Gaussian Circular 2D FIR Filters Designed Using Analytical Approach

RADU MATEI

1Faculty of Electronics, Telecommunications and Information Technology
“Gheorghe Asachi” Technical University of Iaşi
Bd. Carol I no.11 A, Iaşi

2Institute of Computer Science, Romanian Academy – Iaşi Branch
ROMANIA

Abstract: - This paper proposes an analytical design procedure for a particular class of 2D filters, namely Gaussian-shaped, circularly-symmetric FIR filters. We approach both low-pass and band-pass circular filters, which are adjustable in selectivity and peak frequency. The design starts from a given 1D Gaussian prototype filter, approximated using the Chebyshev series. A frequency transformation is applied to derive the circular filter. Several design examples are provided for both types of filters. The filters designed through this method are efficient, their frequency response results in a factored or nested form, convenient for implementation.

Key-Words: - 2D FIR filters, approximations, Gaussian circular filters, analytic design

1 Introduction

Two-dimensional filters have constantly developed as an essential research field, due to their important applications in digital image processing, and various design techniques have been elaborated [1]. As an alternative to the well-known optimization methods based on numerical algorithms, generally leading to optimal filters for the imposed specifications, there have been also developed analytical design methods which have their advantages, such as a closed form of the filter frequency response and the tunability, or the capability to adjust filter characteristics through their parameters. These analytic design techniques rely on 1D prototypes, to which a specific frequency transformation is applied, depending on the desired 2D filter. A convenient and largely used tool for 2D filter design is also the McClellan transform [2], [3]. There exist a large variety of 2D filters with various shapes, both of FIR and IIR type which find specific applications in image processing tasks. Among them, circular filters are extensively used due to their properties and many design methods were developed in early papers [4]-[6]. Efficient design and implementation of anisotropic Gaussian filters is achieved in [7],[8]. Applications of circular Gabor filters in texture segmentation are given in [9].

Filter banks of different types have been extensively used in image processing. A major application is in texture segmentation or classification, with rotation invariant filters. Using appropriate filter banks, the frequency spectrum of texture image is decomposed into several sub-bands.

The author has approached analytical design of 2D FIR and IIR filters in previous works. In [11], filters with circular symmetry were designed, while in [12] and [13] circular IIR filter banks were proposed, also with biomedical image filtering applications. Directional and oriented square-shaped IIR filters were described in [14]. In [15], a class of separable Gaussian directional FIR filters was approached. This work also introduces an analytical method for the design of circularly-symmetric FIR filters, with a Gaussian shape. The novelty is that the resulted filters are adjustable through specified parameters, which control the selectivity and peak frequency for band-pass filters. The paper is organized as follows: section 2 introduces the Gaussian prototype filter; in section 3, this is approximated in two ways, first as a trigonometric series, then as a polynomial; also a frequency mapping for circular filters is defined in matrix form. Several design examples of adjustable low-pass and band-pass circular filters are provided, for specified selectivity and peak frequency.

2 Gaussian Prototype Filters

Zero-phase filters (both FIR and IIR), in particular Gaussian filters are often used in image processing because they do not introduce any phase distortions in the filtered image. Furthermore, the 2D Gaussian is separable, so it can be implemented as a cascade of 1D filters. Here we begin our design with a 1D Gaussian prototype filter, which has the form:

\[G(\omega) = \exp(-\sigma^2\omega^2/2) \] (1)
This is the Fourier transform of Gaussian function in continuous spatial variable \(x \):
\[
g(x) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right) \cdot \exp\left(-\frac{x^2}{2\sigma^2} \right)
\]
(2)

For simplicity, instead of (1), we use the expression
\[
G_p(\omega) = \exp(-p\omega^2), \quad \text{with} \quad p = \sigma^2/2,
\]
where \(p \) has the role of a selectivity parameter; the larger the value of \(p \), the narrower is the Gaussian. A 1D band-pass (BP) Gaussian filter may be put into the form:
\[
G_{bp}(\omega) = \exp(-p(\omega - \omega_0)^2) + \exp(-p(\omega + \omega_0)^2)
\]
(3)

where \(\omega_0 \) is the BP filter central or peak frequency.

