 

 z(t)  -A z(t) A C x(t)  A D u(t)= + +  (13) 

where A  is a p-dimensional stable matrix. 

Let’s consider the augmented system 

TT TX(t)   x(t)      z(t) =   
 (14) 

Which can be modelled as: 

X(t)  A  X(t)  B  u(t)  D  u(t)a a a
Y(t)  C X(t)a

 = + +


=



 (15) 

where (n p)*(n p)
aA   R + +∈ , m*p)(n

a R  B +∈ , r*p)(n
a R  D +∈  

and p)(n*p
a R  C +∈ . 

These matrices are described as follows: 

[ ]

A 0 B
 A   ,   B  a a 0AC - A

0
C  C 0   and   D  a a AD

   
= =   

  

 
= =  

 

 

Sensor fault of (12) appears as an actuator fault 
of the augmented system (15). 
 
 

4.2 Nonlinear system case  
The objective is to extend the method described in 
section (IV.1) to a nonlinear system represented by 
multiple model as: 

[ ]
M

x(t)   ( (t)) A  x(t)  B  u(t)i i i
i 1

y(t)  C x(t)  B  u(t)i


= µ ξ +∑

 =
 = +



 (16) 

where nR x ∈ , mR u ∈ and pR y ∈  denote 
respectively the state, the input and the output 
vector, rR u∈ represents the sensor fault. Ai, Bi, C et 
D are known constant matrices with appropriate 
dimensions. The matrix D is of full column rank and 
M represents the number of local models. 

Using the property given by (3), z(t) defined in 
(13) can be rewritten: 

M
z(t)   ( (t)) -A z(t)  A C x(t)  A D u(t)i

i 1
 = µ ξ + +∑  

=


 (17) 

Then the augmented system X(t) given by (14) 
can be expressed as: 

M
X(t)   ( (t))    A  X(t) i aii 1

                     B  u(t)  D  u(t)  ai a

Y(t)  C  X(t)a

 = µ ξ +∑  =
 + + 

 =



 (18) 

where 

[ ]

i i
ai ai

a a

A 0 B
A   ,   B  ,

0AC - A

0
C  C I    and    D  .

AD

   
= =   

  
 

= =  
 

 

From the obtained results, sensor fault of the 
system (16) appears as an actuator fault of the 
augmented system (18). In so doing, fault estimation 
strategy is similar to the method of conception of 
unknown inputs.  

The structure of the multiple observer is chosen 
as follows: 
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M
Z(t)   ( (t))  N  Z(t) i ii 1

             + u(t)  G  L  Y(t)i2 i

X̂(t)  Z(t) - E Y(t)

 = µ ξ +∑  =
 + + 



=



 (19) 

where nR  (t)X̂ ∈  is the state vector, pR  Y(t)∈  is the 
measured output. Ni, Gi1, Li is the gain of the local 
observer, n

i2 R  G ∈  is a constant vector and E a 
matrix of transformation. 

The augmented state estimation error is given by:  

ˆX(t)  X(t) - X(t)=  (20) 

Using (19), we have: 

X(t)  (I  EC ) X(t) - Z(t)a
        P X(t) - Z(t)

= +

=



 (21) 

with: P  I  E Ca= + . 
The dynamic of the augmented state estimation 

error is given as follows: 

ˆX(t)  X(t) - X(t)= 


   (22) 

that can be expressed as: 

[

]

M
X(t)   ( (t)) P (A  X(t)  i ai

i 1
        + B  u(t)  D  u(t) - N  Z(t) -ai a i
        - G  u(t) - G  - L  Y(t)i1 i2 i

= µ ξ +∑
=

+





 (23) 

Using the expressions of Z(t) and Y(t) given 
respectively by (19) and (18), the equation (23) 
becomes: 

M
X(t)   ( (t)) N  X(t) + i ii 1
  + (P A  - N ) X(t) - K  C  X(t) +ai i i a

  (P B - G ) u(t) - G   P D  u(t)ai i1 i2 a

= µ ξ∑ =

+ + 



 

 (24) 

with: K   N  E  Li i i= + . 

