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Abstract: - In this paper, a practical limit cycle predicting method is proposed for analyzing stability of
nonlinear multivariable feedback control systems. The stable limit cycle of the considered system is found first
by six criteria for unity loop gains, and then the stability is evaluated for variable loop gains. It needs only to
check maximal or minimal frequency points of root-loci of equivalent gains for finding a stable limit cycle.
The stability of the considered system can be classified by asymptotically stable, limit cycle and unstable
regions in the parameter plane or space. The constant limit cycle loci or plane can be used as boundaries
between them. Two 2x2 and two 3x3 nonlinear multivariable feedback control systems are presented to show
the application of the proposed method. Calculated results are verified by digital simulations.
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1 Introduction

The limit-cycle analyses play a central role for
analyses and designs of nonlinear single-input
single-output (SISO) or multivariable feedback
control systems. In general, the stability of the
considered system can be classified into asympto-
tically stable, limit-cycle and unstable regions in the
parameter plane or space [1-4]. They can be sepa-
rated by use of constant limit-cycle loci. Constant-
A =0 is the boundary between asymptotically

stable and limit-cycle region. Constant- A =« is the

boundary between limit-cycle and unstable region.
A are amplitudes of limit cycles.

In general, real and imaginary parts of the
characteristic equation are used as two simul-
taneous equations to find the solution of the limit
cycle for nonlinear single-input single-output
(SISO) systems [5-11]. Therefore, single non-
linearity in the system can be solved easily to find
two parameters; i.e., oscillation amplitude (A) and
frequency (@) of a limit cycle. The accuracy of
calculation is dependent on the accuracy of
equivalent gain of the nonlinearity. If two non-
linearities are dependent, then gives same
conclusions.

However, nonlinearities in multivariable feed-
back systems are usually independent. Therefore,
infinite number of solutions of limit cycles
satisfies the characteristic equation for phase
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shifts (0,) between nonlinearities are not in the

characteristic equation and the number of para-
meters to be found is always greater than two. The
number of parameters to be found are n+1 for a
nxn multivariable feedback control system with
n nonlinearities in the diagonal terms; i.e., one
for oscillating frequency () and n for ampli-
tudes ( A ') of inputs of n nonlinearities.

In current literature, for nonlinear multivariable
systems the Nyquist, inverse Nyquist, and numerical
optimization methods are usually used to predict the
existence of limit cycles. These methods are based
upon the graphical or numerical solutions of the
linearized harmonic-balance equations [12-21]. It
has been shown that, for multivariable systems, over
arbitrary ranges of amplitudes (A ), frequency (w)

and phases (g ), an infinite number of possible

solutions may exist. Gray has proposed a sequential
computational procedure to seek the solutions for
only specified ranges of discrete values of A, and

0., these specified ranges are determined by use of

Nyquist or inverse Nyquist plots [14,15]. Although
the aforementioned methods are powerful, large
computational efforts are usually needed. The n
harmonic-balance equations include phase shifts
and input amplitudes of nonlinearities will be
used.

The proposed method for limit-cycle prediction
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is based on the parameter-plane analyses method
[1-4] of the characteristic equation. Nonlinearities
are replaced by sinusoidal-input describing func-
tions ( SIDFs) with fundamental components [1-4,
18-21]; i.e., quasi-linear gains. An infinite number
of possible limit cycles found by real and imaginary
parts of the characteristic equation and shown by
root-loci in the parameter plane first. Then six
criteria developed from the characteristic equation
and harmonic-balance equations are used to find the
unique solutions [3, 4, 15-23]. The six criteria will
be deduced to check o, or @, points in root-

min

loci can reduce the computation effort dramatically.

Based on the found data of the stable limit-cycle
for unity loop gains, the stability of the system is
evaluated by use of maximal values of SIDFs of
nonlinearities. The boundaries between asympto-
tically stable, limit-cycle and unstable regions will
be found. The accuracy of calculation is dependent
on the accuracy of equivalent gain of the
nonlinearity [24]. Calculated results are verified by
digital simulation. Runge-Kuta 4™ method is used
for integrations of differential equations. Possibly
artificial intelligence techniques such as agent
based modeling could be used to model feedback
control systems and to simulate their behavior if
we consider them according to the perspective of
complex systems as it has been done for other
complex domains such as financial markets [25].

The proposed method will be applied to one
2x2 and two 3x3 complicated nonlinear multi-
variable feedback control systems. It will be seen
that calculated results provide accurate limit cycle
predictions and stability checking of considered
systems. Comparisons are made also with other
methods in the current literature.

