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Abstract: - This paper uses an alternative approach to reexamine a prior study on joint determination of 
manufacturing lot-size and shipment policy in a vendor-buyer system with rework process and an improving 
delivery plan. The proposed method is a straightforward approach in terms of algebraic derivations. It is 
different from the conventional method that needs to apply the first-order and second-order differentiations to 
the system cost function for proof of convexity before derivation of the optimal production-shipment policy. 
The research result obtained in this paper is confirmed to be identical to what was derived by the use of the 
conventional method. The proposed algebraic approach may assist practitioners who may not have sufficient 
knowledge of differential calculus in understanding the solution procedures of such a real world integrated 
production-shipment problem in supply chain environments. 
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1  Introduction 
In most inventory replenishment systems, ‘when to 
order?’ and ‘how many to order?’ are the two 
fundamental questions to be answered most often. 
The objective of these issues are obvious, that is to 
minimize total related cost [1-2]. In manufacturing 
firms when products are made in the plant, the 
questions become ‘when to start a production run?’ 
and ‘what will be the production lot-size?’ [3-4]. 

Chiu et al. [5] studied joint determination of 
replenishment lot-size and shipment policy for a 
vendor-buyer integrated system with rework and an 
improving delivery plan. Their work is as extension 
of conventional economic production quantity (EPQ) 
model [6] with additional considerations on product 
quality assurance and a special cost-saving delivery 
policy. The classic EPQ model assumes that all 
items produced are of perfect quality. However, in 
real world systems due to process deterioration 
and/or many other factors, generation of defective 
items is inevitable. Many research articles have been 

carried out to address the imperfect quality issue in 
production systems [7-14]. Shih [8] extended two 
inventory models to the case where the proportion of 
defective units in the accepted lot is a random 
variable with known probability distributions. 
Optimal solutions to the modified system were 
developed and comparisons with the traditional 
models were also presented via numerical examples. 
de Kok [9] considered a lost-sales production/ 
inventory control model with two adjustable 
production rates to meet demand. He obtained the 
practical approximations for optimal switch-over 
levels to such a model under the service level 
constraints. Mak [10] developed a mathematical 
model for an inventory system in which the number 
of units of acceptable quality in a replenishment lot 
is uncertain and the demand is partially captive. It 
was assumed that the fraction of the demand during 
the stock-out period which can be backordered is a 
random variable whose probability distribution is 
known. The optimal replenishment policy is 
synthesized for such a system. A numerical example 
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was used to illustrate the theory. The results 
indicated that the optimal replenishment policy is 
sensitive to the nature of the demand during the 
stock-out period. Makis [11] studied the optimal lot 
sizing and inspection policy for an EMQ model with 
imperfect inspections. He assumed that the process 
can be monitored through inspections, and both the 
lot size and the inspection schedule are subject to 
control. The in-control periods are assumed to be 
generally distributed and the inspections are 
imperfect (that is the true state of the process is not 
necessarily revealed through an inspection). By 
using the Lagrange's method and by solving a 
nonlinear equation, a two-dimensional search 
procedure was proposed and employed to find the 
optimal lot sizing and inspection policy. Chiu et al. 
[14] employed mathematical modeling along with a 
searching algorithm to solve the manufacturing run 
time problem with defective rate and random 
machine breakdown. They derived the optimal run 
time that minimized the long-run average cost for 
their proposed model. 

Nonconforming products sometimes can be 
reworked and repaired to reduce total production 
costs [15-21]. Examples for such situations can be 
found in plastic injection molding, or in printed 
circuit board (PCB) assembly, sometimes employs 
rework as an acceptable process to increase level of 
quality. Yum and McDowell [15] considered the 
allocation of inspection effort problem for serial 
system as a 0-1 mixed integer linear programming 
(MILP) problem. Their model permitted any 
combination of scrap, rework, or repair at each 
station and allowed the problem to be solved using 
standard MILP software packages. Yu and Bricker 
[16] presented an informative application of Markov 
Chain Analysis to a multistage manufacturing 
problem. They also pointed out an error in the 
literature which had remained undetected for many 
years. Teunter and Flapper [18] considered a 
single-stage single-product production system. 
Produced units was assumed to be non-defective, 
reworkable defective, or non-reworkable defective. 
The system switches between production and rework. 
After producing a fixed number (N) of units, all 
reworkable defective units are reworked. They also 
assumed that the rework time and the rework cost 
increase linearly with the time that a unit is held in 
stock. For a given N, they derived an explicit 
expression for the average profit, using this 
expression the optimal value for N can be 
determined numerically. Li [20] presented an 
overlapping decomposition method to approximate 
the throughput of production systems with rework 
loops. He decomposed the system into overlapped 