If the following conditions are satisfied: 

a

a

i ai i a

i i i

i1 ai

i2
M

i i
i 1

P D  = 0
P = I + E C
N   P A  - K  C
L   K  - N  E
G   P B
G   0

( (t)) N  stable
=




 =


=


=
 =

 µ ξ
∑

 (25) 

The reconstruction error of the augmented state 
tends asymptotically towards zero and (23) is 
reduced to: 

M
X  ( (t)) N  X(t)i i

i 1
= µ ξ∑

=



   

 
 
4.3 Global convergence of the multiple 

observer  
The augmented state estimate error converges 
towards zero, if all the pairs (Aai, Ca) are observable, 
and if the following conditions are checked 

{ } i   1, ..., M∀ ∈ : 

TN  X  X N   0                 (26a)i i
N   P A  - K  C              (26b)i ai i a
P = I+E C                             (26c)a
P D   0                               (26d)a
L   K  - N  E                      (26i i i

+ 〈

=

=

= e)

G   P B                            (26f)i1 ai
G   0                                  (26g)i2













=


=

 (26) 

where X ∈ Rn*n  is a positive definite symmetric 
matrix. Using the expression (26b), the inequality 
(26a) can be written as: 

{ }

T(P A  - K  C )  X  X (P A  - K  C )  0,ai i a ai i a
 i   1, ..., M

+ 〈

∀ ∈
 (27) 

The inequalities (27) are nonlinear with respect to 
the variables X and Ki. A numerical procedure of 
resolution by linearization is presented in the section 
below. 
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4.4 Method of resolution  
Three steps are needed to resolve the system (26): 

1.  (26.c) and (26d) determines the matrix E of 
the multiple observer. One notes that (-)

aa )D C(  is 
the pseudo-inverse of )D C( aa : 

(-)E  - D  (C   D )a a a=  (28) 

The matrix P may be deduced from (26c): 

(-)P  I - D  (C   D )  Ca a a a=  (29) 

2.  Considering the following change of 
variable: 

W   X Ki i=  (30) 

(27) is rewritten: 

{ }

T T T(P A )   X (P A )  - C  W  -  W  C )  0,ai ai a i i a
 i   1, ..., M

+ 〈

∀ ∈
 (31) 

The inequalities (31) are of LMI type and the LMI 
Matlab Tool-box may be used for it resolution. 
Then, one deduces: 

-1K   X  Wi =  (32) 

3. The other matrices defining the observer are 
deduced knowing E, P and Ki: 

N   P A  - K  C                (33a)i ai i a
L   K  - N  E                      (33b)i i i
G   P B                             (33c)i1 ai

 =

 =


=

 (33) 

 
 
5 Simulation example  
Let’s consider the multiple model, made up of two 
local models and involving two states and two 
outputs 

2
x(t)   ( (t)) A  x(t)  B  u(t)i i ii 1

_
y(t)  C x(t)  D u (t)

  = µ ξ +∑    =

 = +



 (34) 

The numerical values of matrices are defined as 
below: 

0,4 1 0,6 0,1
   A  ,  A  ,1 20,4 0,1 2 0,2

0,1 1 1 0,15
B  B ,  C   and  D .1 2 0,2 0 1 0,35

− − − −   
= =   − −   

     
= = = =     

     

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

mu1
mu2

 

Figure 1: The weighting functions. 

The decision vector depends on the system input. 
The system (34) was simulated using gaussian 
functions for the weighting functions μi. These 
functions are given in Figure (1). 
The new state z(t) is: 

2
z(t)   ( (t)) -A z(t)  A C x(t)  A D u(t)i

i 1
 = µ ξ + +∑  

=


 (35) 

with I * 30  A =  and the augmented system satisfies: 

2
X(t)   ( (t)) A  X(t) i aii 1

                 B  u(t)  D  u(t)ai a

Y(t)  C  X(t)a

 = µ ξ +∑  =
 + + 

 =



 (36) 

with: 

-0,4 1 0 0 0,1
0,4 0,1 0 0 0,2

A ,  B B ,a1 a1 a230 30 30 0 0
0 30 0 30 0

−   
   −   = = =
   −
   

−   

 

WSEAS TRANSACTIONS on SYSTEMS Nasreddine Bouguila, Wafa Jamel, Atef Khedher, Kamel Ben Othman

E-ISSN: 2224-2678 256 Issue 5, Volume 12, May 2013



0,6 0,1 0 0 0
2 0,2 0 0 0

A ,  D  a2 a30 30 30 0 4,5
0 30 0 30 10,5

1 1 1 0
and  C . a 0 1 0 1

− −   
   −   = =
   −
   

−   

 
=  
 

 

The structure of the multiple observer is: 

2
Z(t)   ( (t)) N  Z(t) i ii 1

              G  u(t)  L  Y(t)    i1 i

X̂(t)  Z(t) - E Y(t)

