
  

Abstract: - In this paper, we propose a kernel based SVM algorithm with variable models to adapt to the 
high-dimensional but relatively small samples for remote explosive detection on photo-thermal infrared 
imaging spectroscopy (PT-IRIS) classification. The algorithms of the representative linear and nonlinear 
SVM are presented. The response plot, predicted vs. actual plot, and residuals plot of the linear, quadratic, 
and coarse Gaussian SVM are demonstrated. A comprehensive comparison of Linear SVM, Quadratic 
SVM, Cubic SVM, Fine Gaussian SVM, Median Gaussian SVM, Coarse Gaussian SVM is performed in 
terms of root mean square error, R-squared, mean squared error, and mean absolute error. The excellent 
experimental results demonstrated that the kernel based SVM models provide a promising solution to 
high-dimensional data sets with limited training samples. 
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thermal infrared imaging spectroscopy 

 
1 Introduction 
Recent advances in modern technologies, such 
as photo-thermal infrared (IR) imaging 
spectroscopy technology in the application of 
remote explosive detection, 4D CT-scans 
technology, and DNA microarrays have 
produced numerous massive and imbalanced 
data. The needs of classification ubiquitously 
exist in real-world data-intensive applications, 
ranging from civilian applications such as cancer 
diagnoses and outlier detection in stock market 
time series, to homeland security or defense 
related applications such as remote explosive 
detection, illegal drug detection, and abnormal 
behavior recognition.  

In the situation when the dimensionality of 
data is high but with few data, feature selection 
usually becomes imperative to the learning 
algorithms because high-dimensional data tends 
to negatively affect the efficiency of most 
learning algorithms. Feature selection is an 
efficient dimensionality reduction technique that 
selects an optimal subset of the original features 
that provide the best predictive power in 
modeling the data. They are the most distinct 
features that can be used to differentiate samples 
into different classes.  

There are a large number of state-of-the-art 
feature selection methods. A simultaneous 
spectral-spatial feature selection and extraction 
algorithm was proposed for hyperspectral 
images spectral-spatial feature representation 
and classification. However, it lacks of kernel 
version and thus its performance on complex 
datasets is unknow [1]. A regularized regression 
based feature selection classifier was modified 
into a cost-sensitive classifier by generating and 
assigning different costs to each class.  Features 
will be selected according to the classifier with 
optimal F-measure in order to solve the class 
imbalance problem [2]. A feature selection 
algorithm using AdaBoost was presented to deal 
with Haar-like features for vehicle detection. 
The normalized feature vector set is used to train 
the RBF-SVM classifier with cross-validation to 
select the optimal parameters [3]. A support 
vector machine (SVM) was applied as a 
classifier to identify residual functional 
abnormalities in athletes suffering from 
concussion using a multichannel EEG data set. 
The total accuracy of the classifier using the 10 
features was 77.1% [4]. A multiple instance 
learning (MIL) was adopted to describe different 
kinds of actions from complexity data sources 
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and present a boosted exemplar learning (BEL) 
method to learn the similarity metric and select 
some representative exemplars from the Web for 
action recognition. It takes about 98 ms to train a 
multiple instance SVM (mi-SVM) for one 
exemplar. The proposed mi-SVM has much 
better result 65.37% than the 61.53% using 
SVM classifier [5].  

Different from the above SVM based 
learning algorithm, we propose a kernel based 
SVM algorithm with variable models to adapt to 
the high-dimensional but relatively small 
samples for remote explosive detection on 
photo-thermal infrared imaging spectroscopy 
(PT-IRIS) classification.  

The rest of the paper is organized as follows. 
In Section 2, the SVM models including the 
linear SVM, quadratic SVM, and coarse 
Gaussian SVM are discussed. In Section 3, 
photo-thermal infrared imaging spectroscopy 
(PT-IRIS) data set is introduced. In Section 4, 
the classification performance of linear, 
quadratic, and coarse Gausian SVM are 
demonstrated. In addition, a comparison of 
Linear SVM, Quadratic SVM, Cubic SVM, Fine 
Gaussian SVM, Median Gaussian SVM, Coarse 
Gaussian SVM is presented in terms of various 
model statistics. Finally, the paper is concluded 
in Section 5. 
  

