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Abstract: - In this paper, a practical limit cycle predicting method is proposed for analyzing stability of 
nonlinear multivariable feedback control systems. The stable limit cycle of the considered system is found first 
by six criteria for unity loop gains, and then the stability is evaluated for variable loop gains. It needs only to 
check maximal or minimal frequency points of root-loci of equivalent gains for finding a stable limit cycle. 
The stability of the considered system can be classified by asymptotically stable, limit cycle and unstable 
regions in the parameter plane or space. The constant limit cycle loci or plane can be used as boundaries 
between them. Two 2x2 and two 3x3 nonlinear multivariable feedback control systems are presented to show 
the application of the proposed method. Calculated results are verified by digital simulations. 
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1 Introduction 
The limit-cycle analyses play a central role for 
analyses and designs of nonlinear single-input 
single-output (SISO) or multivariable feedback 
control systems. In general, the stability of the 
considered system can be classified into asympto- 
tically stable, limit-cycle and unstable regions in the 
parameter plane or space [1-4]. They can be sepa-
rated by use of constant limit-cycle loci. Constant-

0=iA  is the boundary between asymptotically 
stable and limit-cycle region. Constant- ∞=iA  is the 
boundary between limit-cycle and unstable region. 

iA  are amplitudes of limit cycles.  
In general, real and imaginary parts of the 

characteristic equation are used as two simul-
taneous equations to find the solution of the limit 
cycle for nonlinear single-input single-output 
(SISO) systems [5-11]. Therefore, single non-
linearity in the system can be solved easily to find 
two parameters; i.e., oscillation amplitude (A) and 
frequency (ω ) of a limit cycle. The accuracy of 
calculation is dependent on the accuracy of 
equivalent gain of the nonlinearity. If two non- 
linearities are dependent, then gives same 
conclusions.  

However, nonlinearities in multivariable feed-
back systems are usually independent. Therefore, 
infinite number of solutions of limit cycles 
satisfies the characteristic equation for phase 

shifts ( iθ ) between nonlinearities are not in the 
characteristic equation and the number of para- 
meters to be found is always greater than two. The 
number of parameters to be found are 1+n  for a 

nn×  multivariable feedback control system with 
n  nonlinearities in the diagonal terms; i.e., one 
for oscillating frequency (ω ) and n  for ampli-
tudes ( iA ) of inputs of n  nonlinearities. 

In current literature, for nonlinear multivariable 
systems the Nyquist, inverse Nyquist, and numerical 
optimization methods are usually used to predict the 
existence of limit cycles. These methods are based 
upon the graphical or numerical solutions of the 
linearized harmonic-balance equations [12-21]. It 
has been shown that, for multivariable systems, over 
arbitrary ranges of amplitudes ( iA ), frequency (ω ) 
and phases ( iθ ), an infinite number of possible 
solutions may exist. Gray has proposed a sequential 
computational procedure to seek the solutions for 
only specified ranges of discrete values of iA ,ω  and 

iθ , these specified ranges are determined by use of 
Nyquist or inverse Nyquist plots [14,15]. Although 
the aforementioned methods are powerful, large 
computational efforts are usually needed. The n  
harmonic-balance equations include phase shifts 
and input amplitudes of nonlinearities will be 
used. 

The proposed method for limit-cycle prediction 
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is based on the parameter-plane analyses method 
[1-4] of the characteristic equation. Nonlinearities 
are replaced by sinusoidal-input describing func- 
tions ( SIDFs) with fundamental components [1-4, 
18-21]; i.e., quasi-linear gains. An infinite number 
of possible limit cycles found by real and imaginary 
parts of the characteristic equation and shown by 
root-loci in the parameter plane first. Then six 
criteria developed from the characteristic equation 
and harmonic-balance equations are used to find the 
unique solutions [3, 4, 15-23]. The six criteria will 
be deduced to check maxω  or minω  points in root-
loci can reduce the computation effort dramatically. 
Based on the found data of the stable limit-cycle 
for unity loop gains, the stability of the system is 
evaluated by use of maximal values of SIDFs of 
nonlinearities. The boundaries between asympto- 
tically stable, limit-cycle and unstable regions will 
be found. The accuracy of calculation is dependent 
on the accuracy of equivalent gain of the 
nonlinearity [24]. Calculated results are verified by 
digital simulation. Runge-Kuta 4th method is used 
for integrations of differential equations.  Possibly 
artificial  intelligence  techniques  such  as  agent 
based modeling  could be used  to model  feedback 
control  systems  and  to  simulate  their  behavior  if 
we  consider  them  according  to  the perspective of 
complex  systems  as  it  has  been  done  for  other 
complex domains such as financial markets [25]. 