 = µ ξ +∑  =
 + + 



=



 (37) 

The computation of the matrices of the multiple 
observer (37) yields: 

-38,67 165,65 -38,27 204,92
-12,15 156,53 12,55 169,18

N   1 74,80 168,65 0,20 96,32
325,15 390,35 10,15 130,88

39,40 168,31 38,80 207,21
11,54 158,88 13,54 172,62

N   2 76,77 171,47 1,38 98,52
331,01 39

 
 − =
 − −
 
− − − − 

− −
− −

=
− − −
− − 6,23 8,66 134,14

 
 
 
 
 

− − 

 

1,03 -0,21 0,10
0,87 0,17 0,203L  10  *  ,  G G ,   1 11 210,47 0,10 0,675
0,54 0,10 1,575

1,04 0,21 0 0
0,89 0,17 0 0

       L     and   E  2 0,48 0,10 2,25 0
0,56 0,10 5,25 0

   
   −   = = =
   − −
   
−   

−   
  −  = =
  − −
  
− −   

. 





 

The known input of the system (34) is given in 
Figure (2). The sensor fault is defined by 

t)(2sin  0,1  )t(u π= . The simulation results are 
represented in Figures (3) and (4). As for the 
previous linear case, the proposed method provides 
good estimates of the system state. 

 

Figure 2: Known input u(t). 
 
 
6 Multiple observer of a system with 

unknown inputs and outputs  
In this section, one considers the estimation of the 
state vector of a nonlinear system represented by a 
Takagi-Sugeno multiple model and subject to the 
influence of unknown inputs and outputs, by using a 
multiple observer. 

In the case of linear systems affected by 
unknown outputs, a mathematical transformation is 
used to consider these unknown outputs in the form 
of unknown inputs of an augmented system 
(described in section 6.1.). This result is extended to 
nonlinear systems represented by multiple model. 

 

Figure 3: The state x1 and its estimate. 
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Figure 4: The state x2 and its estimate. 
 
 
6.1 Problem formulation  
Consider the Takagi-Sugeno multiple model 
affected by an actuator fault and a sensor fault 
described by: 

[

]

M
x(t)   ( (t)) A  x(t) i i

i 1
          + B  u(t)  R v(t) + di i

_
y(t)  C x(t)  D u (t)


= µ ξ +∑

 =
 +

 = +



 (38) 

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm  
represents the input vector, qR  )t(v ∈ , q < n is the 
vector of unknown inputs, pR  i )t(y ∈  represents the 
measured output, rR  )t(u ∈ is the sensor fault. 

n*n
i R  A ∈ , m*n

i R  B ∈ , q*nR  R∈ , n*pR  C∈ , r*pR   D ∈  
are known constant matrices. The weighting 
functions ))t((i ξµ  must satisfy the convexity 
conditions given by (3). 

The state z(t) given in (13) becomes, using the 
property given by (3): 

M
z(t)   ( (t)) -A z(t) ii 1
           A C x(t)  A D u(t)

= µ ξ +∑ 
=

+ + 



 (39) 

The augmented system X(t) is given by: 

[

]

M
X(t)   ( (t)) A  X(t)  i ai

i 1
          B  u(t)  D  (t) + Dai r i

Y(t)  C  X(t)a


= µ ξ +∑

 =
 + + γ


 =



 (40) 

Where 

[ ]

A 0 B
 A , B  ,  a1 aiA C A 0

R 0
C  C 0 ,  D  ,a r 0 A D

d v(t)i  D  = ,  and  (t)  .i u(t)0

   
= =   −   

 
= =  

 

   
γ =   

   

 

The sensor fault affected the system (38) appears 
as an actuator fault of the augmented system (40). 

The multiple observer that estimates the state 
vector of the multiple model is described by: 

M
Z(t)   ( (t)) N  Z(t) i ii 1

         + G  u(t)  G  L  Y(t)i1 i2 i

X̂(t)  Z(t) - E Y(t)

 = µ ξ +∑  =
 + + 



=



 (41) 

where nR  X̂∈  represents the state estimate vector, 
pR  Y(t)∈  is the measured output. Ni, Gi1, Li is the 

gain of the local observer, n
2i R  G ∈  is a constant 

vector and E is a transformation matrix. 
Let us consider the augmented state estimation 

error: 

ˆe (t)  X(t) - X(t)a =  (42) 

The state estimation error dynamics is given by: 

[

]
]