So \(G_{bp}(\omega) \) is the sum of two elementary Gaussians \(G(\omega) \) shifted around \(-\omega_0 \) and \(\omega_0 \).

The design procedure presented as follows is based on a polynomial approximation of the 1D Gaussian prototype function \(\exp(-p\omega^2) \).

A very efficient approximation (with best tradeoff between accuracy and approximation order) is given by the Chebyshev series method, which yields an uniform approximation of a given function over a specified range, unlike Taylor expansion. The single drawback is that the approximation coefficients are only derived numerically, with symbolic calculation software like MAPLE.

Thus, we intend to find a series expansion of the function \(G_p(\omega) \), an approximation with an imposed precision on frequency interval \([-\pi, \pi]\). Generally, a given filter function \(G_p(\omega) \) can be approximated to a specified accuracy on a given frequency range by a polynomial function \(G_a(\omega) \) of order \(N \):
\[
G_p(\omega) \approx G_a(\omega) = \sum_{j=0}^{N} a_j \cdot \omega^j
\]
(4)

The order \(N \) of polynomial \(G_a(\omega) \) depends on filter selectivity, imposed precision of approximation and frequency interval. Generally the polynomial \(G_a(\omega) \) will be factored as [11]:
\[
G_a(\omega) = \alpha \cdot \prod_{i=1}^{N_1} (\omega^2 - a_i) \cdot \prod_{j=1}^{N_2} (\omega^2 - b_j \cdot \omega^2 + c_j)
\]
(5)

where \(2N_1 + 4N_2 = N \) is the order of polynomial approximation and \(\alpha \) is a constant.

3 Gaussian Prototype Approximation and Frequency Mapping for Designing Circular Filters

In this section, 2D circular filters will be derived by applying a specific frequency transformation to the factored polynomial approximation of the prototype frequency response. This procedure will be carried for two types of filters, namely low-pass (LP) and band-pass (BP).

3.1 Trigonometric prototype approximation through Chebyshev series

In order to find a trigonometric approximation as a polynomial in \(\cos \omega \), first we make the following change of variable, also used in [15]:
\[
\omega = \arccos\left(\frac{x}{\pi} \right) \leftrightarrow x = \pi \cos \omega
\]
(6)

For Gaussian function \(G_1(\omega) = \exp(-\omega^2) \), we will first find the Chebyshev series approximation for function \(\exp\left(-\left(\arccos(\omega/\pi)\right)^2\right) \), normally calculated on the frequency range \([-\pi, \pi]\).

The Chebyshev series is very useful and convenient, as it gives an approximation of a function which is uniform, basically with equal error along the entire specified interval, while the Taylor formula gives a polynomial approximation around a specified point and the approximation diverges rapidly towards the limits of given range. We use function “chebyshev” available in MAPLE software. The approximation is accurate on specified range \([-\pi, \pi]\), but it diverges rapidly outside it. Since we further use the function \(G_2(\omega) \) for a 2D circular filter, obtained by rotating the 1D prototype around its axis, the approximation must hold on a larger range, namely \([-\pi\sqrt{2}, \pi\sqrt{2}]\), otherwise circular filter characteristic will diverge towards the corners of the frequency plane, thus the shape will have large distortions.