2 The Basic Approach

The limit cycle of the considered system is first
found by six criteria for unity loop gains, and then
the stability is evaluated for variable loop gains.

2.1 Limit cycle analyses [3, 4]

Consider the n dimensional nonlinear multivariable
feedback system shown in Fig. 1. The relation between
transfer function matrix G(s) and nonlinearities N (a)

is

y=G(s)N(@)K(F-y) 1)

where G(s) is the transfer matrix of the linear
elements; N(a) is the transfer matrix of equivalent
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gains of nonlinear elements; K = diag([k, k, ...k,]) IS

the diagonal loop gain matrix; T is the reference input
vector; and & is a column vector of sinusoidal inputs
to these nonlinear elements, such that

a, = Asin(at+86,), (i=12,.,n) 2

where A are amplitudes of a;; « is the oscillating
frequency; ¢, are phase angles with respect to a

reference input; and n is the dimension of the
considered multivariable feedback system. The
linearized harmonic-balance equations governing the
existence of limit cycles can be expressed as:

0, 3)

[KG(s)N(a) +1]4]

s=jw

for zero reference inputs I and y=-K™'a. The
determinant det[KG(s)N(a) + 1]1=0 is the characteristic

equation of the considered system. It is independent of
phase angle ¢, and can be decomposed into two

equations by taking real and imaginary parts for
s = jo [1-4]. The solutions need to be found for the
considered nonlinear feedback control system are
(A,(i=12,..,n)) and oscillating frequency o of the

limit cycle for a specified set of K. The number of
parameters N +1 to be found is larger than that of
two decomposed characteristic equations. It implies
that there are an infinite number of solutions satisfy
the characteristic equation; i.e., det[KG(s)N(d)+1]=0.
It needs another n —1 simultaneously equations. For
zero inputs, Eq.(1) can be rewritten as

kizn:|:zn: Qik (S)nkj (aj):|aj = —q, (4)

=1 k=1
k; Z[Z i ($)ny; (a; ):|Ajej(w+gj) = —Ael"® ®)
=1 Lkt

and
kii[zn: 9a (S)n (aj)}Ajeng = —Aelf (6)
j=1 L k=1
where g;(s) is the (i, j)" element of G(s) and
ng(a;) is the (k, j)* element of N(a) . EQ.(6)
represents i"™ harmonic- balance equation. Let a, is

the reference signal; i.e., ¢, =0, then the another

n —1 simultaneous equations are derived by Eq.(6)
for finding solutions(i.e., A, (i =1,2,..,n), and @ ).
Note that nonlinearities in the off-diagonal and on-
diagonal terms are dependent for they have same input
signal. For instance, nonlinearities (n, (a,),(j =1,2..,n))
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are dependent for they have same input a, .

Nonlinearities in i" feedback loop, outputs of
(9;(j®),(j=12..,n)) and n;(a;) are dependent
also. Therefore, nonlinearities in the diagonal will be
discussed in this paper only.

For illustration, assume that a 2x2 nonlinear
multivariable feedback system with two single-valued
nonlinearities in the diagonal terms is considered.
Fig.2 shows the block diagram. For s = jw, harmonic-

balance equations of channel 1 and channel 2 are

klAlejglN1(a1)gl1(jw)

+ klAzejgz N,(a;)9,,(jo) = _Aiejyl
and

7

k,Ae'N,(a,)9, (jo) 8)
+ szzejgzNz(az)gzz(jw) = _Azewz

respectively. Assume that the input of N, is the
reference input (i.e.,, =0), Eq.(7) gives:

ol __ All+kN,(a)9,(jo)] )
kAN, (a,)9;, (jw)
and
‘ejez =M, =1 (10

Similarly, Eq.(8) gives

oits - KANi(3))g,(jo) (11)
AT1+Kk,N,(a,)9,, (jo)]
and
‘ejﬁz =M, =1 (12)

Equating Egs.(9) and (11) gives

1+k,N;(a,)95(jo) +k,N,(a,)9, (jo) (13)
+k,k, N, (@,)N,(a,)[9,: (j@)9, (j)
-05,(J0)9, (jo)] =0
Eq.(13) is the characteristic equation of the considered
system inw . It is independent on the phase angle 6,.
EQq.(13) can be expressed as

1+Kk;N,;(a,)95,(s) +k;N,(a,)9,(s)
+kik, N (a;)N,(a,)[941:(5)9(5)
—0Op (5)921(5)] =0

in s-domain also. Multiplying least common multiplier
(LCM) of denominators of g,(jw) , 9,(jew) and

detG(jw) t0 EQ.(13), and taking real and imaginary

(14)
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parts of it, give two following equations for limit-cycle
evaluation:

B, (®) +k,N,(a,)C, (@) +k,N,(a,)D,(®)
+kik, N, (a;)N,(a,)E, (@) =0

(15)

and
B, (@) +k;N,(a,)C, (@) +k,N,(a,)D, (w)

+kK,N; ()N, (a,)E, (w) =0

(16)

where B, (w),C,(w), D,(w),E,(w) are polynomials
of w. They will be illustrated by a simple numerical
example. Eq.(15) gives

B, (w) + kN, (a,)C,(w) (17)

N,(a,)=- k,[D, () + kN, (3,)E, ()]
and
N,(a,) =~ B, (@) + k,N,(a,)D, () (18)

k [C, (@) +k,N,(a,)E, (w)]

alternatively. Eq.(16) gives

N,(a,) =— B, (@) + kN, (a,)C, (@) (19)
k,[D,(w) + kN, (a,)E,(w)]
and
N,(a,) = — B, (@) +k,N,(a,)D,(w) (20)

k,[C, (@) +k,N,(a,)E,(®)]
alternatively. Egs. (17)-(20) give

[C,(®)E, (@) - C,(@)E, (@)]kN,(a,)* +[C, (@)D, (@) 21)
+ B, (®)E,(w) - C, (@)D, (@) - B, (0) E, (0)Ik;N, (3,)
+[B, (@)D, (@) - B, (@)D, (»)] =0

and

[D, (@)E, (@) — D, (@)E, (@)]k; N, (a,)* +[C, (@)D, (w) (22)
-C, () Dl(w) +B, (o) El(w) - B1(w)E2 (w)]kz N, (az)
+[B, (@)C, (») - B, (0)C,(w)] =0

Note that real solutions of Egs.(21) and (22) will be
plotted in k, N,(a,) vs. k, N,(a,) plane for specified

values of frequency w. The equivalent gain of non-
linearity is the sinusoidal-input describing function:

N @)= F,+ 2 (P + IR,) (23)

= Nir(ai) + lei (ai)
where

F, - % [["v®d (et
p - % [7v ( cos(natyd (at)

R, = % [7Y ®sin(nat)d (at)
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and Y (t) is the time function of nonlinearity with
respect to input signal Asinwt . EQ.(23) is a
function of amplitude A of sinusoidal input only.
Assume the nonlinearity is symmetric, then the DC
component F, is equal to zero. In general, funda-
mental components P, and R, are used to describe

the nonlinearity [18-21]. Therefore, there is a
modeling error between describing function and the
real nonlinear element. It affects the accuracy of
limit cycle prediction [23-24]. Consider a 2x2 plant
with the transfer function matrix [3, 4, 17]:

k 1 0.3
_ m 24
&) s(s+1)? L 02s-02 1 } (24

withK =diag([[l 1)). Nonlinearities are two identical

on-off relays with dead-zones having unity
switching level (d) and unity height (M). Six criteria
will be developed and illustrated by this numerical
example, systematically. Describing functions with
fundamental components of nonlinearities are

Ni(ai):‘:x(1—‘i;)“2, A>di=12 (25)

where m=1and d =1. It is a single-value non-
linearities. The characteristic equation of the closed-
loop system in s-domain is

s® +4s° +65* +4s® +s” +k, N (a,)(s® +2s% +5)
+k, N, (a,)(s® +2s% +5)
+k2N, (a,)N, (a,)(0.006s +1.06) = 0

Real and imaginary parts of Eq.(26) for s = jw are

- @° + 60" — 0® +k N, (a,)(-207)

+k,N,(a, )(_20)2) + knz‘lNl(al)NZ(aZ)(l'OG) =0

(27)

and
40° - 40° +k, N, (a,)(~0° + )

+k,N,(a,)(~0® + ®) + k2N, (a,)N,(a,)(0.06w) = 0

(28)

For k_ =3, the root-loci (in Fig.3) show there are an
infinite sets of possible solutions (N, (a,),N,(a,),®)

satisfy Eqgs.(27) and (28). However, only one set of
solution (N,(a,),N,(a,),®) satisfies for the considered

system; i.e., stable limit-cycle. Other solutions are
called as “unstable limit-cycle”. Therefore, criteria
for checking the existence of a stable limit-cycle
must be developed.

By use of Fig.3, six criteria of the system having
a stable limit cycle are developed and explained as
follows:
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Criterion 1: Every point on the root-loci evaluated
by Egs. (27) and (28), as shown in Fig.3, represents
asetof N,(a,;),N,(a,) and @, which can satisfy the
condition of having a limit cycle. Note that infinite
possible solutions are found.

