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Abstract: - This paper aims to present the combination of chaotic signal and evolutionary algorithm to estimate 

the unknown parameters in five-dimension chaos synchronization system via the Pecora-Carroll method. The 

self-organizing migrating algorithm was used to estimate the unknown parameters. Based on the results from 

evolutionary algorithm, two identical chaotic systems were synchronized. 
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1 Introduction 
Chaos theory is one of the most important 

achievements in nonlinear system research. Chaos 

dynamics are deterministic but extremely sensitive 

to initial conditions. Chaos has attracted great 

interests from researchers of different fields 

including economics [1], engineering [2], etc. 

Chaotic systems and their applications in secure 

communications have received a great deal of 

attention since Pecora and Carroll proposed a 

method to synchronize two identical chaotic systems 

under different initial conditions [3]. The high 

unpredictability of chaotic signal is the most 

attractive feature of chaos based secure 

communication. Several types of synchronization 

have been considered in communication systems, 

such as Pecora and Carroll (PC) method [3], Ott, 

Grebogi and Yorke (OGY) method [4], feedback 

approach [5], adaptive method [6], time-delay 

feedback approach [7], back-stepping design 

technique [8], etc. In practice, some or all of the 

system’s parameters are unknown. So that, many of 

proposed solutions focused on synchronization-

based on the methods of parameter estimation [13]-

[23]. In [22], [23], the parameters of a given 

dynamic model were estimated by minimizing the 

average synchronization error using a scalar time 

series, etc. However, most researches about chaos 

synchronization concern the synchronization of low 

dimensional systems. Recently, Roy and Musielak 

presented a five-dimensional system by adding two 

additional variables into the three-dimensional 

Lorenz system [10]. Basic properties of the five-

dimensional system have been analyzed by means 

of the Lyapunov exponents and bifurcation 

diagrams. Their study shows that the system could 

generate various complex chaotic attractors when 

the system parameters were changed. 
 A new class of stochastic optimization algorithm 

called self-organizing migrating algorithm (SOMA) 

was proposed in literature [25], [26]. SOMA works 

on a population of potential solutions called 

specimen and it is based on the self-organizing 

behavior of groups of individuals in a ''social 

environment''. It was demonstrated that SOMA has 

ability to escape the traps in local optimal and easily 

to achieve the global optimal. Therefore, SOMA has 

attracted much attentions and wide applications in 

different fields mainly in various continuous 

optimization problems.  
    The higher dimensional systems have the more 

initial conditions, so they will be more complex than 

the lower dimension systems. The secure of 

communication system is increasing with the higher 

unpredictability of chaotic system, it also more 

difficult to estimate the unknown parameters.  
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Motivated by the aforementioned studies, this paper 

aims to present the combination of chaotic signal 

with self-organizing migrating algorithm to estimate 

the unknown parameters in 5D chaotic 

synchronization system via Pecora and Carroll 

method under different initial conditions. Based on 

the results of self-organizing migrating algorithm, 

the estimated parameters were used to synchronize 

two 5- dimension chaotic systems. 
 

 

2 Problem Formulation 
 

2.1 Pecora-Carroll  method 
In 1989, Pecora and Carroll introduced a method for 

constructing synchronizing chaotic systems [3], 

which was used by X. Liao, G Chen and O. Wang in 

[19].  They showed that when a state variable from a 

chaotic system was input into a replica subsystem of 

the original one, both systems could be 

synchronized identically. They decomposed the 

dynamical system 

( )u g u  (1) 

 into two subsystems, 

( , )
v

v g v w  

( , )
w

w g v w  (2) 

with v = (u1, … , uk) and w = (uk+1, … , un).   

and considered one of the decomposed 

subsystems as the driving signal, say v, to be 

injected into the response system,  

( ),
w

w g v w  
(3) 

that was given by the same vector field gw, the 

same driving v, but different variables w´ 

synchronizes with the original w subsystem. 

 Consider the difference of these two systems    

e = w´ – w. The synchronization of the pair of 

identical systems (2) and (3) occurs if the dynamical 

system describing the evolution of the 

difference | | 0  as w' - w t  . 