Consequently, the variable change (6) will become:
\[
\omega = \arccos\left(\frac{x}{\pi\sqrt{2}} \right) \leftrightarrow x = \pi\sqrt{2} \cdot \cos \omega
\]
(7)

and we obtain, using a specified error of 0.01:
\[
\exp\left(-\left(\arccos\left(\frac{x}{\pi\sqrt{2}} \right)\right)^2\right) \approx 0.0848722 + 0.059327 \cdot x + 0.01717295 \cdot x^2 + 0.0027913 \cdot x^3 + 0.00022045 \cdot x^4
\]
(8)

Substituting back \(x \) by \(x = \pi\sqrt{2} \cdot \cos \omega \), we get the approximation as a polynomial in variable \(\cos \omega \):
\[
G_1(\omega) = \exp\left(-\omega^2\right) \approx 0.28209 + 0.043937 \cdot \cos \omega + 0.020755 \cdot \cos 2\omega + 0.059444 \cdot \cos 3\omega + 0.010328 \cdot \cos 4\omega
\]
(9)

or in a factored form like:
\[
\exp\left(-\omega^2\right) \approx 0.08263 \cdot (\cos^2 \omega + 1.7948 \cdot \cos \omega + 0.8065) \cdot (\cos^2 \omega + 1.0829 \cdot \cos \omega + 1.2736)
\]
(10)

Of course, for more selective Gaussian filters, which correspond to larger values of parameter \(p \), more terms of the Chebyshev series need to be kept, to obtain an approximation with the same precision. For instance, following the same technique, we get for the function \(G_5(\omega) = \exp(-4\omega^2) \):
\[
G_5(\omega) = \exp\left(-4\omega^2\right) \approx 0.141034 + 0.264921 \cdot \cos \omega + 0.21967 \cdot \cos 2\omega + 0.16065 \cdot \cos 3\omega + 0.103749 \cdot \cos 4\omega + 0.059048 \cdot \cos 5\omega + 0.029706 \cdot \cos 6\omega + 0.013113 \cdot \cos 7\omega + 0.00514 \cdot \cos 8\omega
\]
(11)
or in factored form as previously:

\[G_1(\omega) \equiv 0.657931 \cdot (\cos \omega + 0.981717) \]
\[\cdot (\cos \omega + 0.856848) \cdot (\cos \omega + 0.62376) \]
\[\cdot (\cos \omega + 0.31344) \cdot (\cos \omega - 0.03907) \quad (12) \]
\[\cdot (\cos \omega - 0.283997) \]
\[\cdot (\cos \omega - 1.177115 \cdot \cos \omega + 0.457769) \]

As a remark, the Gaussian \(G_1(\omega) = \exp(-4\omega^2) \) can be regarded as a compressed version on frequency axis of the Gaussian \(G_1(\omega) = \exp(-\omega^2) \) by factor 2 (\(\omega \rightarrow 2\omega \)) and the order of approximation is 8, (double); we expect that for \(G_1(\omega) = \exp(-9\omega^2) \), the approximation order will be 12 (triple) and so on.

3.2 Parametric polynomial approximation using Chebyshev series

A somewhat different approach would be to design a parametric or adjustable filter, for which value \(p \) would appear explicitly in the filter transfer function and thus the design for new specifications reduces to a simple value substitution.

The idea is to make the filter function scalable on the frequency axis (within certain limits), by making \(\omega \rightarrow p \cdot \omega \), where \(p \) can take arbitrary values; the scaling is a dilation for \(p<1 \), compression for \(p>1 \).

The trigonometric approximation (9) of Gaussian \(G_1(\omega) = \exp(-\omega^2) \) cannot be practically scaled, as it would contain cosine terms of the form \(\cos(p\pi \omega) \), generally with non-integer \(p \), which are difficult to deal with further.

Using the efficient Chebyshev series as before, we obtain directly, without using the previous change of variable, the following polynomial approximation for \(G_1(\omega) = \exp(-\omega^2) \), calculated on range \([-\pi,\pi]\):

\[G_1(\omega) \equiv \alpha \cdot (\omega^2 - 5.7968)(\omega^2 - 6.5916)(\omega^2 - 8.7431) \]
\[(\omega^2 - 9.7236)(\omega^2 - 5.51094 \cdot \omega^2 + 13.36003) = H_{G1}(\omega) \quad (13) \]

where \(\alpha = 0.229375 \cdot 10^{-4} \).