2 Types of SVM Algorithms 
Support Vector Machine (SVM) learning 
algorithms has been an active research topic 
within the computer intelligence community. 
Support vector machine (SVM) analysis is a 
popular machine learning tool for classification 
and regression, first identified by Vladimir 
Vapnik and his colleagues in 1992 [6]. SVM 
regression is considered a nonparametric 
technique because it relies on kernel functions. 
Support Vector Machine algorithms are utilized 
in many real world applications such as Face 
Detection, Text Categorization, and 
Bioinformatics. Support Vector Machine 
algorithm (SVM) is a supervised machine 
learning algorithm, which can be used for either 
classification or regression challenges. The 
different types of SVM learning algorithms are 
Linear SVM, Quadratic SVM, and Cubic SVM. 
Each Support Vector Machine Algorithm has 

their advantages in terms of providing solutions 
on a data set. For each algorithm we will be (1) 
Training a data set with Linear SVM, Quadratic 
SVM, and Cubic SVM, (2) Plotting the behavior 
of each algorithm figuring out the RSME, R-
Squared Value, MSE, MAE, Prediction Speed, 
Training Time, and (3) Analyzing the results of 
each Support Machine Algorithm to see the 
similarities and differences of the data. The 
purpose of these trials is to see if we can find 
some interesting behaviors, so we can find 
different methods to optimize SVM algorithms. 
Shown below are the different behaviors of each 
SVM.  

2.1 Linear SVM 
Linear SVM is the newest fast machine learning 
data mining algorithm for solving multiclass 
classification problems from ultra large data 
sets; that implements an original proprietary 
version of a cutting plane algorithm for 
designing a linear support vector machine. 
Linear SVM is a linearly scalable routine 
meaning that it creates an SVM model in a CPU 
time, which scales the size of the training data 
set linearly. Our comparisons with other known 
SVM models clearly show its performance is 
highly accurate, implemented with large data 
sets.  

It is ideal for a Linear SVM to be utilized in 
contemporary applications such as digital 
advertisement-commerce, web page 
categorization, text classification, 
bioinformatics, proteomics, banking services 
and many other areas. It provides solutions of 
multiclass classification problems with any 
number of classes with high dimensional data in 
both sparse and dense formats. There is no need 
for expensive computing resources other than a 
standard platform while implementing this 
algorithm. 

The algorithm of the Linear SVM is 
illustrated as follows.  

 
Algorithm of the Linear SVM 

Input: 
1. A training data set of the form: 

),(,),,( 11 nn yxyx 



  
2. A iy that is either 1 or -1. 
Procedure: 
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1. Let the given training data set of n points 
be in the form of: ),(,),,( 11 nn yxyx 



  
2. Each ix is a dimensional vector. 
3. We want to find the maximum margin 
hyperplane that groups point of 1x to the 
group of points where iy =1. 
4. The points of x have to be satisfied by: 

0)( =−∗ bxw   
Where w  is the normal vector to the 
hyperplane. 
 

2.2 Quadratic SVM 
If data sets are not linearly separable, Quadratic 
SVM is utilized to pick out an interval between 
two classes.  To solve this problem the data is 
mapped on to a higher dimensional space and 
then uses a linear classifier in the higher 
dimensional space. For example, a linear 
separator can easily classify the data if we use a 
quadratic function to map the data into two 
dimensions. The general idea is to map the 
original feature space to a higher-dimensional 
feature space where the training set is separable.  
As the expansion increases in nth degrees it 
allows the data set to be trained in an efficient 
manner. 

 The algorithm of the quadratic SVM is 
illustrated as follows.  