The proposed method will be applied to one 
22×  and two 33×  complicated nonlinear multi-

variable feedback control systems. It will be seen 
that calculated results provide accurate limit cycle 
predictions and stability checking of considered 
systems. Comparisons are made also with other 
methods in the current literature. 
 
 
2 The Basic Approach 
The limit cycle of the considered system is first 
found by six criteria for unity loop gains, and then 
the stability is evaluated for variable loop gains. 

2.1  Limit cycle analyses [3, 4] 
Consider the n dimensional nonlinear multivariable 
feedback system shown in Fig. 1. The relation between 
transfer function matrix )(sG  and nonlinearities )(aN r  
is  

)()()( yrKaNsGy rrrr
−=                                (1) 

where )(sG  is the transfer matrix of the linear 
elements; )(aN r  is the transfer matrix of equivalent 

gains of nonlinear elements; ])...([ 21 nkkkdiagK   =  is 
the diagonal loop gain matrix; rr  is the reference input 
vector; and ar  is a column vector of sinusoidal inputs 
to these nonlinear elements, such that 

),...,2,1(  ),sin( nitAa iii =+= θω            (2) 

where iA  are amplitudes of ia ; ω  is the oscillating 
frequency; iθ  are phase angles with respect to a 
reference input; and n is the dimension of the 
considered multivariable feedback system. The 
linearized harmonic-balance equations governing the 
existence of limit cycles can be expressed as: 

0])()([ =+
= ωjs

aIaNsKG rr ,                       (3) 

for zero reference inputs rr  and  aKy rr 1−−= . The 
determinant 0])()(det[ =+ IaNsKG r  is the characteristic 
equation of the considered system. It is independent of 
phase angle iθ  and can be decomposed into two 
equations by taking real and imaginary parts for 

ωjs = [1-4]. The solutions need to be found for the 
considered nonlinear feedback control system are 
( ),..,2,1(, niAi = ) and oscillating frequencyω  of the 
limit cycle for a specified set of K . The number of 
parameters 1+n  to be found is larger than that of 
two decomposed characteristic equations. It implies 
that there are an infinite number of solutions satisfy 
the characteristic equation; i.e., 0])()(det[ =+ IaNsKG r . 
It needs another 1−n  simultaneously equations. For 
zero inputs, Eq.(1) can be rewritten as  
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where )(sgij  is the thji ),(  element of )(sG  and  

)( jkj an  is the thjk ),(  element of )(aN r . Eq.(6) 

represents thi  harmonic- balance equation. Let 1a  is 
the reference signal; i.e., 01 =θ , then the another 

1−n  simultaneous equations are derived by Eq.(6) 
for finding solutions(i.e., ),..,2,1(, niAi = , andω ). 

Note that nonlinearities in the off-diagonal and on-
diagonal terms are dependent for they have same input 
signal. For instance, nonlinearities ( )..,2,1(),( 11 njani = ) 
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are dependent for they have same input 1a . 
Nonlinearities in thi  feedback loop, outputs of 
( ),...,2,1(),( njjg ji =ω ) and )( iii an  are dependent 
also. Therefore, nonlinearities in the diagonal will be 
discussed in this paper only. 