serial production lines, with the overlapping 
machines modified to accommodate the interactions 
with machines and buffers in other lines. The 
convergence of the iterative procedure and the 
uniqueness of the solution were proved analytically. 
The accuracy of the estimate was demonstrated 
numerically and illustrated by a case study at an 
automotive assembly plant. Chiu et al. [21] 
examined a finite production rate model with scrap, 
rework and stochastic machine breakdown. 
Stochastic breakdown rate and random defective rate 
along with the reworking of nonconforming items 
were assumed in their study. The objective was to 
derive the optimal production run time that minimize 
the long run average production cost. 

In vendor-buyer supplier chains environments, 
multiple or periodic deliveries of finished products 
are commonly adapted in lieu of continuous issuing 
policy as assumed by the classic EPQ. Schwarz [22] 
considered a problem of one-warehouse N-retailer 
inventory system. The objective was to determine 
the optimal stocking policy that minimizes system 
cost. He derived some necessary properties for the 
optimal policy as well as the optimal solutions. 
Heuristic solutions were also provided for the 
general problem and tested against analytical lower 
bounds. Many studies have since been carried out to 
address various aspects of supply chains 
optimization [23-42]. Selected articles are surveyed 
as follows. Banerjee and Banerjee [24] developed an 
analytical model for a coordinated, orderless 
inventory system for the single product, single 
vendor, multiple purchasers case. Such a system was 
made practical in electronic data interchange at the 
time, for the exchange of information between 
trading partners. On the basis of the potential 
benefits of this technology, they proposed a common 
cycle replenishment approach, where the supplier 
alone makes all replenishment decisions, without 
ordering on the part of the customers. Their model 
and concepts were demonstrated by a simple 
numerical example and concluded that EDI-based 
inventory control can be attractive from economic, 
as well as other standpoints. Sarker and Parija [25] 
considered a manufacturing system which procures 
raw materials from suppliers and processes them to 
convert to finished products. They proposed a model 
that was used to determine an optimal ordering 
policy for procurement of raw materials, and the 
manufacturing batch size to minimize the total cost 
for meeting equal shipments of the finished products, 
at fixed intervals, to the buyers. Hall [26] examined 
how attributes of the distribution system affect 
inventory accounting and EOQ/EPQ decisions. The 
paper developed a range of "characteristic inventory 
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curves" to represent situations encountered in 
integrated production/ distribution systems. The 
paper then showed how system attributes define the 
inventory curve, and the resulting EOQ/EPQ 
equation. He concluded: (1) accounting for 
inventory at both the origin and destination can yield 
significantly different EOQ/EPQ results, but 
relatively modest regret; and (2) failure to account 
for consolidation effects among multiple products 
sent to a common destination can lead to substantial 
errors. Sarmah et al. [29] considered coordination 
between two different business entities is an 
important way to gain competitive advantage as it 
lowers supply chain cost, so they reviewed literature 
dealing with buyer vendor coordination models that 
have used quantity discount as coordination 
mechanism under deterministic environment and 
classified the various models. An effort was also 
made to identify critical issues and scope of future 
research. Chiu et al. [32] incorporated a multi- 
delivery policy and quality assurance into an 
imperfect economic production quantity (EPQ) 
model with scrap and rework. They assumed the 
reworking of repairable defective items in each 
production run and the finished items can only be 
delivered to customers if the whole lot is quality 
assured after rework. The expected integrated cost 
function per unit time was derived. A closed-form 
optimal batch size solution to the problem was 
obtained. Hoque [35] considered models of 
delivering a single product to multiple buyers when 
the set-up and inventory costs to the vendor are 
included. His models assume a close relationship 
between a manufacturer and buyers for a costless 
way of benefit sharing. Three models were 
developed, two of which transfer with equal batches 
and the third with unequal batches of the product. 
Optimal solution techniques are presented, a 
sensitivity analysis of the techniques is carried out, 
and several numerical problems are solved to 
support the analytical findings. A comparative study 
of the results shows that the supply by unequal 
batches performs better. This study also highlights 
the limitation of methods used in obtaining the least 
minimal total cost in the single-vendor single-buyer 
scenario, and the benefit of an integrated inventory 
is also discussed. 