Criterion 2: A limit cycle may exist only if the
values of N,(a,) are less than the maximal gain

N,(a). Of nonlinearities N, . Now, possible

solutions of limit-cycle are reduced on the segment
of the root-loci between points Q,and Q, only.

Criterion 3: If the root-loci separate the stable and
unstable regions, then a stable limit cycle may exist
at the root-loci. The reason is that the system will
become stable (unstable) when amplitude A

increase (decrease). In other words, the system
becomes stable (unstable) when the amplitude A

increase (decrease), a stable limit cycle may exist on
the stability boundary; i.e., on the root-loci. The
descriptions of a stable limit cycle can be expressed
mathematically by the following equation [4]:

90 _[_00 JON(&)) ¢ _1;
oA N () | oA T

Note that N, (a,)/2A 0f Eq.(19) can be evaluated as

(29)

oNy(a) _aM [ .

-@

oA ﬂA2|: ( Aiz
Criteria 1 to 3 give possible solutions of a stable
limit cycle are at segment of the locus between Q,
and Q,; i.e., give ranges of frequency » and N,(a,) -
But it still has an infinite number of solutions.

L. dz)uz} (30)
ATTOA

Criterion 4: A stable limit-cycle exists only for
phase angles found by Egs.(9) and (11) are equal to
each other; i.e.,

6, —0,"% =0 (31)

where 6, and 6,"" represent phase angles found
by Egs.(9) and (11), respectively. This criterion will
reduce the number of possible solutions of limit
cycles.

Criterion 5: A stable limit-cycle exists only for
magnitudes found by Egs.(10) and (12) are equal,
i.e.,

M 92{10} -M 32{12} =0 (32)

Note that Egs.(9) and (11) give magnitudes of them
are equal to unities; i.e., represented by Egs.(10) and
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(12). Note that a rule of thumb for expects value of
M,, greater than 0.80 is used in this paper. Two

correction equations will be developed to correct the
mathematical errors of describing functions with
fundamental components. Criteria 4 and 5 reduced
the number of possible solutions. Next criterion will
be developed for finding unique solution.

Criterion 6: The unique solution of a stable limit
cycle is at the unique frequency point of the root-
locus; i.e., the solutions of Eq.(21) for N,(a,) are

real and equal to each other. This condition gives

[C, (@)D, (@) + B,(w)E, (@) - C,(») D, (@) - B, (») E, ((0)]2 (33)
-4[C, (®)E,(w) - C,(®)E, (»)][B, (@)D, ()

~B,(#)D, ()] =0

Similar equation can be derived for N,(a,) with
Eq.(22). Fig.3 shows the maximal frequency @,
of the found upper root-locus is 1.38823 rad/s at
point Q,(1.5041,1.5041) ; and the minimal frequency
@, Of the lower root-locus is 0.7888017 rad/s at
Point Q,(0.3803,0.3803) . Q, is a impossible solution
for it violates Criteria 2 and 3. Q, is the unique

solution satisfies criteria 2~5 and Eq.(33). Therefore,
the unique solution is found.

From the root-loci shown in Fig.3, Eq.(33) can
be described by a graphical rule also. it is

oN; (&) -0 (34)
ow
Eq.(34) represents the departure point @, (point

Q, in Fig.3) of the root-locus with respect to the
frequency @, or the approaching pointw, .., ( Point
Q, in Fig.3) of root-locus.

If the solution satisfies all six criteria for a stable
limit cycle, then a stable limit cycle will exist. Table
1 gives calculated results of Point Q,. Two sets of

(A, A) satisfy found N,(a,) and N,(a,). First set of
(A,A)=(3.178,3.178) is the desired solutions.
Second set of (A, A)) = (1.054,1.054) is impossible for
its oN,(a,)/oA, and 6N, (a,)/oA, violate Criterion 3.
Calculated results for Q, are given in Table 1 also

for illustrating it is an unstable limit cycle.
Note that (A) are found from Eq.(25); ie.,

describing function of the relay with dead band,
therefore M,, found by Eq.(10) or Eq.(12) are

usually not equal to unities for mathematical errors
of the nonlinearities. By multiplying a scaling factor

max
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s, to left and right side of Eq.(10) for |e /%% |=1,
then Eq.(10) becomes

S, (Aﬂ“ Nl(al)gll(_ja))‘ =S5,M,, =1 (35)
Azj‘ klNz(az)glz(Jw) ‘
An approximate formulation for S, is
_1+(1-M,,)/2 15-05M,, (36)