 

2.2 The parameter estimation 
When estimating the parameters, suppose that the 

structure of the system is known in advance, the 

transmitter (driver) system is set with original 

parameters and the parameter in receiver (response) 

system is unknown. Therefore, the problem of 

parameter estimation can be formulated as the 

following optimization problem: 

2

1

1
CF= | ' |  

M

t t

t

w w
M

 

 

(4) 

where M denotes length of data used for parameter 

estimation, the parameter can be estimated by 

minimum the cost function CF(4). 

Because of the irregular dynamic behavior of 

chaotic systems, the parameter estimation of chaotic 

systems is a multidimensional continuous 

optimization problem, the parameters are not easy to 

obtain. In addition, there are often multiple variables 

in the problem and multiple local optimums in the 

landscape of cost function, so traditional 

optimization methods are easy to trap in local 

optima and  difficult to achieve the global optimal 

parameters. Therefore, SOMA was chosen because 

it has been demonstrated that the algorithm has the 

ability to converge toward the global optimum. 

 

 

3 Self - Organizing Migrating 

Algorithm 
Self-Organizing Migration Algorithm (SOMA) - 

one of the evolutionary algorithms was chosen. It 

imitates nature process of wildlife migration. The 

method was established in 1999 and developed by 

Prof. Ivan Zelinka at the University of Tomas Bata, 

Zlín. SOMA is a stochastic optimization algorithm 

that is modeled on the social behavior of 

cooperating individuals [25]. The approach is 

similar to that of genetic algorithms (GA), although 

it is based on the idea of a series of “migrations” by 

a fixed set of individuals, rather than the 

development of successive generations. It can be 

applied to any cost-minimization problem with a 

bounded parameter space, and robust to local 

minima. SOMA works on a population of candidate 

solutions in loops called migration loops. The 

population is initialized randomly distributed over 

the search space at the beginning of the search. In 

each loop, the population is evaluated and the 

solution with the highest fitness becomes the leader 

‘L’. Apart from the leader, in one migration loop, all 

individuals will traverse the input space in the 

direction of the leader. Mutation, the random 

perturbation of individuals, is an important 

operation for evolutionary strategies (ES). It ensures 

the diversity amongst the individuals and also 

provides the means to restore lost information in a 

population. Mutation is different in SOMA 

compared with other ES strategies. SOMA uses a 
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parameter called perturbation of migration (PRT) to 

achieve perturbation. This parameter has the same 

effect for SOMA as mutation has for GA. 

The novelty of this approach is that the PRT 

vector is created before an individual starts its 

journey over the search space. The PRT vector 

defines the final movement of an active individual 

in search space. 

The randomly generated binary perturbation 

vector controls allowed dimensions for an 

individual. If an element of the perturbation vector 

is set to zero, then the individual is not allowed to 

change its position in the corresponding dimension. 

An individual will travel a certain distance 

(called the Path Length) towards the leader in n 

steps of defined length. If the Path Length is chosen 

to be greater than one, then the individual will 

overshot the leader. This path is perturbed 

randomly.  

There are specified following parameters of 

SOMA algorithm: 

Cost function: determines how to evaluate 

individuals. 

Specimen: describes a form of individuals 

Population size: the number of individuals in the 

population which is contained in one migration.  

Migrations: the maximum number of migrations to 

complete. (This parameter represents the maximum 

number of iteration). 

Step: the step size of individual during migration 

Path Length: duration of path which individuals use 

for migration 

PRT: perturbation of migration 

Minimal diversity: diversity of evolutionary process 

More detailed description of SOMA can be 

found in [25],[26]. 

There are many of SOMA variations which are 

differentiated by way of migration. In our case, 

SOMA-All-To-All variation has been chosen, in 

which all individuals move towards the other 

individuals. This strategy often needs less cost 

function evaluations to reach the global optimum 

than the other strategies. 

 

 

4 Simulation and Result 
 

4.1 Synchronization of 5D Lorenz chaotic 

system’ 
In this section, we apply the Pecora and Carroll 

technique to achieve the synchronization between 

two identical 5D chaotic systems. The mathematical 

description of 5D system is as follows [10]: 

( )

2

2( / )

2 2

x a y x

y rx y zx

U z xy bz uw

u cau a c w

w uz ru cw

 

 

(5) 

where x, y, z, u and w are the state variables, and a, 

b, c and r are the positive real constants. The 5D 

system (5) exhibits a chaotic attractor for a = 10, 

b=8/3, c = 2 and r=24.75 as shown in Fig. 1. 