Chiu et al. [5] studies joint determination of 
manufacturing lot-size and shipment policy in a 
vendor-buyer system with rework process and an 
improving delivery plan. They used the differential 
calculus along with Hessian matrix equations to 
derive the optimal production batch size and number 

of deliveries for such a specific vendor-buyer system 
with rework. This paper employs an algebraic 
approach [43-46] to reexamine their model. A 
straightforward algebraic derivation is presented 
here with the intention of helping practitioners (who 
may not have sufficient knowledge of differential 
calculus) on understanding the solution procedures 
of such a real world integrated production-shipment 
problem. As future research we would like to use 
agent based modeling to model the supply chain 
domain as this techniques provided significant 
results in other complex domains such as financial 
markets [47]. 

 
 

2  Problem Description & Modelling 
As stated in previous section, this study uses an 
alternative approach to reexamine model in Chiu et 
al. [5]. To ease the readability, problem is described 
below using the exact notation as in [5]. Consider a 
real life manufacturing system where process may 
randomly produce a portion x of defective items at a 
rate d. Under regular operating schedule, the 
constant production rate P is larger than the sum of 
demand rate λ and production rate of defective items 
d, where (P-d-λ)>0. All defective items are 
considered to be repairable and they are reworked 
and repaired at a rate P1 within the same cycle when 
regular production ends. All end items are delivered 
to the buyer by a specific cost saving (n+1) shipment 
plan. Under such a delivery policy, the first 
installment of finished products is delivered to 
customer for satisfying demand during uptime t1 and 
rework time t2 (see Fig. 1). Then, after the rework 
process when the remaining of the production lot is 
quality assured, fixed quantity n installments of the 
rest of finished items are delivered to customer at a 
fixed interval of time during the production 
downtime t3. 

Figure 1 illustrates vendor’s on-hand inventory 
level of perfect quality items in the proposed n+1 
delivery model [5]. Figure 2 depicts the on-hand 
inventory level of defective items in the proposed 
n+1 delivery model. Figure 3 depicts buyer’s stock 
level in the proposed model [5]. 

The cost parameters related to the proposed model 
include unit production cost C, vendor’s unit holding 
cost h, setup cost K per production run, buyer’s unit 
holding cost h2, unit rework cost CR, holding cost h1 
for each reworked item, fixed delivery cost K1, 
delivery cost CT per item shipped. Additional 
variables are 
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Fig. 1 The vendor’s on-hand inventory of perfect quality items for the proposed 

model with rework and (n+1) delivery policy [5] 
 

 

Fig. 2 The on-hand inventory of defective items in the proposed 
model with rework and (n+1) delivery policy 

 

 
Fig. 3 The stock level at buyer side for the proposed model with rework 

and (n+1) delivery policy [5] 
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t = the production time needed for producing 
enough perfect items for satisfying 
customer’s demand during t1 and t2, 

t1 = the production uptime, 

t2 = rework time, 

t3 = production downtime, time to deliver the 
remaining quality assured finished 
products, 

Q = production lot size per cycle, 

tn = a fixed interval of time between each 
installment of products delivered during t3, 

T = cycle length, 

H = the level of on-hand inventory for 
satisfying product demand during 
vendor’s uptime t1 and rework time t2, 

H1 = maximum level of on-hand inventory in 
units when regular production ends, 

H2 = the maximum level of on-hand inventory 
in units when rework process finishes, 

n  = number of fixed quantity installments of 
the remaining finished items to be 
delivered to customer during t3, 

I(t) = the level of on-hand inventory of perfect 
quality items at time t, 

Id(t) = on-hand inventory of defective items at 
producer’s side at time t, 

Ic(t) = on-hand inventory at buyer’s side at time 
t, 

TC(Q,n+1) = total production-inventory-delivery 
costs per cycle for the proposed model, 

E[TCU(Q,n+1)] = the long-run average costs per 
unit time for the proposed model. 

I  = demand during production time t, i.e. I=λt. 

D  = demand during production uptime t1, i.e. 
D=λt1. 

From Figures 1 and 2, the following basic 
equations can be obtained. 