For illustration, assume that a 2x2 nonlinear 
multivariable feedback system with two single-valued 
nonlinearities in the diagonal terms is considered. 
Fig.2 shows the block diagram. For ωjs = , harmonic- 
balance equations of channel 1 and channel 2 are 

12
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and 
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respectively. Assume that the input of 1N  is the 
reference input (i.e., 01 =θ ), Eq.(7) gives: 

)()(
)]()(1[
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and  

12
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Similarly, Eq.(8) gives 

     
)]()(1[

)()(

222222

2111122

ω
ωθ

jgaNkA
jgaNAke j

+
−=                    (11) 

and 

       12
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Equating Eqs.(9) and (11) gives 
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Eq.(13) is the characteristic equation of the considered 
system inω . It is independent on the phase angle 2θ . 
Eq.(13) can be expressed as 
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           (14) 

in s-domain also. Multiplying least common multiplier 
(LCM) of denominators of )(11 ωjg , )(22 ωjg  and 

)(det ωjG  to Eq.(13), and taking real and imaginary 

parts of it, give two following equations for limit-cycle 
evaluation: 
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where )(),(),(),( ωωωω iiii EDCB  are polynomials 
ofω . They will be illustrated by a simple numerical 
example. Eq.(15) gives 

)]()()([
)()()()(

111112

11111
22 ωω

ωω
EaNkDk

CaNkBaN
+
+

−=         (17) 

and 

)]()()([
)()()()(

122211

12221
11 ωω

ωω
EaNkCk

DaNkBaN
+
+

−=          (18) 

alternatively. Eq.(16) gives 
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alternatively. Eqs. (17)–(20)  give 
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Note that real solutions of Eqs.(21) and (22) will be 
plotted in 1k )( 11 aN  vs. 2k )( 22 aN  plane for specified 
values of frequencyω .  The equivalent gain of non-
linearity is the sinusoidal-input describing function: 
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and )(tY  is the time function of nonlinearity with 
respect to input signal tAi ωsin . Eq.(23) is a 
function of amplitude iA  of sinusoidal input only. 
Assume the nonlinearity is symmetric, then the DC 
component oF  is equal to zero. In general, funda-
mental components 1P  and 1R  are used to describe 
the nonlinearity [18-21]. Therefore, there is a 
modeling error between describing function and the 
real nonlinear element. It affects the accuracy of 
limit cycle prediction [23-24]. Consider a 2x2 plant 
with the transfer function matrix [3, 4, 17]: 

    ⎥
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with [ ])11([diagK = . Nonlinearities are two identical 
on-off relays with dead-zones having unity 
switching level (d) and unity height (M). Six criteria 
will be developed and illustrated by this numerical 
example, systematically. Describing functions with 
fundamental components of nonlinearities are  
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where 1=M  and 1=d . It is a single-value non-
linearities. The characteristic equation of the closed-
loop system in s-domain is 
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Real and imaginary parts of Eq.(26) for ωjs =  are 
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For 3=mk , the root-loci (in Fig.3) show there are an 
infinite sets of possible solutions ( ω),(),( 2211 aNaN ) 
satisfy Eqs.(27) and (28). However, only one set of 
solution ( ω),(),( 2211 aNaN ) satisfies for the considered 
system; i.e., stable limit-cycle. Other solutions are 
called as “unstable limit-cycle”. Therefore, criteria 
for checking the existence of a stable limit-cycle 
must be developed. 

By use of Fig.3, six criteria of the system having 
a stable limit cycle are developed and explained as 
follows:  

Criterion 1: Every point on the root-loci evaluated 
by Eqs. (27) and (28), as shown in Fig.3, represents 
a set of )( 11 aN , )( 22 aN  and ω , which can satisfy the 
condition of having a limit cycle. Note that infinite 
possible solutions are found. 

Criterion 2: A limit cycle may exist only if the 
values of )( ii aN  are less than the maximal gain 

max)( ii aN  of nonlinearities iN . Now, possible 
solutions of limit-cycle are reduced on the segment 
of the root-loci between points 2Q and 3Q  only. 