Compared to the trigonometric series (9) of order 4, we notice that the order is much higher, namely 12. Moreover, the approximation (plotted in red in Fig. 1 (a)) diverges very rapidly outside the interval. For \(G_1(\omega) = \exp(-4\omega^2) \) we get similarly, where \(\beta = 0.85705 \cdot 10^{-5} \):

\[G_1(\omega) \equiv \beta \cdot (\omega^2 - 2.0516)(\omega^2 - 3.28931)(\omega^2 - 4.68917) \]
\[(\omega^2 - 6.1195)(\omega^2 - 7.4554)(\omega^2 - 8.5736)(\omega^2 - 9.386) \]
\[(\omega^2 - 9.8045)(\omega^4 - 1.89305 \cdot \omega^2 + 1.00547) = H_{G2}(\omega) \quad (14) \]

which is plotted in Fig.1(b). The approximations are polynomials in even powers of frequency \(\Theta \), and they can be scaled with factor \(p \), making \(\omega \rightarrow p \cdot \omega \).

Next, we look for a simple approximation of \(\omega^2 \) as a cosine series. While the Chebyshev series expansion is generally more convenient, in this case a precise approximation of \(\omega^2 \) is not needed on entire range \([-\pi,\pi]\], but rather around zero. The variable change \(\omega = \arccos x \leftrightarrow x = \cos \omega \) is first used. Thus, we find the Taylor series of \((\arccos x)^2 \) around \(x = 1 \), truncated to the second-order term as:

\[(\arccos x)^2 \approx -2(x - 1) + (1/3) \cdot (x - 1)^2 \]
\[= 7/3 - (8/3) \cdot x + (1/3) \cdot x^2 \quad (15) \]

Substituting back in (15) the variable \(x = \cos \omega \) and using trigonometric identities, the following simple approximation is found [15]:

\[\omega^2 \approx 2.5 - 2.66667 \cdot \cos \omega + 0.166667 \cdot \cos 2\omega \quad (16) \]

As can be noticed, this approximation (curve 2 from Fig.2 (a)) is precise around zero, diverging towards the limits of the range \([-\pi,\pi]\) with a large error as
compared to the original function ω^2 (curve 1). However, by replacing back the expression (16) into each scaled factor of $G_i(\omega)$ from (14), the marginal errors cancel away, resulting in an accurate overall approximation, shown in Fig.2 (b) where $G_i(\omega)$ (in blue) and approximation $H_p(\omega)$ (red) are practically superposed. Therefore, we expect the resulting 2D circular filter to be also very accurate in shape. Thus a uniform approximation on the entire range $[-\pi, \pi]$ is not necessary. The advantage is the low order of approximation, which leads to a more efficient, low-order 2D filter, convenient for implementation.

3.3 Frequency mapping for circular filter

This analytical design approach uses a 1D to 2D frequency mapping which, applied to the prototype, leads directly to the frequency response or transfer function of the 2D filter with desired circular shape. Starting from a 1D prototype with transfer function $H_p(\omega)$, a circularly-symmetric 2D filter $H(\omega_1, \omega_2)$ results applying the transformation $\omega \rightarrow \sqrt{\omega_1^2 + \omega_2^2}$:

$$H(\omega_1, \omega_2) = H_p\left(\sqrt{\omega_1^2 + \omega_2^2}\right)$$

(17)

which can be regarded as a rotation of the prototype around its central axis, generating 2D characteristic. A commonly used approximation of the 2D function $\cos \sqrt{\omega_1^2 + \omega_2^2}$ corresponds to the 3×3 matrix:

$$C = \begin{bmatrix} 0.125 & 0.25 & 0.125 \\ 0.25 & -0.5 & 0.25 \\ 0.125 & 0.25 & 0.125 \end{bmatrix}$$

(18)

such that the following approximation is valid:

$$\cos \sqrt{\omega_1^2 + \omega_2^2} \approx C(\omega_1, \omega_2)$$

(19)

This is a simple particular case of the McClellan transform. The function $C(\omega_1, \omega_2)$ and constant level contours are displayed in Fig.3, showing a precise circular shape throughout a large domain, while near the margins the contour circularity is distorted. This function decreases smoothly and uniformly to the minimum value (-1) near frequency plane margins, with no visible ripple. Moreover, the deviation from circularity is rather unimportant for the filters under discussion, as will be shown in the design examples.