Q
T

λ
=                 (1) 

1 2
1

H HQ
t

P P d

+
= =

−
            (2) 

2

1

xQ
t

P
=                 (3) 

( )3 1 2nt nt T t t= = − +          (4) 

1 2( )t t
t

P d

λ +
=

−
             (5) 

1dt xQ=                (6) 

( )1 2

1

Q xQ
H t t

P P
λ λ

 
= + = + 

 
        (7) 

( ) ( )1 1 21H Q x t tλ= − − +          (8) 

2 1 1 2H H Pt= +               (9) 

Thus, total production-inventory-delivery cost per 
cycle TC(Q,n+1) of the proposed model consists of 
the variable manufacturing cost, the setup cost, 
variable rework cost, the quality assurance costs 
include variable repairing costs and holding costs for 
reworked items, (n+1) fixed and variable shipping 
cost, inventory holding costs for vendor for all end 
items produced in t1, t2, and t3, and buyer’s holding 
cost. 
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(10) 

Taking into the randomness of defective rate x, 
one can use the expected values of x in cost analysis 
and obtains E[TCU(Q,n+1)] as follows (the same as 
Eq. (7) in [5]). 
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2
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1 1

; 
1

x
E E E E

x x
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       (12) 

 
 

3  The Algebraic Approach 
In this section, an algebraic approach is presented to 
derive the optimal replenishment lot size and the 
optimal number of deliveries. It is noted that no 
differential calculus is involved in the proposed 
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solution process. It is also noted that Eq. (11) has 
two decision variables Q and n, and they are in terms 
of coefficients associated with nQ

-1, Q
-1, Q, and 

Qn
-1. 

  First let a1, a2, a3, a4 and a5 denote the following: 

( )1 R T
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Thus, Eq. (11) becomes 
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(18) 
Further rearrangement, Eq. (18) becomes 
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Thus, E[TCU(Q,n+1)] is minimized, if the second 
and the third square terms in Eq. (21) equal zeros. 
That is 
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4  Results and Discussion 
Substituting Eqs. (13) to (17) in Eq. (25) and with 
further derivations, one has 
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Because n only takes on integer value, let n
+ 

denote the smallest integer greater than or equal to n 
(derived from Eq. (27)) and n

- denote the largest 
integer less than or equal to n. Therefore, n* is 
determined to be either n+ or n-, a known constant. 
Therefore, one can now retreat E[TCU(Q,n+1)] as a 
cost function with single decision variable Q. 
Similarly, considering n as constant, Eq. (11) can be 
rearranged as 
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Thus, E[TCU(Q,n+1)] is minimized if the second 
square term in Eq. (31) equals zero. Or 
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Substituting Eqs. (13) to (17) in Eq. (32), and with 
further derivations, one has 
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(34) 
One notes that Eqs. (34) and (27) are identical to 

that in Chiu et al. [5]. It follows that the long-run 
average cost E[TCU(Q,n+1)] is 

( ) 1 1 2, 1 2E TCU Q n a z z+ = +        (35) 
 

5  Numerical Example 
This section verifies the results by using the 

same numerical example in [5]. Recall the following 
system parameters: 

λ = 3400 units per year, 

P = 60,000 units per year, 

x = random defective rate which follows a 
uniform distribution over interval [0, 0.3], 

P1 = 2,200 units per year, 

C = $100 per item, 

K = $20,000 per production run, 

CR = $60, repaired cost for each item reworked, 

h = $20 per item per year, 

h1 = $40 per item reworked per unit time, 

h2 = $80 per item kept at the customer’s end, 

K1 = $4,350 per shipment, a fixed cost, 

CT = $0.1 per item delivered. 

Applying Eq. (27) one obtains n*=2.44, since n* 
only take on integer value one can use two adjacent 
integers, plugging them in Eq. (34) and then into Eq. 
(35). The resulting costs are E[TCU(2265,3)] 
=$470159 and E[TCU(2562,4)]=$470200. 

Therefore, the optimal production-shipment 
policy is (Q,n+1)= (2265,3), and the long-run 
average cost is $470,159. Total cost for the proposed 
model results a reduction of $17,458 or 13.41% 
savings of total other related costs. Figure 4 
illustrates the effect of the expected defective rate 
E[x] on the long-run average cost function 
E[TCU(Q,n+1)]. It is noted that the aforementioned 
solution procedure can be applied to any given 
system of the same characteristics. 
 