Criterion 3:   If the root-loci separate the stable and 
unstable regions, then a stable limit cycle may exist 
at the root-loci. The reason is that the system will 
become stable (unstable) when amplitude iA  
increase (decrease). In other words, the system 
becomes stable (unstable) when the amplitude iA  
increase (decrease), a stable limit cycle may exist on 
the stability boundary; i.e., on the root-loci. The 
descriptions of a stable limit cycle can be expressed 
mathematically by the following equation [4]: 

 2,1  ,0)(
)(

=<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂ i

A
aN

aNA i

ii

iii

σσ            (29) 

Note that iii AaN ∂∂ /)(  of Eq.(19) can be evaluated as  

⎥
⎦

⎤
⎢
⎣

⎡
−+−−=

∂
∂ − 2/1

2

2

2

2
2/1

2

2

2 )1()1(4)(

iiiii

ii

A
d

A
d

A
d

A
M

A
aN

π
    (30) 

Criteria 1 to 3 give possible solutions of a stable 
limit cycle are at segment of the locus between 2Q  
and 3Q ; i.e., give ranges of frequency ω  and )( ii aN . 
But it still has an infinite number of solutions. 

Criterion 4: A stable limit-cycle exists only for 
phase angles found by Eqs.(9) and (11) are equal to 
each other; i.e.,  

    0}11{
2

}9{
2 =−θθ                                      (31) 

where }9{
2θ  and }11{

2θ  represent phase angles found 
by Eqs.(9) and (11), respectively. This criterion will 
reduce the number of possible solutions of limit 
cycles. 

Criterion 5: A stable limit-cycle exists only for 
magnitudes found by Eqs.(10) and (12) are equal; 
i.e.,  

    0}12{
2

}10{
2 =− θθ MM                                     (32) 

Note that Eqs.(9) and (11) give magnitudes of them 
are equal to unities; i.e., represented by Eqs.(10) and 
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(12). Note that a rule of thumb for expects value of 

2θM greater than 0.80 is used in this paper. Two 
correction equations will be developed to correct the 
mathematical errors of describing functions with 
fundamental components. Criteria 4 and 5 reduced 
the number of possible solutions. Next criterion will 
be developed for finding unique solution. 

Criterion 6: The unique solution of a stable limit 
cycle is at the unique frequency point of the root-
locus; i.e., the solutions of Eq.(21) for )( 11 aN  are 
real and equal to each other. This condition gives 
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Similar equation can be derived for )( 22 aN  with 
Eq.(22). Fig.3 shows the maximal frequency maxω  
of the found upper root-locus is 1.38823 rad/s at 
point 5041)(1.5041,1.0Q ; and the minimal frequency 

minω  of the lower root-locus is 0.7888017 rad/s at 
Point )3803.0,3803.0(1Q . 0Q  is a impossible solution 
for it violates Criteria 2 and 3. 1Q  is the unique 
solution satisfies criteria 2~5 and Eq.(33). Therefore, 
the unique solution is found.  

From the root-loci shown in Fig.3, Eq.(33) can 
be described by a graphical rule also. it is 

0)(
=

∂
∂

ω
ii aN                                           (34) 

Eq.(34) represents the departure point minω  (point 

1Q  in Fig.3) of the root-locus with respect to the 
frequencyω , or the approaching point maxω ( Point 

0Q  in Fig.3) of root-locus. 
If the solution satisfies all six criteria for a stable 

limit cycle, then a stable limit cycle will exist. Table 
1 gives calculated results of Point 1Q . Two sets of 

),( 21 AA  satisfy found )( 11 aN  and )( 22 aN . First set of 
78)(3.178,3.1),( 21 =AA  is the desired solutions. 

Second set of )054.1,054.1(),( 21 =AA  is impossible for 
its 111 /)( AaN ∂∂  and  222 /)( AaN ∂∂  violate Criterion 3. 
Calculated results for 3Q  are given in Table 1 also 
for illustrating it is an unstable limit cycle.  