M
e (t)   ( (t)) P A  X(t) +             i aia i 1

B  u(t) + D  (t) + D N  Z(t) ai r i i
    -  G  u(t) -  G  L  Y(t)i1 i2 i

= µ ξ∑ 
=

γ

+

  +  - 



(43) 

Replacing Z(t) and Y(t) by their expressions given 
respectively by (41) and (40), the dynamic of the 
state estimation error becomes: 

[

( )
]

M
e (t)   ( (t)) N  e(t)  (P B  - G ) u(t) + i i ai i1a i 1

+ P  A  - N  - K  C  X(t) +ai ai i i a
                + P D  - G  P D  (t)i i2 r

= µ ξ +∑
=

+ γ

       



 (44) 
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with : K   N  E  Li i i= + . 

If the following conditions are satisfied: 

P D  = 0r
P = I+E Ca
N   P A  - K  Ci ai i a
L   K  - N  Ei i i
G   P Bi1 ai
G   P Di2 i
M

( (t)) N  e(t) stablei i
i 1




 =


=
 =
 =

 µ ξ∑
=

 (45) 

The equation (43) is reduced to: 

M
e (t)   ( (t)) N  e(t)i ia i 1

= µ ξ∑
=

  (46) 

Thus, the constraints (45) allow to synthesise the 
multiple observer of a system with unknown inputs 
and outputs. 
 
 
6.2 Global convergence of the multiple 

observer  
In this section, we will develop the sufficient 
conditions of the asymptotic global convergence of 
the state reconstruction. 

(46) is globally asymptotically stable if there 
exists a positive definite symmetric matrix X, such 
that [7]: 

TN  X  X N   0i i+ 〈  (47) 

The design of the observer carries out to extract 
the following theorem: 

6.2.1 Theorem: 
The state estimation error converges towards zero, 
if all the pairs (Aai, Ca) are observables and if the 
following conditions hold { } M ..., 1,   i ∈∀ : 

TN  X  X N   0                     (48a)ii
N   P A  - K  C                  (48b)i ai i a
P = I + E C                               (48c)a
P D   0                                   (48d)r
L   K  - N  E         i i i

+ 〈

=

=
=                 (48e)

G   P B                               (48f)i1 ai
G   P D                                (48g)i2 i









 =


=

 (48) 

where n*nR    X ∈ is a positive definite symmetric 
matrix. 

Using (48b), the expression (48a) can be written 
as: 

{ }

T(P A  - K  C )  X  X (P A  - K  C )    0,ai i a ai i a
 i   1, ..., M

+ 〈

∀ ∈
 (49) 

It is noted that the inequalities (49) are bilinear 
compared to variables X and Ki. To be reduced to 
the case of a linear problem, changes of variables 
are used. 
 
 
6.3 Method of resolution  
In order to solve the system (45), three steps are 
needed: 

1. The matrix E is given, using the expression (48d), 
as:  

( )E  - D (C   D )r a r
−=  (50) 

where )(
ra )D  (C −  is the pseudo-inverse of )D  (C ra  

and the matrix P is deduced from (48c): 

( )P  I - D (C   D )  Cr a r a
−=  (51) 

2. By the variable change  

W  X Ki i=  (52) 

The inequalities (49) are written as: 

{ }

T T T(P A )  X  X (P A ) - C  W  - W  C   0,ai ai a i i a
 i   1, ..., M

+ 〈

∀ ∈
 (53) 

The inequalities (53) are of LMI type and 
LMIMatlab Toolbox can be used for that resolution. 
The controller is  

-1K  X  Wi i=  (54) 

3. The other matrices defining the observer are 
deduced knowing E, P and Ki: 

N   P A  - K  C                (55a)i ai i a
L   K  - N  E                      (55b)i i i
G   P B                             (55c)i1 ai

 =

 =


=

 (55) 
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7 Numerical example  
Consider the Takagi-Sugeno multiple model with 
two local models, two states and two outputs. 

2
x(t)   ( (t)) A  x(t) i ii 1

              B  u(t)  R v(t)i
_

y(t)  C x(t)  D u (t)

 = µ ξ +∑  =
 + + 

 = +




 (56) 

The numerical values of all these matrices are: 

-0,6 -2 -0,7 -0,3
A  ,  A   , 1 20,5 -0,2 2 -0,3
 

0,1 0,3 0,2
  B  , B  ,  R  , 1 20,2 0,4 0,5
 

0,15 1 1
        D    and  C  .