Let us consider a 1D filter $H_p(\omega)$ with frequency response given by the following expression [11]:

$$H_p(\omega) = b_0 + 2 \sum_{k=1}^{R} b_k \cos k \omega$$

(20)

Using trigonometric identities for $\cos k\omega$, $k = 1...R$, we get a polynomial expression in powers of $\cos \omega$:

$$H_p(\omega) = c_0 + \sum_{k=1}^{R} c_k (\cos \omega)^k$$

(21)

Considering this polynomial form of 1D prototype and applying the frequency transformation specified previously, we obtain:

$$H(\omega_1, \omega_2) = H_p\left(\sqrt{\omega_1^2 + \omega_2^2}\right) = c_0 + \sum_{k=1}^{R} c_k \cdot C(\omega_1, \omega_2)$$

(22)

where notation $C(\omega_1, \omega_2) = \cos \sqrt{\omega_1^2 + \omega_2^2}$ defined in (19) was used. Thus, starting from the appropriate 1D prototype filter with desired frequency response, the design of the 2D circular filter simply consists in replacing $\cos \omega$ in the prototype function $H_p(\omega)$ with the circular cosine $C(\omega_1, \omega_2) = \cos \sqrt{\omega_1^2 + \omega_2^2}$. Making this substitution in each factor of $H_p(\omega)$, we can write [11]:

$$H(\omega_1, \omega_2) = k \cdot \prod_{i=1}^{n} (C + b_i) \cdot \prod_{j=1}^{m} (C^2 + b_{j1} \cdot C + b_{j2})$$

(23)

where C is a shorthand notation for $C(\omega_1, \omega_2)$.

Since the given prototype filter can be expressed as a product of elementary functions, the circular filter will also have a factored transfer function, which is a major advantage in implementation. The large-size kernel H corresponding to the FIR filter $H(\omega_1, \omega_2)$ results directly decomposed into elementary, small-size (3×3 or 5×5) matrices, as discrete convolution [11]:

$$H = k \cdot (C_1 \ast ... \ast C_i \ast ... \ast C_n) \ast (D_1 \ast ... \ast D_j \ast ... \ast D_m)$$

(24)

Using the 3×3 matrix C from (18) to approximate the function $C(\omega_1, \omega_2)$, each 3×3 matrix C_i from (24) is obtained from C by adding value b_i to the central element. Each 5×5 template D_j is given by the expression:

$$D_j = C \ast C_j + b_{j1} \cdot C_i + b_{j2} \cdot C_0$$

(25)

C_0 is a 5×5 zero matrix, with central element one; $C_i(5 \times 5)$ results by bordering C (3×3) with zeros.
4 Gaussian Circular Filter Design

In this section, 2D circular FIR filters of LP and BP type will be designed in two versions, one being parametric or adjustable.

4.1 Separable low-pass circular filters

For a simple low-pass filter of this kind, we use the 2D Gaussian property to be separable into two 1D Gaussian functions along the frequency axes. Indeed, from the Gaussian prototype \(G_p(\omega) = \exp(-p \cdot \omega^2) \) we derive the separable circular filter:

\[
G_c(\omega_1, \omega_2) = \exp\left(-p \left(\omega_1^2 + \omega_2^2\right)\right) = \exp\left(-p \omega_1^2\right) \exp\left(-p \omega_2^2\right)
\]

(26)

Thus, a 2D Gaussian circular filtering can be simply reduced to applying a Gaussian 1D filtering on each frequency axis. Using prototypes \(G_1(\omega) = \exp(-\omega^2) \) and \(G_2(\omega) = \exp(-4\omega^2) \) given by (9) and (11) and applying each on both axes, two Gaussian circular filters are derived, whose frequency responses and contour plots are shown in Fig.4, along with their prototypes. It can be noticed the very accurate shape and circularity of the characteristics, and also the absence of any ripple in the stop band.