Note that )( iA  are found from Eq.(25); i.e., 
describing function of the relay with dead band, 
therefore 2θM  found by Eq.(10) or Eq.(12) are 
usually not equal to unities for mathematical errors 
of the nonlinearities. By multiplying a scaling factor 

kS  to left and right side of Eq.(10) for 1|| 2 =− θje , 
then Eq.(10) becomes 

1
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An approximate formulation for kS  is  
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The error of 12 −θMSk  is less than 0.5% for 0.9< 

2θM <1.1(1.2% for 0.85 < 2θM  <1.15). Eqs.(35) and 
(36) give the modified values )( imA  of )( iA  are  
 

)5.05.1(]2/)1(1[ 21211 θθ MAMAA m −=−+=     (37) 
and 

)5.05.0(]2/)1(1[ 22222 θθ MAMAA m +=−−=   (38) 

Using Eqs.(37) and (38), the modified values are 
3023.31 =mA  and 0527.32 =mA . Fig.4 shows simu-

lation verification result of the considered system in 
which gives 309,31 =A , 032.32 =A , srad /790.0=ω , 
and °−= 56.702θ . They give that calculated results 
corrected by Eqs.(37) and (38) give accurate 
prediction of the stable limit cycle. 

If mk  is an adjustable parameter, then the 
minimal value of mk  just having a stable limit cycle 
can be found by the same evaluating procedures and 
criteria. The found value is 1.7915. The root-locus 
for mk =1.7915 is shown in Fig.5. It implies that 
there will have no intersection between root-locus 
and constant max11 )(aN , and max22 )(aN  lines. The 
system is asymptotically stable for mk  is less than 
1.7915. Therefore, the proposed method can be used 
for designing nonlinear multivariable feedback 
control systems also; i.e., not only for analyses. The 
comparisons with other methods [17] for minimal 

mk  are given in Table 2. 
Six criteria for finding a stable-limit cycle have 

been developed for nonlinear multivariable feed-
back control system. Note that six criteria are 
deduced to check the maxω  or minω  point of root-loci 
which satisfies criteria 2 to 5. This reduces the 
computing effort dramatically.  
 
2.2 Stability Analyses method 
In this subsection, method for finding boundaries 
between asymptotically stable and limit-cycle is 
developed. The boundaries between asymptotically 
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stable and unstable region are classified by constant 
limit-cycle locus 0=iA . The boundaries will be 
illustrated in 1k  vs. 2k  planes for 2x2 systems. 
Consider the illustrating plant described by Eq.(18) 
with 3=mk  and [ ]21 kkK = ; and nonlinearities 
described by Eq.(25); Eq.(26) can be rewritten as 

0)06.1006.0)(()(
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)2)((464
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23
111

23456

=++

+++

+++++++

saNaNkk

sssaNk

sssaNksssss

       
;    (42) 

Let )( 111 aNk  and )( 222 aNk  are two parameters to 
be analyses, then root-loci for possible solutions are 
shown in Fig.6. Similar to the last conclusion for 
existence of a stable limit cycle, )3803.0,3803.0(4Q  
represents the only solution for stable limit cycle. 
The maximal frequency ( maxω ) is 0.7888rad/s. The 
Criterion 2 gives 

3803.0)( max111 ≥aNk ;                          (43) 
and 

3803.0)( max222 ≥aNk ;                         (44) 

Eqs.(43) and (44) give 5974.05974.0 21 ≥≥ kandk    for 
6366.0)( max11 =aN  and 6366.0)( max22 =aN . The value 

0.5974 represents the boundary between limit-cycle 
and asymptotically stable regions. The simulation 
verification gives 0.597. Table 3 gives calculated 
and simulated results for variable set of ( 1k , 2k ). 
Amplitudes ( 1A , 2A ) are found by 111 /3803.0)( kaN = ,  

222 /3803.0)( kaN =  and Eq.(25). It can be seen that 
calculated results are quite close to simulated results. 
     Note that one can choose parameters in the 
asymptotically region to get wanted system perfor-
mance, or choose parameters in the limit-cycle 
region to get wanted oscillation condition[2]. The 
proposed method is ready to be applied to real 
systems. The proposed method will be applied to 
one 2x2 and two 3x3 nonlinear multivariable feed-
back control systems in the next section. 
Nonlinearities considered are saturation, saturation 
with dead-zone, Bang-Bang, and Bang-Bang with 
dead-zone. They are general characteristics of 
controllers realized by power limited electrical RLC, 
BJT, and MOS network[1-4, 26-27].  
 