“T1-(1-M,,)/2 05+05M,,

The error of S,M,, -1 is less than 0.5% for 0.9<
M,, <1.1(1.2% for 0.85 <M, <1.15). Egs.(35) and

(36) give the modified values (A,,) of (A) are
A, =All+(1-M,,)/2]=A(L5-05M,,) (37)
and
A =Al-(1-M,,)/2]=A(05+05M,,) (38)

Using Egs.(37) and (38), the modified values are
A, =3.3023 and A, =3.0527. Fig.4 shows simu-
lation verification result of the considered system in
which gives A =3309, A, =3.032, ®=0.790rad /s,
and ¢, =-70.56°. They give that calculated results
corrected by EQ@s.(37) and (38) give accurate
prediction of the stable limit cycle.

If k, is an adjustable parameter, then the

minimal value of k_ just having a stable limit cycle

can be found by the same evaluating procedures and
criteria. The found value is 1.7915. The root-locus

for k, =1.7915 is shown in Fig.5. It implies that

there will have no intersection between root-locus
and constant N,(a,),. . ad N,(a,).. lines. The

system is asymptotically stable for k,, is less than

1.7915. Therefore, the proposed method can be used
for designing nonlinear multivariable feedback
control systems also; i.e., not only for analyses. The
comparisons with other methods [17] for minimal

k,, are given in Table 2.

Six criteria for finding a stable-limit cycle have
been developed for nonlinear multivariable feed-
back control system. Note that six criteria are
deduced to check the @, or @, point of root-loci

max

which satisfies criteria 2 to 5. This reduces the
computing effort dramatically.

min

2.2 Stability Analyses method

In this subsection, method for finding boundaries
between asymptotically stable and limit-cycle is
developed. The boundaries between asymptotically
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stable and unstable region are classified by constant
limit-cycle locus A =0. The boundaries will be
illustrated in k, vs. k, planes for 2x2 systems.
Consider the illustrating plant described by Eq.(18)
with k, =3 and K =[k, k,]; and nonlinearities
described by Eq.(25); Eq.(26) can be rewritten as

$® +4s° + 65" +4s5° + 5% + kN, (a,)(s® +25% +5) 42)
+k,N,(a,)(s* +2s% +5) '
+kk,N, (a,)N, (a,)(0.0065 +1.06) = 0

Let k,N,(a,) and k,N,(a,) are two parameters to

be analyses, then root-loci for possible solutions are
shown in Fig.6. Similar to the last conclusion for
existence of a stable limit cycle, Q,(0.3803,0.3803)

represents the only solution for stable limit cycle.
The maximal frequency (w_,, ) is 0.7888rad/s. The

max
Criterion 2 gives

klNl(al)
and
kZNZ(aZ)

>0.3803;

max —

(43)

> 0.3803;

max —

(44)

Eqs.(43) and (44) give k, > 0.5974 and k, > 0.5974 for
N,(a,),, =0.6366 and N,(a,) . =0.6366. The value

0.5974 represents the boundary between limit-cycle
and asymptotically stable regions. The simulation
verification gives 0.597. Table 3 gives calculated

and simulated results for variable set of (k, ,k,).
Amplitudes (A , A,) are found by N, (a,) =0.3803/k,,
N,(a,) = 0.3803/k, and Eq.(25). It can be seen that

calculated results are quite close to simulated results.

Note that one can choose parameters in the
asymptotically region to get wanted system perfor-
mance, or choose parameters in the limit-cycle
region to get wanted oscillation condition[2]. The
proposed method is ready to be applied to real
systems. The proposed method will be applied to
one 2x2 and two 3x3 nonlinear multivariable feed-
back control systems in the next section.
Nonlinearities considered are saturation, saturation
with dead-zone, Bang-Bang, and Bang-Bang with
dead-zone. They are general characteristics of
controllers realized by power limited electrical RLC,
BJT, and MOS network[1-4, 26-27].

3. Numerical Examples
Example 1. Consider a nonlinear multivariable
system with transfer function matrix [28]
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12.8e 18.9¢™*
45
G(s)=|16.75+1 21s+1 (45)
6.6e 19.4e

10.9s+1 14.4s+1

Two nonlinearities are shown in Fig.7. Similar to
the procedure stated in Section 2.1, the found root-
loci are shown in Fig.8. There are two o,,, (Q,.Q,)

and two ., ( Q,,Q,) points of root-loci. They

represent possible solutions of the stable limit cycle.
But only the Q,(0.4541,0.2929) is the solution for it

satisfies criterion 2to 5. The w,,;, is equal to 0.4875

rad/s. The simulation verification is shown in Fig.9.
Comeparison of the calculated and simulated results
is given in Table 4. It can be seen that calculated
results give accurate prediction of the considered
system. Note that the transportation lag is a periodic
function of frequency @ . Therefore, Fig.8 gives
four maximal and minimal frequency points of root-
loci. Example 1 gives the proposed method give an
effect way to find the exact solution.