       We use a subscript d to denote the signals in the 

drive, and a subscript r for the signals in the 

response. Using x of the decomposed subsystems as 

the driving signal, in this case, x was injected into 

the response system. Since xd = xr= x, we only 

consider the following drive and response 

subsystems:  

2

2( / )

2 2

d d

d d d d

d

d d

d d d d d

y rx y z x

z x y bz u w
U

u cau a c w

w u z ru c w

 

 

(6) 

And the response system Ur is described by the 

following equations: 

2

2( / )

2 2

r r

r r r r

r

r r

r r r r

y rx y z x

z x y bz u w
U

u cau a c w

w u z ru cw

 

 

(7) 

where a, b, c and r are unknown parameters in 

response system. 

Consider the difference of these two systems     

e = Ud – Ur, the synchronization of the pair of 

identical systems (6) and (7) occurs if the dynamical 

system describes the evolution of the 

difference | | 0 as   t
d r

U (t) -U (t)  . Subtracting 

system (6) from system (7) yields the error 

dynamical system between two system 

e(t)=
d rU (t) -U (t)  were used to create a cost 

function CF representing the root mean square error 

(RMSE) of synchronization between  Ud and Ur: 

2

1

1
CF= | ( ) ( )|

m

d r

t

U t U t
m

 

 

(8) 

      The parameter estimation can be formulated as a 

multidimensional nonlinear problem to minimize 

the cost function CF. SOMA are used to find a 

suitable parameter a, b, c and r such that the cost 

function CF can be asymptotical approach to 

minimum point. The minimum value of cost 

function guarantees of the best solution with 

suitable parameters. Systems are asymptotically 

(and globally) synchronized. 
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4.2 Parameter setup 

In our simulations, the initial states of the drive 

system (6) and the response system (7) are taken as 

xd(0) = x = 1, yd(0) = 2, zd(0) = 1, ud(0) = 1, wd(0) = 

1  and xr(0) = x = 1, yr(0) =-2,  zr(0) =-1, ur(0) = -1, 

wr(0) = -1, respectively. Hence the error system has 

the initial values ex(0) = 0, ey(0) = 4, ez(0) = 2, eu(0) 

= 2  and ew(0) = 2.   

 

 

Table 1 SOMA parameter setting 

Parameter Value 

Population size 20 

Migrations 20 

Step 0.11 

Path length 3 

Perturbation 0.1 

Minimal diversity -1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOMA-All-To-All was used to solve the systems, 

which the control parameters setting are given in 

Table1 1. Simulations were implemented using 

Mathematica programming language and executed 

on Pentium D 2.0G, 2GB personal computer. 

4.3 Experimental results 

 
4.3.1. Case study 1: simulation on one-dimensional 

parameter estimation 

In this case, one-dimensional parameter estimation 

is considered. That mean three parameters are 

known in advance with the original value; one 

parameter “a” is unknown and need to be estimated. 

The initial guesses are in the range [5, 15] for a, the 

control parameters were set as Table 1. SOMA-All-

To-All has found the best results were collected as 

Table 2, both the worst and the best values of the 

cost function approaches minimum value quickly 

after 3 migrations as shown in Fig.2.a. SOMA had 

found the optimum value of “a” as shown in Fig.2.b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Views of the chaotic attractor of 5D chaotic system 
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Fig.2.a. CFa evolution by SOMA 
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Fig.3.a. CFb evolution by SOMA 
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Fig.4.a. CFc evolution by SOMA 
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Fig.5.a. CFr evolution by SOMA 
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Similar for the others, the initial guesses are in the 

range for b [0,5], c [0,5] and r [20,30]  ; the 

estimated parameter  b,c,r  also were found by 

SOMA as shown in Fig.3,4,5.b. The values of CF 

also quickly approached to optimum values as seen 

in Fig.3,4,5.a. The estimated parameters and 

minimum CF values were presented in Table 2. It 

can be seen that the best results (estimated values) 

obtained by SOMA-All-To-All are almost the same 

and very close to the true values. 
 

