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Abstract: - It is often difficult to measure all necessary parameters directly in the current stability control 

systems. This paper presents a nonlinear observer to estimate vehicle’s yaw rate, lateral acceleration, tire 

side slip angles and the road friction coefficient based on the measurement signals of the Electric Power 

Steering (EPS) system and the Anti-lock Braking System (ABS). The performances of the designed nonlinear 

observer have been investigated by means of computer simulations and experimental tests under various 

conditions. 
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1 Introduction 
Current stability control systems on production 

vehicles are limited because some useful parameters 

can’t be measured directly (such as the tire slip 

angles and the road friction coefficient) or the prices 

of the necessary sensors are too high (such as the 

gyro). A significant amount of costs can be saved if 

the parameters can be estimated by using available 

signals [1-4]. 

Ahn and Takagi proposed an estimation method 

of road friction, but it was difficult to detect the 

peak value of tire aligning moment [5, 6]. Ahn and 

Hsu suggested a nonlinear observer to estimate road 

friction and tire slip angles, but additional sensors 

were needed to measure the vehicle’s yaw rate and 

lateral acceleration [7, 8]. C. Liu designed a 

modified adaptive observer and a least square 

algorithm to estimate the road surface condition, but 

the accuracy was not good enough in some cases 

[9]. Paul J. TH. et al used Kalman filters to detect 

the yaw rate, the lateral acceleration and the tire slip 

angles, however, the estimation model was based on 

a linear tire model which may reduce the accuracy 

of the results [10, 20]. 

In this paper, we first build a brush tire model 

according to a series of experimental results. Based 

on the measurement signals of the Electric Power 

Steering (EPS) system and the Anti-lock Braking 

System (ABS), a nonlinear observer is designed for 

estimation of several useful vehicle parameters and 

road friction coefficient. Finally, the performances 

of the nonlinear observer have been investigated by 

means of computer simulations and experimental 

tests under various conditions. 

2 Vehicle model 
A simple two degrees of freedom vehicle model 

is established based on the nonlinear brush tire 

model and the EPS system model. 
 

 

2.1 Tire model 
The brush tire model (BTM) is a function of tire 

side slip angle α  and tire-road friction coefficient 

µ   [11]. The formula of this brush tire model reads: 
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where tan( )yγ θ α= , / (3 )y f zC Fαθ µ= and zF  is 

the tire normal force. fCα  is the tire cornering 

stiffness. l  is the tire contact length and slα is the 

slip angle at which full tire slip occurs, 
1tan (1/ )sl yα θ−= . yF and zM are the tire lateral 

force and aligning moment respectively. 
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In order to verify the brush tire model, especially 

the tire cornering characteristics, experiments were 

carried out on a single wheel test bed, shown in Fig. 

1. Considering the precision of the Magic-Formula 

tire model (MFTM), the results of MFTM were also 

added for comparison [11]. The wheel speed was 

about 18 km/h and the tire pressure was 220KPa. 

 

 
Fig. 1 Single wheel test bed 

 

Figure 2 and Figure 3 show the lateral force and 

the aligning moment as a function of the tire side 

slip angle, respectively. Though the results of 

MFTM are a little better than those of BTM, BTM 

is excellent enough to describe the lateral 

characteristics of the tire. Comparing the lateral 

force with the aligning moment under the same 

vertical wheel load, it is easily find that the 

corresponding tire side slip angle of the maximum 

aligning moment is smaller than that of the 

maximum lateral force. In other words, the aligning 

moment is earlier than the lateral force to reach the 

peak value. That means it will be helpful if the 

information of the aligning moment is added into 

the estimation model. 

 

 
Fig. 2 Comparison of lateral force 

 
Fig. 3 Comparison of aligning moment 

 

 

2.2 Steering system model 
In the above section, we find that it will be helpful if 

we can obtain the information of the tire aligning 

moment. Unfortunately, the tire aligning moment 

zM  is hard to be measured directly. However, the 

total aligning moment of the steering system aM  

can be calculated by the steering system model, 

especially with the help of the EPS system. 