 
3. Numerical Examples 
Example 1. Consider a nonlinear multivariable 
system with transfer function matrix [28]  
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Two nonlinearities are shown in Fig.7. Similar to 
the procedure stated in Section 2.1, the found root-
loci are shown in Fig.8. There are two maxω ( 86 ,QQ ) 
and two minω ( 75 ,QQ ) points of root-loci. They 
represent possible solutions of the stable limit cycle. 
But only the )2929.0,4541.0(5Q  is the solution for it 
satisfies criterion 2 to 5. The minω  is equal to 0.4875 
rad/s. The simulation verification is shown in Fig.9. 
Comparison of the calculated and simulated results 
is given in Table 4. It can be seen that calculated 
results give accurate prediction of the considered 
system. Note that the transportation lag is a periodic 
function of frequency ω . Therefore, Fig.8 gives 
four maximal and minimal frequency points of root-
loci. Example 1 gives the proposed method give an 
effect way to find the exact solution. 
     Now considers the stability of the considered 
system for [ ]21, kkdiagK = . The Criterion 2 gives 

4541.0)( max111 ≥aNk ;                       (46) 
and 

2929.0)( max222 ≥aNk ;                     (47) 

Eqs.(46) and (47) give 3709.04541.0 21 ≥≥ kandk    
for 1)( max11 =aN  and 7897.0)( max22 =aN .  4541.01 =k  
and 3709.02 =k are boundaries between asympto- 
tically stable and limit-cycle regions. Note that there 
is no unstable region. The calculated and simulated 
results for other sets of ),( 21 kk  are given in Table 5. 
It can be seen that calculated results are quite close 
to simulated results. 
 
Example 2. Consider a 3x3 multivariable process 
[29] given by 
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(48) 
There are three relay nonlinearities in the diagonal 
terms. The magnitude (M) of each nonlinearity is 
1.0. Describing functions of them are 

3,2,1,4)( == i
A
MaN

i
ii π

                            (49) 

Harmonic-balance equations of the system are given 
by 
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where )(sg ji  is the thji ),(  element of G(s). For 

given 1A  and 01 =θ  as a reference phase, 2θje  and 
3θje can be found by following equations: 
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and 
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alternatively.  

  )53()52()51( 222 θθθ jjj eee ==                            (54) 
)53()52()51( 333 θθθ jjj eee ==                            (55) 

For 1321 === kkk , Eq.(50) gives the characteristic 
equation of the system: 
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where )(sDg  represents the determinant of the 
transfer function matrix G(s). 

For 1321 === kkk  and a specified value of 
)( 33 aN , the characteristic equation is function of 
)( 11 aN , )( 22 aN  and ω  only. Eq.(56) can be written 

as in the form of 
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Therefore, same analyzing procedures for 2x2 non-
linear multivariable systems described by Eqs.(13)- 
(22) and six criteria can be applied. Fig.10 shows 
parameter analyses of several constant- )( 33 aN  loci. 
Each constant- )( 33 aN  locus shows the maximal 
frequency maxω . Intersecting points between the dot 
line and constant- )( 33 aN  loci give maxω  of constant-

)( 33 aN  loci. It gives the maximal frequency with 
respect to )( 33 aN  is srad /061.2max =ω  at =)( 33 aN  

499.0 . Corresponding values of )( ii aN  are the point 
)499.0,498.0(9Q . It is the unique solution of the stable 

limit cycle. The found iA  are ,559.2(),,( 321 =AAA  
)552.2,552.2 . They are found by inverting the 

describing functions. Fig.11 shows simulation 
results in which gives ),,( 321 AAA = )836.2,836.2,836.2(  
and srad /145.2=ω . Since ∞=max)( ii aN , therefore 
limit cycle is always exist for 0>ik . Calculated and 
simulated results for other set ),,( 321 kkk  are given 
in Table 6. It can be seen that calculated results are 
quite closed to simulated results for this nonlinear 
3x3 multi-variable feedback control system. 
 