Table 2. 1D Estimated parameters by SOMA 

Estimated parameters Cost function 

a 9.58692 0.533740 

b 2.66667 0.534797 

c 2.05214 0.478853 

r 24.7500 0.534797 
 

 

4.3.2. Case study 2: simulation on four-

dimensional parameter estimation 

 

Four-dimensional parameter estimation is 

considered in this case. That mean all of parameters 

a, b, c and r of response system were unknown and 

need to be estimated, the control parameters a,b,c 

and r  were known in advance with original value in 

driver system.  

 The initial guesses are in the range for a [5, 

15], b [0,5], c [0,5] and r [20,30] and the 

control parameters of SOMA were set as Table 1. 

Because of the sensitive of chaotic system, the cost 

function CF is so complex and has a lot of local 

optimum. But after 5 migrations, SOMA-All-To-

All has found the best results of CF=0.476868, the 

best values of the cost function approached 

minimum value quickly. Both the worst and the 

best values of cost function approached minimum 

gradually after 8 migrations as shown in Fig.7. 

SOMA had found the optimum value of a,b,c and r 

as shown in history evolution (Fig.6), the estimated 

parameters have the similar value with original 

parameters. It can be seen that the best results 

(estimated values) obtained by SOMA-All-To-All 

are almost the same and very close to the true 

values as shown in Table 3. 

 

 

 

Table 4. 2D Estimated parameters by SOMA 

Estimated parameters Cost function 

a,b 9.58676 2.66667 0.533740 

a,c 9.77759 2.05443 0.476897 

a,r 9.58691 24.7500 0.533740 

b,c 2.66667 2.05214 0.478853 

b,r 2.66667 24.7500 0.534797 

c,r 2.05215 24.7500 0.478853 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. 4D Estimated parameters by SOMA 

Estimated parameters Cost 

function a b c r 

9.7775 2.66667 2.05443 24.75 0. 476868 
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Table 5. 3D Estimated parameters by SOMA 

 

Estimated parameters 
Cost 

function 

a,b,c 9.77758 2.66667 2.05443 0.476897 

a,b,r 9.58682 2.66667 24.7500 0.533740 

a,c,r 9.77761 2.05443 24.7500 0.476897 

b,c,r 2.66667 2.05214 24.7500 0.478853 

In case 1 or 2 parameters among of a, b, c and r in 

response system were known in advance with the 

original value; the others (3 or 2) were also found 

with the optimum value by SOMA as shown in 

Table 4, 5.  Both the worst and the best values of 

cost function quickly approach minimum after 8 

migrations as shown in Fig.8, 9.  

       As shown in Table 2 – 5, the estimated 

parameters always have the similar values with 

original values. However, we can also easily 

recognize the effect of parameter ‘c’ on parameter 'a' 

and on system. The estimated parameter ‘a’ always 

tends to achieve a= 9.586xx with c=2 (such as in 

case study CFa, CFab,CFar,CFabr). While cost-

functions CF always   approach to area CF=0.47xxx 

with a=9.777xx when both 'a' and 'c' were estimated 

by SOMA (such as CFac, CFabc, CFabcr). The cost-

functions CF=0.47xxx   are smaller than 

CF=0.53xxx.  So that,   the final estimated values 

were chosen: a= 9.7775, b= 2.66667, c= 2.05443 

and r= 24.75 to ensure that the synchronization error 

approaches to minimum. Thus, the actual 

parameters were fully identified. The values of cost 

function always approach to optimum values, the 

estimated parameters obtained by SOMA and 

original parameters have the similar values. So, it is 

demonstrated that SOMA is effective to estimate 

parameters for 5D-chaos synchronization system. 
 

4.4 Synchronization of 5D chaotic system 

with estimated parameter  
Based on the values estimated by SOMA, the 

response system was constructed. The effective of 

the estimated value on the synchronization errors of 

driver systems Ud and on response system Ur via PC 

method were demonstrated as shown in Fig.10-14.  