Now considers the stability of the considered
system for K = diag[k,,k,]. The Criterion 2 gives

klNl(al)
and
k2 N2 (a2)

>0.4541,;

max —

(46)

>0.2929;

max —

(47)

Eqgs.(46) and (47) give k, >0.4541and k, > 0.3709
for N, (), =1 and N,(a,),,, =0.7897 . k, = 0.4541
and k, =0.3709 are boundaries between asympto-

tically stable and limit-cycle regions. Note that there
is no unstable region. The calculated and simulated
results for other sets of (k,k,) are given in Table 5.
It can be seen that calculated results are quite close
to simulated results.

Example 2. Consider a 3x3 multivariable process
[29] given by

pe 045704 35403 25402
G(s)=————| 35403 25402 —04s-04
s°+1.1s+0.1
25402 —-045-04 3s+03
(48)

There are three relay nonlinearities in the diagonal
terms. The magnitude (M) of each nonlinearity is
1.0. Describing functions of them are

4M

Ni(ai):T,i =123 (49)
A

Harmonic-balance equations of the system are given
by
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1+kN;(a)9::(8) KN, (a,)9;,(s) kN4 (as)gis(s) | Ae™™
KoNy(3)95(8)  1+K,N,(8,)95,(5)  KoNy(a5)95(5) || Ae™™ =0
|: ksN;(a,)93,(s) ksN,(8,)05,(5)  1+ksN5(83)95(s) | Ae™™
(50)

where g, (s) is the (i, j)" element of G(s). For

- jg
given A and g =0 as a reference phase, '™ and
el can be found by following equations:

eigz
ej'93
eigz
ejga

and

|: AN, (a,)g,,(s) AeklNa(as)gls(S)}l
FLALH N, (@,)0,(6)] Ak N,(3,)95:(9) )
X|:_A1[l+k1N1(a1)gll(S)]:|

_Aikle(a1)gz1(5)

1

Ak N,(a,)d5,(8) Ak N, (a3)d55(s) '
=LAKN, (2,)95, ()] AlL+KN,(a)gs(s)]  (52)
« |:_ A1[1+ klNl(al)gll(S)]:|
= Ak;N,(a,)95(s)

o [ALHGN )00 AkN(3)gx() |
|:Zj,93:|: AKN,(8,)95(S)  AlL+k;N;(83)05(S)] (53)
« {_ Ak, Nl(a1)921(s):|
- A1k3N1(a1)g31(3)

alternatively.

pl0(5D) _ o16:(52) _ i6x(59)

pI(6Y) _ gifi(52) _ gi6s(53)

(54)
(55)

For k, =k, =k, =1, EQ.(50) gives the characteristic
equation of the system:

1+ klNl(al)gll(s) + kzNz(az)gzz (S) + k3N3(a3)g33(s)
+ klkz Nl(al) N 2 (az)[gll(s) 922 (5) - ng (5)921(5)]
+ klkle(al)Na(a3)[gn(s)gss(s) - 913(5)931(5)]

+ k2k3N2(a2)N3(a3)[gzz (5)933(5) - 923(5)932 (S)]
+kKKsN; (a;)N, (8,)N5(a;) Dy 8) =0;

(56)

where D (s) represents the determinant of the
transfer function matrix G(s).

For k, =k, =k, =1 and a specified value of
N,(a,) , the characteristic equation is function of
N,(a), N,(a,) and @ only. Eq.(56) can be written
as in the form of

1+ N3(a5)955(8) +{9:1(8) + N4 (83)[94,(5) 93 (S)

= 953(8)95: (S)IIN, (a;) {92, (5) + N4 (a3)[9,, (5) 945 (5)
=03 (8)95 (S)IIN, (a,) +{911(5)9 5 (S) — 91, (5) 9. (5)
+ Ns(a3)Dg (S)}N1(a1)Nz (az) =0

(57)
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Therefore, same analyzing procedures for 2x2 non-
linear multivariable systems described by Egs.(13)-
(22) and six criteria can be applied. Fig.10 shows
parameter analyses of several constant-N,(a,) loci.