As the acting point of the lateral force on the 

front wheel is shifted slightly behind the contact 

surface centerline, it is common that the intersecting 

point of the line extending from the kingpin shaft 

and the ground is always at the front of the contact 

surface centerline, shown in Fig. 4. This figure 

shows that the moment arm of the lateral force is 

divided into two trails. The tire aligning moment is 

produced by the lateral force acting at the pneumatic 

trail pξ , while the total aligning moment is the result 

of the lateral force acting at both the pneumatic trail 

and the caster trail ( )c pξ ξ+ [12]. 

Thus, aM  is 

 

, ,

( )a yi ci pi yi ci zi

i l r i l r

M F F Mξ ξ ξ
= =

= − + = − +∑ ∑  (3) 

where i  represents the left or right tire, cξ  is the 

caster trail and pξ  is the pneumatic trail. 
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Fig. 4 Aligning moment on front wheel 

 

Therefore, by utilizing the tire model introduced 

above to calculate the lateral force and the tire 

aligning moment, the total aligning moment can be 

estimated according to Eq. (3). Furthermore, the 

total aligning moment can also be measured 

indirectly based on the equilibrium of torque applied 

to steering system [13]. 

2 1[ ( ) ]a sw m f r rM G T GT T J cδ δ= − + + − −&& &  (4) 

where 1G  and 2G  are gear ratios of the reductor and 

the steering system, respectively, both of which are 

constants, swT  is the steering torque applied by the 

driver which can be measured by the torque sensor 

equipped with EPS, mT  is the assist torque applied 

by the motor which is proportional to the motor 

current and fT  is the friction torque caused by the 

friction between various components of steering 

system which can be approximately calculated by 

the Coulomb friction law, rJ  and rc  are the 

effective moment of inertia and the effective 

damping of the steering system, respectively, δ  is 

the steering angle of the tire. 

 

 

2.3 Vehicle model 
Assuming a constant longitudinal speed, a simple 

two degrees of freedom vehicle model is 

established, shown in Fig. 5. This bicycle model 

effectively represents lateral and yaw dynamics of a 

two-axle ground vehicle with the following 

equations: 

( ) ( ) cosr yfl yfr yrl yrrm v u F F F Fω δ+ = + + +& (5) 

( ) cos ( )z r yfl yfr yrl yrrI a F F b F Fω δ= + − +&     (6) 

where m is the entire vehicle mass, zI  is the moment 

inertia of the entire vehicle about vertical axis (z), a  

and b  are the distances of the front and rear axles 

from CG, u  and v  are the longitudinal and lateral 

speed of the vehicle, respectively, rω  is the yaw rate, 

yflF , yfrF , yrlF , yrrF  are the tire lateral forces of front 

left, front right, rear left and rear right tire, respectively. 
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Fig. 5 Two degrees of freedom vehicle model 

 

 

3 Nonlinear Observer 
The nonlinear observer can be regarded as several 

virtual sensors because with the aid of a 

mathematical model and the particular measurement 

signals, unknown states can be estimated [10]. In 

this section, based on the measurement signals of 

EPS and ABS, a nonlinear observer is designed to 

estimate the vehicle’s yaw rate, lateral acceleration, 

tire side slip angles and the road friction coefficient. 

 

 

3.1 Observer design 
Because of the symmetry of the bicycle model, the 

left and the right tires are assumed to have the same 

side slip angles which can be easily obtained by 

using simple kinematics: 

 r
f
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where fα  and rα  are front and rear tire slip angles, 

respectively. 