 

Fig. 4 Effects of random defective rate on the long-run average cost 
function E[TCU(Q,n+1)] 
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One notes that as x increases, cost E[TCU(Q,n+1)] 
increases significantly due to the quality assurance 
cost (i.e. the cost for reworking the nonconforming 
products). 
 
 

6 Conclusions 
Chiu et al. [5] used the conventional method, the 
differential calculus along the Hessian matrix 
equations to derive the optimal production-shipment 
policy a manufacturing system with rework process 
and a specific cost saving delivery plan in a 
vendor-buyer supply chains environments. This 
paper presents an alternative approach to reexamines 
the solution procedure of their problem without have 
to refer differential calculus. Such a straightforward 
algebraic approach assist practitioners who may not 
have sufficient knowledge of differential calculus in 
understand with ease such an integrated production- 
shipment system. 

For future research, one interesting direction will 
be to examine the effect of random demand for the 
same model. 

 
 

Acknowledgements 
Authors thank National Science Council of Taiwan 
for supporting this research under Grant Number: 
NSC 100-2410-H-324-007-MY2. Authors would like 
to express their sincere appreciation to anonymous 
reviewers for their valuable comments and 
suggestions to the earlier version of manuscript. 
 

 

References: 

[1] H. Wagner, T. M. Whitin, Dynamic version of 

the economic lot size model. Management 

Science, Vol. 5, 1958, pp. 89-96. 

[2] G. Hadley, T. M. Whitin, Analysis of Inventory 

Systems, Prentice-Hall, Englewood Cliffs, NJ., 
USA, 1963. 

[3] F. S. Hillier, G. J. Lieberman, Introduction to 

Operations Research. McGraw Hill: New York; 
pp. 941-958, 2001. 

[4] S. Nahmias, Production & Operations Analysis, 
McGraw-Hill Inc., New York, 2009. 

[5] Y-S. P. Chiu, Y-C. Lin, S. W. Chiu, C-K. Ting, 
Joint determination of lot-size and shipment 
policy for a vendor-buyer system with rework 
and an improving delivery plan. African 

Journal of Business Management, Vol. 6(1), 
2012, pp. 333-340. 

[6] E. W. Taft, The most economical production lot. 

Iron Age, Vol. 101, 1918, pp. 1410–1412. 
[7] R. E. Barlow, F. Proschan, Mathematical 

Theory of Reliability. Wiley: New York; 1965. 
[8] W. Shih, Optimal inventory policies when 

stock-outs result from defective products. 
International Journal of Production Research, 
Vol. 18 (6), 1980, pp. 677-686. 

[9] A. G. de Kok, Approximations for a lost-sales 
production/inventory control model with 
service level constraints. Management Science, 
Vol. 31, 1985, pp. 729-737. 

[10] K. L. Mak, Inventory control of defective 
products when the demand is partially captive. 
International Journal of Production Research, 
Vol. 23 (3), 1985, pp. 533-542. 

[11] V. Makis, Optimal lot sizing and inspection 
policy for an EMQ model with imperfect 
inspections. Naval Research Logistics, Vol. 45 
(2), 1998, pp. 165-186. 

[12] F-T. Cheng, C-K. Ting, Determining economic 
lot size and number of deliveries for EPQ 
model with quality assurance using algebraic 
approach. International Journal of the Physical 

Sciences, Vol. 5 (15), 2010, pp. 2346–2350. 
[13] C-H. Chen, C-L. Lu. Optimum profit model 

based on order quantity, product price, and 
process quality level. Expert Systems with 

Applications, Vol. 38 (6), 2011, pp. 7886-7893. 
[14]  Y-S. P. Chiu, H-D. Lin, H-H. Chang, 

Mathematical modeling for solving 
manufacturing run time problem with defective 
rate and random machine breakdown. 
Computers & Industrial Engineering, Vol. 60 
(4), 2011, pp. 576-584. 

[15] B. J. Yum, E. D. McDowell, Optimal inspection 
policies in serial production system including 
scrap, rework, and repair: an MILP approach. 
International Journal of Production Research, 
Vol. 25, 1987, pp. 1451-1464. 

[16] K-Y. C. Yu, D. L. Bricker, Analysis of a markov 
chain model of a multistage manufacturing 
system with inspection, rejection, and rework. 
IIE Transactions, Vol.  25 (1), 1993, pp. 
109-112. 