4.2 Adjustable low-pass circular filters

The presented design procedure is quite simple and efficient, leading in a straightforward manner to the factored frequency response of the low-pass filter. However, changing the filter selectivity through the value \(p \), we have to resume each time all the design steps, which may become tedious.

(a)
(b)
(c)
(d)
(e)
(f)

Fig.4: (a), (b) Prototype approximations for \(p=1 \) and \(p=4 \); (c)-(f) characteristics and contour plots of circular filters

(a)
(b)
(c)
(d)
(e)
(f)

Fig.5: Characteristics and level contours of parametric Gaussian circular filters for scale parameter values: (a) \(p=1 \); (b) \(p=0.5 \); (c) \(p=1.3 \); (d) \(p=1.7 \); (e) \(p=2 \)
Of course these parametric LP Gaussian filters are also separable and are designed following the steps described in detail in sub-section 3.2. In Fig.5, the characteristics and level contours are plotted for the specified values of scaling parameter p. For p=1 we have the trivial case, where filter characteristics result practically identical with the one designed previously. As we notice, for values of p between 0.5 and 2 the filter response has a correct shape and good circularity, with some undulations in the stop band, visible at p=0.5 and p=2. Therefore, in this version, the filter results adjustable with value p. Similarly, if we need a Gaussian circular filter to be adjusted in the range [2,8], we should use the prototype \(G_i(\omega) = \exp(-4\omega^2) \), and on so. Of course, the larger the value p, the higher will be the filter order.

4.3 Adjustable band-pass circular filters

Using this algorithmic design method applied to the Gaussian prototype, we can also obtain band-pass (BP) filters, with specified selectivity value p and peak frequency \(\omega_0 \).

In order to obtain the 1D prototype for a BP filter, two Gaussians shifted around the frequencies \(\pm \omega_0 \) are summed together, resulting in the BP prototype:

\[
G_{BP}(\omega) = \exp(-p\cdot(\omega-\omega_0)^2) + \exp(-p\cdot(\omega+\omega_0)^2) \quad (27)
\]

Let us consider the procedure detailed in sub-section 3.1, applied for a specified value of scale parameter \(p \). The relation (9) for \(p=1 \) is written simpler as:

\[
G_i(\omega) = \exp(-\omega^2) \cong a_0 + a_1 \cos \omega + a_2 \cos 2\omega + a_3 \cos 3\omega + a_4 \cos 4\omega
\]

Making \(\omega \rightarrow \omega \pm \omega_0 \), we obtain the BP prototype:

\[
G_{BP}(\omega) = \exp(-\omega^2(\omega-\omega_0)^2) + \exp(-\omega^2(\omega+\omega_0)^2) \quad (29)
\]

which, taking into account (28), can be written:

\[
G_{BP}(\omega) \cong 2a_0 + a_1 \cos (\omega-\omega_0) + a_2 \cos (\omega+\omega_0) + a_3 \cos 2(\omega-\omega_0) + a_4 \cos 2(\omega+\omega_0) + a_5 \cos 3(\omega-\omega_0) + a_6 \cos 3(\omega+\omega_0) + a_7 \cos 4(\omega-\omega_0) + a_8 \cos 4(\omega+\omega_0) \quad (30)
\]

It is easy to re-arrange (30) as follows:

\[
G_{BP}(\omega) \cong 2 \cdot \sum_{n=0}^{N} a_n \cos n\omega \cdot \cos (n \cdot \omega) \quad (32)
\]

Since the BP filters are no longer separable, we use the procedure presented in sub-section 3.3. The filter with \(p=1 \) is too wide and an efficient BP filter results only for \(\omega_0 = 0.5\pi \) or close to it. The expression (32) is a function of two variables, \(\omega_0 \) and \(\omega \), and generally cannot be factored. Instead, to get a more efficient filter, a nested implementation may be approached.