Differentiating Eq. (7) and Eq. (8) yields 
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Fig. 6 Structure of the nonlinear observer from Zeitz 

 

Based on the brush tire model and the bicycle 

model, the nonlinear state-space model can be given 

by: 

1
( )f r rv F F u

m
ω= + −&  (11) 

1
( )r f r

z

aF bF
I

ω = −&  (12) 

21 1
( ) ( )f f r

z z

r

a ab
F F
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α

ω δ
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 (13) 

21 1
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z z

r

ab b
F F

mu I u mu I u
α

ω

= − + +

−

&
 (14) 

0µ =&  (15) 

Because the above system is in nonlinear form, 

Zeitz’s method is used here to design the nonlinear 

observer [14]. The structure of the nonlinear 

observer from Zeitz is shown in Fig. 6. 

Eq. (11) ~ Eq. (15) can be brought into the 

standard form as: 

( , )x f x u=&  (16) 

( )y c x=  (17) 

The states and measurements are defined as 

follows: 

( , , , , )Tr f rx v ω α α µ=  (18) 

( ( ) , , )
2

T

r r a

a b
y v Mω ω

−
= +  (19) 

The state observation can then be given by: 

ˆ ˆ ˆ ˆ( , ) ( , )( )

ˆ ˆ( )

x f x u L x u y y

y c x

= + −

=

&

 (20) 

where ˆ( , )L x u is observer gain matrix. 

The key problem for this observer design is gain 

selection. The observer gain matrix ˆ( , )L x u  must 

be specified such that the estimation error 

( )x t% tends to 0 for t → ∞ : 

ˆlim ( ) lim( ( ) ( )) 0
t t

x t x t x t
→∞ →∞

= − =%  (21) 

The error differential equation can be formed as: 

ˆ( ) ( ) ( )

ˆ( , ) ( , )

ˆ ˆ( , )( ( ) ( ))

x t x t x t

f x u f x u

L x u c x c x

= −

= −

− −

&&% &

 (22) 

The solution of Eq. (22) can be used to determine 

whether or not the condition of Eq. (21) is satisfied. 

( , )f x u  and ( )c x  are then expanded around x̂  

using the Taylor series expansion. 

ˆ ˆ ˆ( , ) ( , ) ( , )( )
f

f x u f x u x u x x
x

∂
≈ + −

∂
 (23) 

ˆ ˆ ˆ( ) ( ) ( )( )
c

c x c x x x x
x

∂
≈ + −

∂
 (24) 

where the Jacobian matrix 
f

x

∂

∂
 is 
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Substituting Eq. (23) and Eq. (24) into Eq. (22) 

yields: 

ˆ ˆ ˆ( ) ( ( , ) ( , ) ( ))
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x x
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where ˆ( , )F x u  is the observer dynamic matrix. 

In order to make sure that the solution ( )x t% of the 

estimation error differential equation tends to 0 for 

t → ∞ for any initial conditions, ˆ( , )F x u  must be 

constant and its eigenvalues lie to the left of the j – 

axis. 

!
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x x

∂ ∂
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   (27) 

where G  is a constant matrix and is chosen as a 

diagonal matrix here 
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where 1λ , 2λ , 3λ , 4λ  and 5λ  are the five 

eigenvalues. 

According to Eq. (27), the observer gain matrix 

ˆ( , )L x u  can be calculated as: 
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Substituting Eq. (25) and Eq. (28) into 
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f

x u G
x

∂
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∂
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Therefore, the observer gain matrix ˆ( , )L x u  can 

be calculated by Eq. (29). 

As mentioned in the beginning of this section, 

the designed nonlinear observer only uses the 

measurement signals of EPS and ABS. The 

measurement equation of the nonlinear observer is 

given by 

 

2 1
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where 

 ( , ; , )
ˆcos( )

ij d

ij

i

r
v i f r j l r

ω

α
= = =

 (34) 

In Eq. (33), the estimated tire slip angles are used 

to correct the measurement vector. The wheel speed 

signals are obtained from ABS, while the hand 

wheel torque, the assist torque and the steering 

angular speed are measured by the existing sensors 

of EPS. It should be noted that the steering angular 

speed is proportional to motor rotational speed and 

therefore proportional to the motor back emf [6]. 

Furthermore, compared with Eq. (4), the second 

order time derivative of the steering angle is ignored 

in the measurement of total aligning moment. 