Each constant- N,(a,) locus shows the maximal
frequency o, . Intersecting points between the dot
line and constant-N,(a,) loci give w,, of constant-
N,(a,) loci. It gives the maximal frequency with
respect t0 N,(a,) IS w,, =2.06lrad/s at N,(a,)=
0.499. Corresponding values of N, (a,) are the point
Q,(0.498,0.499) . It is the unique solution of the stable
limit cycle. The found A are (A,A,,A)=(2559,
2.552,2.552) . They are found by inverting the
describing functions. Fig.11 shows simulation
results in which gives (A, A,,A,)= (2.836,2.836,2.836)
and @ =2.145rad /s . Since N,(a),, =, therefore
limit cycle is always exist for k, > 0. Calculated and
simulated results for other set (k,,k,,k,) are given

in Table 6. It can be seen that calculated results are
quite closed to simulated results for this nonlinear
3x3 multi-variable feedback control system.

Example 3. Consider a 3x3 multivariable feedback
control system with the transfer function matrix [30]

[ 11.9¢7% 4™ 0.21e°% |
217s+1 337s+1  10s+1 58
G| 1TET 76T 05 (58)
50s +1 28s+1 10s+1
9.3e _—3.67e> 10.33e™*
B0s+1 166s+1  25s+1 |

There are three nonlinearities on the diagonal.
Fig.12 shows the nonlinearities. Fig.13(a) shows
root-loci of possible solutions of limit cycles in
the N, (a,) Vs. N,(a,) plane for specified values of

N,(a,). The o, -locus shows connections of each
Wy POINt Of constant-N,(a,) locus. The maximal
value of the @, - locus shown in Fig.13(b) gives
o, =0.3593rad /s ; i.e., point Q,. The point Q,,
represents existence of a stable limit cycle;
i.e.,=0.3593rad /s, N,(a,) =0.6578 , N,(a,) =1.6919
and N,(a,)=0.91. Corresponding amplitudes are
A, =1835,A, =0.8684 and A_=12215. They are

found by inverting the describing functions. Fig.14
shows digital simulations in which gives A =1.976,

A, =0.8769, A, =1292 and »=036lrad/s. It shows
calculated results are closed to simulated results.
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Now considers the stability of the considered
system for K = diaglk,,k,,k,]. The Criterion 2 gives

k,N,(a,) e =0.6578; (59)

k,N,(a,) . =1.6919; (60)
and

k:N,(a,),., >0.910; (61)

Eqs.(59)-(61) give k >0.6578k, >0.8177 and k, >0.91
for Nl(al)max =1, NZ(aQ)maXZZ'Osg and NS(aB)max =1.
k,=0.6578 k, =0.8177 and k, =091 are boundaries

between asymptotically stable and limit-cycle
regions. The digital simulation gives k, =0.6285,

k, =0.783 and k, = 0.856

4. Conclusions

The limit-cycle prediction method has been pro-
posed to find the stability of nonlinear multivariable
feedback control systems. It needs only to check
maximal or minimal frequency points of root-loci
of equivalent gains for finding a stable limit cycle.
Based on the found stable limit cycle, the stability of
the system can be found easily. Two 2x2 and two
3x3 complicated nonlinear multivariable feedback
control examples give the proposed method
provides an effect way to find limit cycles and
stability boundaries.
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Table 1. Calculated results of a stable(PointQ, ) and an unstable limit-cycle(PointQ,).

Point | N,(a,) | N,(a,) | @ A A, | Ni(@) | IN,(a,) | 9,2 6,%% | M,
oA oA,
3.178 | 3.178 -0.107 -0.107 -70.87° | -70.87° | 0.92
Ql 0.3803 03803 | 0.7888 1.054 | 1.054 | +2.924* | +2.924* | -70.87° | -70.87° | 0.92
1.420 | 1.019 0.000 +5.856* | -132.01 | -132.28 | 0.66*
Q3 0.6366 | 0.2417 | 0.9595 1.420 | 5.168 0.000 -0.045 -131.98 | -132.28 | 0.13*
Table 2. The gains k,, for just having a limit cycle.
Methods Gain k,,
Proposed method 1.7915
Aizerman Conjecture 1.79
Hirsch plot 1.25
Mee plot 1.50
Digital Simulation 1.7885
Table 3. Calculated and Simulated Results for variable set of (k; ,k,).
Loop gains Calculated Simulated
k1 k2 Alm A2m wc rad/s Als AZs ws rad/s
0.400 0.400 0.000 0.000 0.0000 0.000 0.000 0.000
0.597 0.597 1.470 1.359 0.7888 1.523 1.433 0.783
0.597 1.000 1.630 2.680 0.7888 1.800 2.808 0.803
1.000 0.597 2.803 1.581 0.7888 3.068 1.704 0.789
1.000 1.000 3.302 3.053 0.7888 3.309 3.032 0.790
1.000 5.000 3.374 15.674 0.7888 3.393 15.802 0.789
5.000 5.000 17.364 16.052 0.7888 17.578 15.952 0.787
1.000 10.000 3.376 31.371 0.7888 3.396 31.665 0.789
5.000 1.000 16.967 3.128 0.7888 17.205 3.070 0.789
10.000 1.000 33.957 3.130 0.7888 34.466 3.071 0.789
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Table 4. Calculated and simulated results of Example 1 for k; =k, =1.