Example 3. Consider a 3x3 multivariable feedback 
control system with the transfer function matrix [30]  
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There are three nonlinearities on the diagonal. 
Fig.12 shows the nonlinearities. Fig.13(a) shows 
root-loci of possible solutions of limit cycles in 
the )( 11 aN  vs. )( 22 aN  plane for specified values of 

)( 33 aN . The maxω -locus shows connections of each 

maxω  point of constant- )( 33 aN  locus. The maximal 
value of the maxω - locus shown in Fig.13(b) gives 

srad /3593.0max =ω ; i.e., point 11Q . The point 11Q  
represents existence of a stable limit cycle; 
i.e., srad /3593.0=ω , 6578.0)( 11 =aN , 6919.1)( 22 =aN  
and 91.0)( 33 =aN . Corresponding amplitudes are 

835.11 =cA , 8684.02 =cA  and 2215.13 =cA . They are 
found by inverting the describing functions. Fig.14 
shows digital  simulations in which gives 976.11 =sA , 

8769.02 =sA ,  292.13 =sA  and srad /361.0=ω . It shows 
calculated results are closed to simulated results. 
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Now considers the stability of the considered 
system for [ ]321 ,, kkkdiagK = .The Criterion 2 gives 

6578.0)( max111 ≥aNk ;                             (59) 

6919.1)( max222 ≥aNk ;                            (60) 

and 

910.0)( max333 ≥aNk ;                            (61)  
             

Eqs.(59)-(61) give 8177.0,6578.0 21 ≥≥ kk   and 91.03 ≥k  
for 1)( max11 =aN , 069.2)( max22 =aN  and 1)( max33 =aN . 

8177.0,6578.0 21 == kk   and 91.03 =k   are boundaries 
between asymptotically stable and limit-cycle 
regions. The digital simulation gives 6285.01 =k , 

783.02 =k  and 856.03 =k  
 
 
4. Conclusions 
The limit-cycle prediction method has been pro-
posed to find the stability of nonlinear multivariable 
feedback control systems. It needs only to check 
maximal or minimal frequency points of root-loci 
of equivalent gains for finding a stable limit cycle. 
Based on the found stable limit cycle, the stability of 
the system can be found easily. Two 2x2 and two 
3x3 complicated nonlinear multivariable feedback 
control examples give the proposed method 
provides an effect way to find limit cycles and 
stability boundaries.  
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Table 1. Calculated results of a stable(Point 1Q ) and an unstable limit-cycle(Point 3Q ). 
Point )( 11 aN  )( 22 aN  ω  

1A  2A  
1

11 )(
A

aN
∂

∂

2

22 )(
A

aN
∂

∂ }9{
2θ  }11{

2θ  2θM

3.178 3.178 -0.107 -0.107 -70.87° -70.87° 0.92
1Q  0.3803 03803 0.7888 1.054 1.054 +2.924* +2.924* -70.87° -70.87° 0.92

1.420 1.019 0.000 +5.856* -132.01 -132.28 0.66*
3Q  0.6366 0.2417 0.9595 1.420 5.168 0.000 -0.045 -131.98 -132.28 0.13*

 
Table 2. The gains mk  for just having a limit cycle. 

Methods Gain mk  
Proposed method 1.7915 
Aizerman Conjecture 1.79 
Hirsch plot 1.25 
Mee plot 1.50 
Digital Simulation 1.7885 

 
Table 3. Calculated and Simulated Results for variable set of ( 1k , 2k ). 

Loop gains Calculated Simulated 
1k  2k  mA1  mA2  cω rad/s sA1  sA2  sω rad/s 

 0.400  0.400  0.000  0.000 0.0000  0.000 0.000 0.000 
 0.597  0.597  1.470  1.359 0.7888  1.523 1.433 0.783 
 0.597  1.000  1.630  2.680 0.7888  1.800  2.808 0.803 
 1.000  0.597  2.803  1.581 0.7888  3.068  1.704 0.789 
 1.000  1.000  3.302  3.053 0.7888  3.309  3.032 0.790 
 1.000  5.000  3.374 15.674 0.7888  3.393 15.802 0.789 
 5.000  5.000 17.364 16.052 0.7888 17.578 15.952 0.787 
 1.000 10.000  3.376 31.371 0.7888  3.396 31.665 0.789 
 5.000  1.000 16.967  3.128 0.7888 17.205  3.070 0.789 
10.000  1.000 33.957  3.130 0.7888 34.466  3.071 0.789 
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Table 4. Calculated and simulated results of Example 1 for 121 == kk . 
 Osci. Freq(rad/s)  Channel #1 Channel #2 2θ (deg) 2θM  

)( iic aN 0.4541 0.2929  
Calculation 

 
0.4875 

icA  1.0961 2.1390 
-53.3 0.95 

Simulation 0.4836 isA  1.0607 2.2454 -54.4 ---- 

 
 
Table 5. Calculated and simulated results of Example 1. 