[17] C-C. Chern, P. Yang, Determining a Threshold 
Control Policy for an Imperfect Production 
System with Rework Jobs. Naval Research 

Logistics, Vol. 46 (2-3), 1999, pp. 273-301. 
[18] R. H. Teunter, S. D. P. Flapper, Lot-sizing for a 

single-stage single-product production system 
with rework of perishable production 
defectives. OR Spectrum, Vol. 25 (1); 2003, pp. 
85-96. 

[19]  A.M.M. Jamal, B.R. Sarker and S. Mondal, 
Optimal manufacturing batch size with rework 

WSEAS TRANSACTIONS on SYSTEMS
Yuan-Shyi Peter Chiu, Feng-Tsung Cheng, 
Kuang-Ku Chen, Huei-Hsin Chang

E-ISSN: 2224-2678 160 Issue 5, Volume 11, May 2012



 

process at a single-stage production system. 
Computers and Industrial Engineering, Vol. 47, 
2004, pp.77-89. 

[20] J. Li, Performance analysis of production 
systems with rework loops. IIE Transactions, 
Vol. 36 (8), 2004, pp. 755-765. 

[21]  Y-S. P. Chiu, K-K. Chen, F-T. Cheng, M-F. Wu, 
Optimization of the finite production rate model 
with scrap, rework and stochastic machine 
breakdown. Computers and Mathematics with 

Applications, Vol. 59 (2), 2010, pp. 919-932. 
[22] L. B. Schwarz, A simple continuous review 

deterministic one-warehouse N-retailer 
inventory problem. Management Science, Vol. 
19, 1973, pp. 555-566. 

[23] S. K. Goyal, Integrated Inventory Model for a 
Single Supplier - Single Customer Problem, 
International Journal of Production Research, 
Vol. 15, 1977, pp. 107-111. 

[24] Banerjee, A., Banerjee, S. Coordinated 

order-less inventory replenishment for a vendor 

and multiple buyers. Int. J. Tech. Manage, Vol. 

7, 1992, pp. 328-336.  

[25] B. R. Sarker and G. R. Parija, An Optimal 
Batch Size for a Production System Operating 
Under a Fixed-Quantity, Periodic Delivery 
Policy, Journal of the Operational Research 

Society, Vol. 45, 1994, pp. 891–900. 
[26] R. W. Hall, On the integration of production 

and distribution economic order and production 
quantity implications. Transportation 

Research, Vol. 30 (5), 1995, pp. 387-403. 
[27] R. M. Hill, On an optimal batch size for a 

production system operating under a 
fixed-quantity, periodic delivery policy. Journal 

of the Operational Research Society, Vol. 46 
(2), 1995, pp. 271-273. 

[28] U. Buscher, G. Lindner, Optimizing a 
production system with rework and equal sized 
batch shipments. Computers & Operations 

Research, Vol. 32, 2005, pp. 515-535. 
[29] S. P. Sarmah, D. Acharya, S. K. Goyal, Buyer 

vendor coordination models in supply chain 
management. European Journal of Operational 

Research, Vol. 175 (1), 2006, pp. 1-15. 
[30] G. K. Janssens, K. M. Ramaekers, A linear 

programming formulation for an inventory 
management decision problem with a service 
constraint. Expert Systems with Applications, 
Vol. 38 (7), 2011, pp. 7929-7934. 

[31] S-L. Kim, A. Banerjee, J. Burton, Production 
and delivery policies for enhanced supply chain 
partnerships. International Journal of 

Production Research, Vol. 46 (22), 2008, pp. 
6207-6229. 

[32] Y-S. P. Chiu, S. W. Chiu, C-Y. Li, C-K. Ting, 
Incorporating multi-delivery policy and quality 
assurance into economic production lot size 
problem. Journal of Scientific & Industrial 

Research, Vol. 68 (6), 2009, pp. 505-512. 
[33] Y-S. P. Chiu, S-C. Liu, C-L. Chiu, H-H. Chang, 

Mathematical modelling for determining the 
replenishment policy for EMQ model with 
rework and multiple shipments. Mathematical 

and Computer Modelling, Vol. 54 (9-10), 2011, 
pp. 2165-2174. 