Mathematically, this corresponds to a Horner polynomial form, which is the following:

\[
P(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots = a_0 + x(a_1 + x(a_2 + x(a_3 + \ldots)) \quad (33)
\]

Referring to the more selective BP filter with \(p=4 \), given by the expression:

\[
G_{BP}(\omega) = \exp(-4(\omega-\omega_0)^2) + \exp(-4(\omega+\omega_0)^2) \quad (34)
\]

\[
= 2 \cdot (a_0 + a_1 \cos \omega \cdot \cos \omega + a_2 \cos 2\omega \cdot \cos 2\omega + \ldots \cdot 8a_8 \cos 8\omega) \quad (34)
\]

and using trigonometric identities for \(\cos n\omega \), after re-arranging terms, we obtain the following Horner form of the BP filter function, for order 8:

\[
G_{BP}(\omega) = h_0 + (h_1 + h_2 + \ldots) \quad (35)
\]

where the Horner coefficients depend on \(\cos \omega_0 \) and have the following polynomial expressions in the variable \(s \), where \(s = \cos \omega_0 \):

\[
h_i = 0.9985934 - 0.937027 \cdot s + 6.156547 \cdot s^4 - 4.532877 \cdot s^6 + 1.315863 \cdot s^8
\]

\[
h_i = 7.659075 \cdot s - 25.946093 \cdot s^3 + 30.00929 \cdot s^5 - 11.749434 \cdot s^7
\]

\[
h_i = 3.937027 + 44.813339 \cdot s^3 - 117.24553 \cdot s^5 + 118.435937 \cdot s^6 - 42.107605 \cdot s^8
\]

\[
h_i = -25.94609 \cdot s + 134.625769 \cdot s^3 - 202.282315 \cdot s^5 + 93.995476 \cdot s^7
\]

\[
h_i = 6.156547 - 117.24553 \cdot s^3 + 413.335372 \cdot s^4 - 512.331323 \cdot s^5 + 210.538027 \cdot s^7
\]

\[
h_i = 30.00929 - 202.283215 \cdot s^2 + 359.217071 \cdot s^4 - 187.99905 \cdot s^6
\]

\[
h_i = -4.532877 + 118.435937 \cdot s^3 - 512.331323 \cdot s^5 + 734.55853 \cdot s^7 - 336.860843 \cdot s^9
\]

\[
h_i = -11.749434 + 93.995476 \cdot s^2 - 187.99905 \cdot s^4 + 107.4234 \cdot s^6
\]

\[
h_i = 1.315863 - 42.107605 \cdot s^2 + 210.53803 \cdot s^4 - 336.860843 \cdot s^6 + 168.43042 \cdot s^8
\]

As a numerical example, for the BP filter with \(p=4 \) and \(\omega_0 = 0.5\pi \), we have \(s = \cos \omega_0 = 0 \) and in this case the Horner decomposition is the following:

\[
G_{BP}(\omega) = \exp(-4(\omega-\pi/2)^2) + \exp(-4(\omega+\pi/2)^2)
\]

\[
= 0.998593 + (-3.93703 \cdot 6.156547)
\]

\[
+ (-4.5329 + 1.31586 \cdot \cos \omega) \cdot \cos \omega \cdot \cos \omega \cdot \cos \omega \cdot \cos \omega
\]