0,35 0 1

   
= =   

   

     
= = =     
     

   
= =   

   

 

The vector of decision is depending on the 
system input. The weighting functions µi are 
Gaussian and given in figure (1). 

The new state z(t) satisfies the following 
equation: 

2
z(t)   (u(t)) -A z(t)  A C x(t)  A D u(t)ii 1

 = µ + +∑  
=



 (57) 

where A   20 * I= . 

The augmented system has the following 
expression: 

2
X(t)   (u(t))  A  X(t) i aii 1

                     B  u(t)  D u(t)   ai

Y(t)  C  X(t)a

 = µ +∑  =
 + + 

 =



 (58) 

with: 
0,6 2 0 0 0,1

0,5 0,2 0 0 0,2
A  ,  B  , a1 a120 20 20 0 0

0 20 0 20 0

− −   
   −   = =
   −
   

−   

 

0,7 0,3 0 0 0,3
2 0,3 0 0 0,4

   A  ,  B  = ,  a2 a220 20 20 0 0
0 20 0 20 0

T0,2 0,5 0 0 1 1 0 0
 D   and   C  .a a0 0 3 7 0 1 0 0

− −   
   −   =
   −
   

−   

   
= =   

   

 

The multiple observer able to estimate the state 
of the multiple model (56) is as follows : 

2
X(t)   (u(t)) N  Z(t) i ii 1

                 G  u(t)  L  Y(t)   i1 i

Y(t)  C  X(t) - EY(t)a

 = µ +∑  =
 + + 

 =



 (59) 

The computation of the matrices of the multiple 
observer (59) gives: 

2,5 3 0 0 0,06
3,2 2,5 0 0 0,20

N  ,   G  ,  i 110 0,0002 20 0 0
0 0,0001 0 20 0

 
2,5 4,8 0 0 0,02
4,8 2,5 0 0 0,40

N  , G  , 2 2120 0,0002 20 0 0
0 0,0001 0 20 0

1,50 2,14
2,7

 L  1

− −   
   − − −   = =
   −
   

−   

− −   
   − − −   = =
   −
   

−   

−

=

0,20 2,54
0 7,56 2,80 8,84

 , L   220 0,0002 20 0,0002
0 20,0001 0 20,0001

 
0 -0,8
0 -2

 and  E  .
0 0
0 0

   
   − −   =
   
   
   

 
 
 =
 
 
 

 

Figure (5) represents the known input and Figure 
(6) visualizes the unknown input. The sensor fault 
affecting the system is given by Figure (7). 

The simulation results are represented Figure (8). 
The proposed method provides good estimates of 
the system state. Indeed, the convergence of the 
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state vector of the multiple observer towards those 
of the Takagi-Sugeno multiple model is quite good. 

 

Figure 5: The known input u. 

 

Figure 6: The unknown input. 
 
 
8 Illustration example: Three column  
The chosen system is a hydraulic process composed 
of three columns [1, 38]. The process is effected by 
an actuator fault v(t) and a sensor fault u(t) . The 
three columns T1, T2 and T3 have equal section A 
and connected to each others by identical section 
connectors Sn. The considered output is that of the 
column T2; it ensures to empty the columns filled by 
pumps 1 and 2 with respective flows Q1(t) and Q2(t). 
Some combinaison of three levels are measured. The 
connexions between columns are assured by certain 
valves which are tuned manually to activate or not 
the corresponding pump. The three levels x1, x2 and 
x3 satisfy     x1 > x2 > x3. The non linear model 
describing the process behaviour is given by [38]: 

( )

( )

[ ]

dx 1/ 21A (t) =  -  S 2g x (t) - x (t)1 n 1 3dt
                    + Q (t) + Qf  u(t)1 1

dx 1/ 22A (t) =  -  S 2g x (t) - x (t)3 n 3 2dt
1/ 2    -  S 2g x (t)  +  Q (t) + Qf  u(t)2 n 2 2 2

dx3A (t) =  -  S 2g x (t) - 1 n 1dt

 α  

 α  

α

α ( )

( )

1/ 2x (t)3

1/ 2    -  S 2g x (t) - x (t)  +  Qf  u(t)3 n 3 2 3















   

  α  

 (60) 

where α1 = α2 = 0.78, α3= 0.75, g = 9.81 ms-2, Sn = 5 
10-5 m2, Qfi = 10-4  and  A = 0.0154 m2. u(t)  is an 
unknown input. i iQf / f (t),  i = 1, 2, 3 are the additive 
massic flows in the columns. 

 

Figure 7. Three columns system. 