[34] Y-S. P. Chiu, F-T. Cheng, H-H. Chang, 
Remarks on optimization process of 
manufacturing system with stochastic 
breakdown and rework. Applied Mathematics 

Letters, Vol. 23 (10), 2010, pp. 1152-1155. 
[35] M. A. Hoque, Synchronization in the 

single-manufacturer multi-buyer integrated 
inventory supply chain. European Journal of 

Operational Research, Vol. 188 (3), 2008, pp. 
811-825. 

[36] S.W. Chiu, Optimization problem for EMQ 
model with backlog level constraint. WSEAS 

Transactions on Information Science & 

Applications, Vol. 4 (4), 2007, pp.687-692. 
[37] Y-S.P. Chiu, F-T. Cheng, and C-K. Ting, 

Algebraic methods for optimizing EPQ model 
with rework and scrap. WSEAS Transactions 

on Systems, Vol. 6 (11), 2007, pp.1319-1323. 
[38] S. W. Chiu, J-C. Yang, S-Y. C. Kuo, 

Manufacturing lot sizing with backordering, 
scrap, and random breakdown occurring in 
inventory-stacking period. WSEAS Trans. on 

Mathematics, Vol. 7 (4), 2008, pp.183-194. 
[39] Y-S. P. Chiu, S-S. Wang, C-K. Ting, H-J. 

Chuang, Y-L. Lien, Optimal run time for EMQ 
model with backordering, failure-in-rework 
and breakdown happening in stock-piling time. 
WSEAS Transactions on Information Science & 

Applications, Vol. 5 (4), 2008, pp.475-486. 
[40] K-K. Chen, Y-S. P. Chiu, C-K. Ting, 

Producer’s replenishment policy for an EPQ 
model with rework and machine failure taking 
place in backorder reloading time. WSEAS 

Transactions on Mathematics, Vol. 9 (4), 2010, 
pp. 223-233 

[41] F-T. Cheng, H-H. Chang, S.W. Chiu, Economic 
production quantity model with backordering, 
rework and machine failure taking place in 
stock piling time. WSEAS Transactions on 

Information Science & Applications, Vol. 7, 
Issue 4, 2010, pp. 463-473. 

[42] C. Ciufudean, Optimizing Distributed Systems 
Using Swarm Intelligence, 10th WSEAS 
International, Conference on Mathematical 

WSEAS TRANSACTIONS on SYSTEMS
Yuan-Shyi Peter Chiu, Feng-Tsung Cheng, 
Kuang-Ku Chen, Huei-Hsin Chang

E-ISSN: 2224-2678 161 Issue 5, Volume 11, May 2012



 

Methods And Computational Techniques In 
Electrical Engineering (MMACTEE'08), 
Technical University of Sofia, Bulgaria, May 
2-4, 2008, pp.114-120, Vol. I, ISBN: 
978-960-6766-60-2, ISSN 1790-5117. 

[43] Y-S.P. Chiu, H-D. Lin, H-H Chang, 
Determination of production-shipment policy 
using a two-phase algebraic approach. Maejo 

Int. J. of Science and Technology, Vol. 6 (1), 
2012, pp. 119-129. 

[44] S. W. Chiu, Production lot size problem with 
failure in repair and backlogging derived 
without derivatives. European Journal of 

Operational Research, Vol. 188, 2008, pp. 
610-615. 

[45] H-D. Lin, Y-S. P. Chiu, C-K. Ting, A note on 
optimal replenishment policy for imperfect 

quality EMQ model with rework and 
backlogging. Computers and Mathematics with 

Applications, Vol. 56, 2008, pp. 2819-2824. 
[46] Y-S. P. Chiu, K-K. Chen, H-H. Chang, Solving 

an economic production lot size problem with 
multi-delivery policy and quality assurance 
using an algebraic approach. Journal of 

Scientific & Industrial Research, Vol. 69 (12), 
2010, pp. 926-929. 

[47] F. Neri, A Comparative Study of a Financial 
Agent Based Simulator Across Learning 
Scenarios. In Agents and Data Mining 
Interaction, Editors: Cao L., Bazzan A., 
Symeonidis A., Gorodetsky V., Weiss, G., Yu P., 
LNCS, Vol. 7103, 2012, Springer, pp. 86-97. 

                

 

WSEAS TRANSACTIONS on SYSTEMS
Yuan-Shyi Peter Chiu, Feng-Tsung Cheng, 
Kuang-Ku Chen, Huei-Hsin Chang

E-ISSN: 2224-2678 162 Issue 5, Volume 11, May 2012