For the BP filter with \(p=4 \) and \(\omega_0 = 0.3\pi \), we have
\[s = \cos \omega_0 \approx 0.5878 \] and the Horner decomposition is given now by the general formula (35), with the coefficient values: \[h_0 = 0.205071, \quad h_1 = 1.05356, \quad h_2 = 1.8349, \quad h_3 = 0.1745, \quad h_4 = -3.14178, \quad h_5 = -2.7936, \quad h_6 = 0.724816, \quad h_7 = 1.59634, \quad h_8 = 0.406624. \]

Gaussian-shaped band-pass filters are not separable, unlike their low-pass counterparts. However, in this case the 2D filter results directly through a simple substitution. In the factored prototype frequency response or in its Horner polynomial form, we simply replace \[\cos \omega \] by the circular cosine function \(C(\omega_1, \omega_2) \) discussed previously, given by (19).

Referring again to the general Horner form given in (35), this corresponds to a filter kernel resulting in an iterative manner as:

\[G_{BP} = h_0 + (h_1 + h_2 + \ldots) \ldots \quad (38) \]

In this expression, the symbol * means convolution of matrices. For instance, in the case of the circular BP filter discussed before, with \(p=4 \) and \(\omega_0 = 0.3\pi \), the kernel results of size \(17 \times 17 \), through successive convolution of elementary matrices of size \(3 \times 3 \). As shows (38), in the first step, the matrix \(C \) given by (18) is multiplied by the coefficient \(h_0 \), then \(h_1 \) is added to its central element; the resulted \(3 \times 3 \) matrix is convolved with \(C \), then \(h_3 \) is added to its central element, obtaining a matrix of size \(5 \times 5 \), and so on, until the overall filter kernel is obtained. This nested implementation, based on Horner form of the prototype frequency response, is the most efficient, as it requires the minimum number of operations.

In Fig.6, the 1D prototypes, filter characteristics and level contours are shown for several BP circular filters with specified parameters (selectivity given by \(p \) and peak frequency of value \(\omega_0 \)).

4.4 Comparison with previous work

The novelty of this approach as compared with other works on the topic consists in designing Gaussian circular LP and BP filters, adjustable in selectivity and peak frequency, based on frequency mappings applied to Gaussian prototypes, which differs from previous works. The circular FIR filters in [11] are based on the Fourier series. The Gaussian circular filter bank proposed in [12] is of IIR type, as well as the filter bank developed in [13], based on a digital prototype, with a complex frequency response of the 2D filter. A new aspect is also the nested realization, which allows for an efficient implementation of the designed circular filter. The Gaussian prototype has several advantages. It is a smooth function, easy to develop in a polynomial or trigonometric series and

![Fig.6](image-url)

Fig.6: 1D prototypes, characteristics and constant level contours for Gaussian circular band-pass filters with parameters: (a) \(p = 1, \omega_0 = 0.5\pi \); (b) \(p = 4, \omega_0 = 0.5\pi \); (c) \(p = 4, \omega_0 = 0.3\pi \); (d) \(p = 4, \omega_0 = 0.7\pi \).
leads to separable circular filters. Moreover, it is one of the most commonly used as it yields zero-phase 2D filters, which do not introduce phase distortions in the filtered image. And finally, a FIR realization of the 2D filter avoids the difficult issue of ensuring stability, which is a fundamental problem in any IIR filter design.

The purpose of this paper was mainly to present this analytic method and to give some design examples for LP and BP circular filters. Their image filtering capabilities are quite well known, that is why image filtering examples were not included in this work.

5 Conclusion

A simple and efficient analytical design method for 2D Gaussian circular FIR filters was proposed, that starts from a specified prototype and yields a 2D filter with a frequency response in a factored, closed form. The main advantage of this technique is that it leads to parametric, adjustable filters, thus avoiding the need to resume the design procedure every time for different specifications. The low-pass filters are adjustable in selectivity, while the band-pass filters are tunable to a desired peak frequency. The filters have accurate shape, good circularity and relatively low order. A nested filter realization is presented, very efficient in implementation due to minimum number of operations required. Further work on this topic will focus on applying this method also to other FIR filters with various shapes.

References:

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US