 

 

3.2 Improvement of algorithm 

Though the road friction coefficient µ  can be 

obtained directly from the nonlinear observer, its 

accuracy is unsatisfactory, especially on the high 

friction road. 

As mentioned in the first section, Ahn and 

Takagi have proposed a method for the estimation 

of tire-road friction coefficient based on maximum 

aligning moment [5, 6]. However, when tire side 

slip angles are unavailable, it is really difficult to 

detect the peak point of the aligning moment. Thus, 

Ahn just used this method to calculate the lower 

bound of µ . Although Takagi succeed in detecting 

the point approximately under some assumptions, 

the accuracy was still unsatisfactory. 

Unlike their algorithms, the estimated tire side 

slip angles from the nonlinear observer can be used 

to detect the peak point of the aligning moment. 

As discussed above, the total aligning moment 

aM  can be calculated by Eq. (3). Considering the 

front axle, Eq. (3) can be rewritten as 

( )a yf c zfM F Mξ= − +  (35) 

 Substituting Eq. (1) and Eq. (2) into Eq. (35) 

yields 
3
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a zf cM F sign
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µ γ γ ξ

γ γ
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+ −
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In order to get the maximum total aligning 

moment maxaM  , the partial derivative of aM  with 

respect to | |γ  is calculated as: 
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Thus, aM  takes its peak value at 

61
| | (1 )

4

c

l

ξ
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Substituting Eq. (38) into Eq. (36) yields 

max ( ) ( , )a zf cM F sign f lµ γ ξ= ⋅  (39) 
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Thus, 
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a
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f l F sign
µ

ξ γ
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It should be noted that all the parameters in Eq. 

(41) can be obtained or calculated approximately 

without additional sensors. The tire contact length l  
can be calculated by considering the inherent 

characteristic of tire structure and the contact 

between elastomers [16]. The caster trail cξ  is a 

function of steering geometry and can be 

determined by kinematics [8, 17]. The vertical load 

of front axle can be computed approximately 

according to the static load distribution and the 

maximum total aligning moment maxaM  can be 

calculated by Eq. (4). 

The above derivation process means the time 

when Eq. (38) is satisfied is the time when aM  

reaches its peak value and µ  can be calculated by 

Eq. (41) at that time. 

However, there are also disadvantages of the 

maximum aligning moment method (MAMM). 

Because MAMM depends on the estimated tire side 

slip angles, the road friction ˆMAMMµ estimated by 

MAMM can’t be used as an input of the tire model 

because the additional dynamic interactions may 

lead to an error if the current estimates are far from 

the actual values. Besides, although we have 

introduced the way to find the point of the 

maximum aM , the point may also be missed if the 

calculation step size is not small enough. Clearly, if 

we decrease the step size, the computation speed 

will be unsatisfied. Although there are new 

algorithms to reduce the computational cost [18, 19], 

in the present paper, ˆMAMMµ is just used to revise 

ˆ
NOµ  which is estimated by the nonlinear observer. 

The revised road friction is then written as: 

1 2
ˆ ˆ ˆ

NO MAMMk kµ µ µ= +  (42) 

where 1k  and 2k are the weighting coefficients: 

1
ˆ(1 )MAMMk µ= −  (43) 

2
ˆ
MAMMk µ=  (44) 

Eq. (42) can compensate for the disadvantages of 

the nonlinear observer and improve the performance 

of the estimator. However, if ˆMAMMµ  is far from 

ˆ
NOµ , ˆMAMMµ  will be thought to be an erroneous 

result and only ˆNOµ  will be used as an output. It 

should be noted here that because the estimation of 

road friction only depends on the measured total 

aligning moment which may become false when the 

side slip angle exceeds a certain threshold, another 

modification is made to the estimation algorithm: 

when the estimator detect a full tire slip at any axle, 

the friction estimation will be suspended and the last 

µ̂  will be held. 

 

 

4 Simulation and experimental results 
In order to verify the nonlinear observer, both 

simulations and experiments were performed under 

different kinds of conditions. 