The multi-model associated to the non linear 
system (60) is: 

[

]

4
x(t)   ( (t)) A  x(t) i i

i 1
                B  u(t)  R v(t) + d    i i

_
y(t)  C x(t)  D u (t)

= µ ξ +∑
=

+ +

= +



 (61) 

The matrices Ai, Bi and di are computed by 
linearizing model (60) around four set points chosen 
in system functioning zone. The numerical values of 
these matrices are: 
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1

2

-0.0109 0 0.0109
 A  0 0.0206 0.0106 ,  

0.0109 0.0106 0.0215

-0.0110 0 0.0110
   A  = 0 -0.0205 0.0104 ,

0.0110 0.0104 -0.0215

-0.0084 0 0.0084
   A  0 0.0206 0.0095 ,3

0.0084 0.0095 0.0180
 

   A

 
 = − 
 − 

 
 
 
  

 
 = − 
 − 

-0.0085 0 0.0085
 = 0 -0.0205 0.0095 ,4

0.0085 0.0095 -0.0180

-2.86 -2.86
-3 -3d  10  * -0.38 , d  10  * -0.34 ,1 2

0.11 0.038

-3.7 -3.67
-3 -3 d  10  * -0.14 , d  10  * -0.183 4

0.69 0.62

 
 
 
  

   
   = =   
      

  
 = = 
   

,

1 0 1 1 1
   B  = 1/A * 0 1  and  C = 1 0 0 .i

0 0 0 1 0


 
 
 

   
   
   
      

 

We choose A  30 * I1 =    where I is the             

3-identity matrix. 

The known input u(t) is defined by:  
T

u(t)  u (t)  u (t)1 2
 =   

, 

u (t) = 0.5 sin (0.15 t)1
u (t) = 0.25 sin (0.25 t)2

π
 π

 

The unknown input v(t) is defined by: 

0.01 * sin ( t),  0 <  t  40s
v(t) = 

0,   t > 40s
π ≤




 

The sensor fault u(t)  is: 

0,  t  10s
u(t) = 0.1*sin (0.2 t),  10s < t  45s

0,  t > 45s

≤
 π ≤



 

The multiple observer gains are: 

19.5381 73.2584 51.0916
22.0748 93.8480 69.0445
31.7600 117.6084 88.2063

 L ,   1 30.0183 0.0683 0.0509
0.0016 30.0058 0.0049

0.0004 0.0014 29.9990

19.5180 73.1819 51.0341
22.0655 93.811

L = L2 4

− 
 − − 
 − −

=  
− − 

 −
 

−  

−
−

=

1 69.0205
31.7663 117.6330 88.2247

,
30.0183 0.0683 0.0509

0.0016 30.0058 0.0049
0.0003 0.0014 29.9990

19.6094 73.5038 51.2952
22.1074 93.8275 68.9971
32.1424 119.0394 89.2798

    L3 30.0184 0.

 
 − 
 −
 

− − 
 −
 

−  

−
− −
− −

=
−

.
0684 0.0509

0.0016 30.0058 0.0049
0.0004 0.0014 29.9990

 
 
 
 
 

− 
 −
 

−  

 

In Figure 8 we plot the states and their 
estimations and Figure 9 draws the state estimation 
error. Figure 10 illustrates the sensor fault and figure 
11 shows the evolution of state components (x1 and 
x2) for the Takagi-Sugeno multiple model  described 
by relation (56) and the multiple observer given by 
relation (59). We note the perfect concordance 
between the state components and heir estimates by 
the multiple observer. 
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Figure 8: States and their estimations. 

0 10 20 30 40 50
-1
0
1
2

 

 

0 10 20 30 40 50
-1
0
1
2

 

 

0 10 20 30 40 50
-1
0
1
2

 

 

ea1

ea2

ea3

 

Figure 9: State estimation error. 

 

Figure 10: The sensor fault. 

 

Figure 11: Multiple model (56) and multiple 
observer (59). 

 
 
9 Conclusion  
Using a multiple model representation, this paper 
has proposed new methods to design multiple 
observers for nonlinear systems submitted to 
unknown inputs and outputs. A mathematical 
transformation is used in order to formulate 
unknown outputs as unknown inputs. The proposed 
method is based on the principle of unknown input 
multiple observer which used the principle of the 
interpolation of local observers. The synthesis 
conditions of that observer are expressed in LMI 
terms. The simulation results show that we succeeds 
in making the estimation of state design the observer 
in spite of the existence of disturbances.  
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