Loop gains Calculated Simulated 
1k  2k  mA1  mA2  cω rad/s sA1  sA2  sω rad/s 

0.4530 0.3700 ---- ---- ---- 0.4229 0.6101 0.4784 
0.4541 0.3709 0.40000 0.6099 0.4875 0.4275 0.6175 0.4785 
0.5000 0.5000 0.48994 1.0048 0.4875 0.5164 0.9880 0.4788 
1.0000 1.0000 1.09609 2.1390 0.4875 1.0587 2.2447 0.4830 
2.0000 2.0000 2.23103 4.3304 0.4875 2.1696 4.7227 0.4840 
1.0000 10.000 1.09609 21.7318 0.4875 1.1075 24.5620 0.4839 
10.000 1.0000 11.21309 2.1390 0.4875 10.5565 2.2443 0.4828 
10.000 10.000 11.21309 21.7318 0.4875 11.0485 24.5620 0.4843 

 
 

Table 6. Calculated and simulated results of Example 2. 
Loop gains Calculated Simulated 

1k  2k  3k  cω rad/s CA1  CA2  CA3  sω rad/s SA1  SA2  SA3  
1.00 1.00 1.00 2.0606 2.552 2.552 2.552 2.145 2.832 2.832 2.832
1.00 1.00 2.00 2.0606 2.552 2.552 5.103 2.145 2.832 2.832 5.664
1.00 2.00 1.00 2.0606 2.552 5.110 2.552 2.145 2.832 5.664 2.832
0.50 0.50 0.50 2.0606 1.276 1.276 1.276 2.145 1.416 1.416 1.416
0.10 0.10 0.10 2.0606 0.2552 0.2552 0.2552 2.145 0.283 0.283 0.283
0.01 0.01 0.01 2.0606 0.02552 0.02552 0.02552 2.145 0.0283 0.0283 0.0283
0.10 1.00 5.00 2.0606 0.2552 2.552 12.758 2.145 0.283 2.832 14.160
 
 

 
 

Fig.1. Nonlinear Multivariable Feedback 
Control System. 

 
 

 
Fig.2. A 2x2 Nonlinear Multivariable 

Feedback Control System. 
 

 
 
 

 
Fig.3. Root-Loci of limit cycles in the 

parameter plane. 
 

WSEAS TRANSACTIONS on SYSTEMS Tain-Sou Tsay

E-ISSN: 2224-2678 149 Issue 4, Volume 11, April 2012



 

 
Fig.4. Time responses of the illustrating 

example. 
 

 
Fig.5. Root-locus analyses for mk =1.7915. 

 
 

 
Fig.6. Root-Loci of limit cycles in the 

parameter plane. 
 
 

 
Fig.7. Nonlinearities of Example 1. 

 
 

 
Fig.8. Root-loci Analyses of limit cycles of 

Example 1 for 121 == kk . 
 
 

 
Fig.9. Time responses of Example 1 for 

121 == kk . 
 
 

 
 

Fig.10. Root-loci analyses of limit cycles of     
Example 2 on )( 11 aN  vs. )( 22 aN  Plane for 

)( 33 aN  varying and .1=ik . 
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Fig.11. Time responses of Example 2 for 

1=ik . 
 
 
 

 
Fig.12. Nonlinearities of Example 3. 

 
 
 

 
Fig.13(a). Root-loci analyses of limit 

cycles of Example 3 for 1=ik . 
 
 

 
Fig.13(b). maxω -Locus of Example 3 for 

.1=ik . 
 

 
Fig.14. Time responses of Example 3 for 

.1=ik . 
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