Tain-Sou Tsay

Osci. Freq(rad/s) Channel #1 | Channel #2 | 9, (deg) | M,
N.(a) 0.4541 0.2929 33 | o5
Calculation 0.4875 A 1.0961 21390
Simulation 0.4836 A 1.0607 2.2454 -54.4 -
Table 5. Calculated and simulated results of Example 1.
Loop gains Calculated Simulated
K, K, A A, @, rad/s A A, @, rad/s
0.4530 0.3700 ---- ---- -—-- 0.4229 0.6101 0.4784
0.4541 0.3709 0.40000 0.6099 0.4875 0.4275 0.6175 0.4785
0.5000 0.5000 0.48994 1.0048 0.4875 0.5164 0.9880 0.4788
1.0000 1.0000 1.09609 2.1390 0.4875 1.0587 2.2447 0.4830
2.0000 2.0000 2.23103 4.3304 0.4875 2.1696 4.7227 0.4840
1.0000 10.000 1.09609 21.7318 0.4875 1.1075 24.5620 0.4839
10.000 1.0000 11.21309 2.1390 0.4875 10.5565 2.2443 0.4828
10.000 10.000 11.21309 21.7318 0.4875 11.0485 24.5620 0.4843
Table 6. Calculated and simulated results of Example 2.
Loop gains Calculated Simulated
k; K, Ky @, rad/s Ac Asc Asc o radls | Ag Ass Ass
1.00 | 1.00 | 1.00 | 2.0606 2.552 2.552 2.552 2.145 2.832 2.832 2.832
1.00 | 1.00 | 2.00 | 2.0606 2.552 2.552 5.103 2.145 2.832 2.832 5.664
1.00 | 2.00 | 1.00 | 2.0606 2.552 5.110 2.552 2.145 2.832 5.664 2.832
0.50 | 0.50 | 0.50 | 2.0606 1.276 1.276 1.276 2.145 1.416 1.416 1.416
0.10 | 0.10 | 0.10 | 2.0606 0.2552 0.2552 0.2552 2.145 0.283 0.283 0.283
0.01 | 0.01 | 0.01 | 2.0606 0.02552 | 0.02552 | 0.02552 2.145 | 0.0283 | 0.0283 | 0.0283
0.10 | 1.00 | 5.00 | 2.0606 0.2552 2.552 12.758 2.145 0.283 2.832 | 14.160
L5 k Biva ew]

it

Fig.1. Nonlinear Multivariable Feedback

Control System.

ar=Assin(wt+6r)

o

+ y1

K1 N1(ar 11(j e
(@) [ 9ri6e) >
g21(jo)
a=Assin(ot+6) kil \
20O ke fNe(a F geagi) |- i,

Fig.2. A 2x2 Nonlinear Multivariable
Feedback Control System.
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aia;
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Fig.4. Time responses of the illustrating

example.
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Fig.5. Root-locus analyses for k, =1.7915.
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N2(az)

Dmin=0.4875rad/s (Qs)
(Mmax=(.5846rad/s (Qs)
@min=1,3754 rad/s (Q7)
Mmax=1.7961rad/s (Qs)

11 Ny(az)_max
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058
Fig.6. Root-Loci of limit cycles in the
parameter plane.
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Fig.7. Nonlinearities of Example 1.
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Fig.8. Root-loci Analyses of limit cycles of
Example 1 for k;, =k, =1.
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Fig.9. Time responses of Example 1 for
k, =k, =1.
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Fig.10. Root-loci analyses of limit cycles of
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Fig.11. Time responses of Example 2 for
Fig.13(b). w,,, -Locus of Example 3 for
ki=1..

k =1.
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Fig.12. Nonlinearities of Example 3.
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Fig.13(a). Root-loci analyses of limit
cycles of Example 3 for k, =1.
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