1. Simulation with changing µ  

Because of the internal feedback loop of the 

nonlinear observer, the designed estimator is 

expected to perform well even when the road 

condition suddenly changes or full tire slip occurs. 

The vehicle speed was about 45 km/h and the 

initial value of µ̂  was set to 0.6. The steer input 

was a sine wave with a magnitude of 120°. Table 2 

shows the vehicle parameters used in the simulation. 

Figure 7~11 give the estimation performances of 

the nonlinear observer. Figure 7 and 8 show clearly 

that the estimated lateral acceleration and yaw rate 

do match well with the references. The road friction 

coefficient changes from 0.8 to 0.5 at about t=25s 

and full tire slip occurs on the low friction road. 

However, the estimated slip angles still match well 

with the references, shown in Fig. 9 and 10. Figure 

11 displays the estimation results of the road friction 

by three different methods. It can be seen that all of 

the three results can converge to the reference 

immediately even if the road surface changes 

suddenly. However, the result of nonlinear observer 

fluctuates wildly on the high friction road and the 

maximum aligning moment method overestimates 

µ̂  on the low friction road. The revised µ̂  shows 

the best performance among the three methods. 

Table 2   Vehicle Parameters 

Parameter Value Unit 

a 1.423 m 

b 1.117 m 

h 0.386 m 

Ix 284.5 

∙Iz 2248.1 

∙m 1535 kg 

 

2. Simulation of constant radius cornering 
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In order to test the stability of the estimator, a 

constant radius cornering simulation was performed. 

The vehicle speed was gradually increased from 20 

km/h to 45 km/h at first and then decreased to 20 

km/h again. 

Figure 12~18 show the simulation results of the 

estimator while driving with a constant radius. The 

results illustrate that all the parameters can follow 

the changes of the corresponding references. 

Although a small underestimation is detected at a 

high level of lateral acceleration, the accuracy of the 

estimator is sill satisfactory considering the potential 

low cost of this algorithm.  

 

 
Fig. 7 Lateral acceleration on a changing friction 

road  

 

 
Fig. 8 Yaw rate on a changing friction road 

 

 
Fig. 9 Front tire slip angle on a changing friction 

road 

 

 
Fig. 10 Rear tire slip angle on a changing friction 

road 

 

 
Fig. 11 Friction coefficient on a changing friction 

road 

 

 
Fig. 12 Vehicle speed of constant radius cornering 

 

 
Fig. 13 Steering angle of constant radius cornering 
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Fig. 14 Lateral acceleration of constant radius 

cornering 

 

 
Fig. 15 Yaw rate of constant radius cornering 

 

 
Fig. 16 Front tire slip angle of constant radius 

cornering 

 

 
Fig. 17 Rear tire slip angle of constant radius 

cornering 

 

 
Fig. 18 Friction coefficient of constant radius 

cornering 

 

3. Pylon Course Slalom Test 

A pylon course slalom test was carried out on a 

high friction road. The friction coefficient of the test 

road was about 0.7~0.8 and the vehicle speed was 

around 60 km/h. The necessary data was measured 

and imported to the estimation model. Figure 19 ~22 

show the nonlinear observer performances for the 

pylon course slalom test. The estimation results still 

demonstrate a good performance of this nonlinear 

observer.  

 

 
Fig. 19 Lateral acceleration of pylon course slalom 

test 

 

 
Fig. 20 Yaw rate of pylon course slalom test 
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Fig. 21 Tire side slip angles of pylon course slalom 

test 

 

 
Fig. 22 Friction coefficient of pylon course slalom 

test 

 

 

4 Conclusion 
This paper presents a nonlinear observer for the 

estimation of vehicle parameters and road friction. 

The nonlinear observer has a cost advantage 

because it only utilizes the measurement signals of 

EPS and ABS which are available on many 

production vehicles. The designed nonlinear 

observer shows a good performance both in 

simulation and experiments.  
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