     As shown in Fig.10-14(a), the synchronization 

between driver system (dash line) and response 

system (red line) do not exist in the phase space of 

chaotic attractor. In the opposite, when PC was 

applied with the estimated parameters, Fig.10, 11, 

14.(b) displays that the phase space of chaotic 

attractor between driver system and response system 

absolutely approached and synchronized although 

they were started under different initial values.  
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       Fig.8. CFab evolution by SOMA 

51818

5

103636

10

155455

15

207273

20

1

2

3

4

CFE Migrations

Cost Value

History of theEvolution

Output of Mathematica SOMA version

Fig.9. CFabc evolution by SOMA 

0 5 10 15 20

24.5

24.6

24.7

24.8

24.9

25.0

Migrations

Pa
ra

m
et

er
r

Evolution of Parameter r

Fig.6.d. History evolution of parameter r 

51818

5

103636

10

155455

15

207273

20

1

2

3

4

5

CFE Migrations

Cost Value

History of theEvolution

Output of Mathematica SOMA version

Fig.7. CFabcr evolution by SOMA 

WSEAS TRANSACTIONS on SYSTEMS Thanh Dung Nguyen, Thi Thanh Dieu Phan, Roman Jasek

E-ISSN: 2224-2678 123 Issue 4, Volume 11, April 2012



 

 

 

 

 

15 10 5 5 10 15
x

20

10

10

20

y

15 10 5 5 10 15
x

20

10

10

20

y

           (a)                                                                           (b) 

Fig.10. Projection onto the x-y plane of the 5D Lorenz attractor. a) Non-synchronization. b) 

Synchronization with estimated parameters and PC method 
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Fig.11. Projection onto the x-z plane of the 5D Lorenz attractor. a) Non-synchronization. b) 

Synchronization with estimated parameters and PC method 

Fig.12. Projection onto the x-u plane of the 5D Lorenz attractor. a) Non-synchronization. b) 

Synchronization with estimated parameters and PC method 
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Fig.13. Projection onto the x-w plane of the 5D Lorenz attractor. a) Non-synchronization. b) 

Synchronization with estimated parameters and PC method 
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Fig.14. Projection onto the y-z plane of the 5D Lorenz attractor. a) Non-synchronization. b) 

Synchronization with estimated parameters and PC method 
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Fig.15.b. Synchronization error of variable ‘w’ 

5 10 15 20
t

5

5

10

15

eu'

Fig.15.a. Synchronization error of variable ‘u’ 

It seems that there are not synchronization between 

driver system and response system of variable ‘u’ 

and ‘w’ in Fig.12.(b) and Fig.13.(b). But Fig. 15 

showed that the synchronization error of eu & ew 

approach to 0 after t>10. That means the 

synchronization was achieved when both variables  

 ‘u’ and ‘w’ approached 0 with t>10. This is a 

characteristic of these 5D chaotic systems as shown 

in Fig.1. Therefore, it is demonstrated that the 

estimated values and PC method are effective to 

synchronize for two 5D-chaotic systems. 

WSEAS TRANSACTIONS on SYSTEMS Thanh Dung Nguyen, Thi Thanh Dieu Phan, Roman Jasek

E-ISSN: 2224-2678 125 Issue 4, Volume 11, April 2012



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Conclusions 
 

The main aim of this research is to show that 

evolutionary algorithms were used as a method of 

artificial intelligence to estimate parameters of 

chaotic synchronization systems. In this paper, the 

PC method was applied to synchronize two identical 

5D-chaotic systems. Parameter estimation for 

chaotic synchronization system was formulated as a 

multidimensional optimization problem. Because of 

the irregular dynamic behavior of chaotic systems, 

there is a lot of local optimum in the landscape of 

cost function.  Self-Organizing Migration Algorithm 

was used to estimate the optimum values for 

unknown parameters, and it easily escaped the local 

optimum trap and achieved the global optimum 

parameters. Based on the estimated parameter from 

SOMA, two chaotic systems were synchronized 

absolutely.  
   It is difficult to recognize what differs Fig.16.a 

from Fig.16.b, but in its detail as shown in Fig.16.c 

and Fig.16.d, the quality of synchronization with 

estimated parameters is clearly higher than that of 

original parameters from t > 0.9. That mean the 

quality of communication system is increased with 

the estimated parameters.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to improve security in chaos 

communication system, one would require either a 

much higher sensitivity of synchronization method 

(or more optimal of system parameters to 

synchronize) or a system with higher dimensionality 

in order to increase the number of degrees of 

freedom an enemy would have to scan in order to 

synchronize, which may happen in lower system. As 

the future subject, it can be extended to other 

synchronization method to find the more suitable, 

which method is much stronger of synchronization. 

It can also be extended to the other systems which 

will consider the synchronization of two different 

systems or the effects of noise, fading, offset, etc. in 

communication system.  
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