 
Algorithm of the Quadratic SVM 

Input: 
1. A training data set of the form: 

),(,),,( 11 nn yxyx 



  
2. A kernel mapping: 

〉〈= )(),(),( yxyxK ϕϕ  
Procedure: 
1. Let the given training data set of n points 
be in the form of: ),(,),,( 11 nn yxyx 



  
2. The polynomial kernel is defined as: 

〉〈= )(),(),( yxyxK ϕϕ where c > 0  
3. For polynomials the kernel is defined by: 

dT cyxyxK )(),( +∗=  d = 2 
4.  Using the multinomial theorem the 
expansion becomes: 
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2.3 Gaussian SVM 
The Gaussian kernel only depends on the 

Euclidean distance between x and xi , and is 
based on the assumption that similar points are 
close one to each other in the feature space (in 
terms of Euclidean distance). The algorithm of 
the cubic SVM is illustrated as follows.  
 

Algorithm of the Gaussian SVM 
Input: 
1. A training data set of the form: 

),(,),,( 11 nn yxyx 



  
2. A kernel mapping: 

〉〈= )(),(),( yxyxK ϕϕ  
Procedure: 
1. Let the given training data set of n points 
be in the form of: ),(,),,( 11 nn yxyx 



  
2. The Gaussian kernel is defined as: 

2
),( yxeyxK −−= γ for a given parameter 0>γ  

 
3 Photo-Thermal Infrared (IR) 
Imaging Spectroscopy (PT-IRIS) 
Data Set 

A photo-thermal infrared imaging 
spectroscopy (PT-IRIS) technique has recently 
been developed by the Naval Research 
Laboratory (NRL), Washington, DC with 
unprecedented spatial resolution at ~1 micron 
[8]. In this data set, the mixing Infrared IR 
absorption/emission features causes some 
complicated and overlapping samples, which 
leads to grand challenges to multi-class 
classification.  

Specifically, infrared quantum cascade lasers 
are used to illuminate a surface potentially 
scattered with samples of interest. If the 
wavelength of the thermal emission of light is 
resonant with collection features of surface 
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samples, the sample heats by ~1oC. By varying 
the incident wavelength, any samples of interest 
could be imaged [9]. The feature of the PT-IRIS 
signal is the temperature increase normalized to 
the average power of the laser pulse at the end of 
the laser pulse, i.e. Tmax. Tmax as a function of 
excitation and collection wavelength are built 
into a feature vector [10], as shown in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulated samples include 4 different 
particle diameters (5, 3, 2 and 7 mm) and 4 
analytes (RDX, TNT, AN, Sucrose) on 4 
substrates (white paint, steel, glass, polyethylene) 
using 38 excitation wavelengths and 33 
collection wavelengths. Thus, with 38 excitation 
wavelengths and 33 collection wavelengths, they 
would generate 1254 features (predictor 
variables). Therefore, each column contains 
1254 features and there are only 123 samples. 
We may demonstrate the signal matrix for all the 
123 samples. This can be seen by display the 
data set in false color plot which will show 
visible or non-visible parts of the 
electromagnetic spectrum. The false color plot 
of the data set is shown in Fig. 2. The color of 
the data point is proportional to signal strength, 
i.e. red represents high, and blue represents low. 

 
 
 
 

 
 
 
 
 
 
 
 
 

4 Simulation Analysis 
4.1 Explore Data and Results in Response 
Plot 
After a regression model is trained, the 
regression model results can be displayed by the 
response plot, i.e. the predicted response versus 
record number. Holdout or cross-validation is 
used, thus each prediction is obtained using a 
model that was trained without using the 
corresponding observation. Therefore, these 
predictions are the predictions on the held-out 
observations. 80% of the data is used to train the 
network and the remaining 20% data points are 
used as the testing data. 

The response plot of linear SVM, quadratic 
SVM, and coarse Gaussian SVM are shown in 
Fig. 3, Fig. 4, and Fig. 5, respectively. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 The response plot of quadratic SVM. 

Fig. 3 The response plot of linear SVM. 

Fig. 1 Data matrix with feature vectors.  Each square 
is a feature value, Tmax, which is a function of 
excitation and collection wavelength. 

Fig. 2 False color plot of data set. The data set has 123 
samples and 1254 features.  
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Fig. 6 The Predicted vs. Actual plot of linear 
SVM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Plot Predicted vs. Actual Response 
The Predicted vs. Actual plot is used to check 
model performance after training a model. Use 
this plot to understand how well the regression 
model makes predictions for different response 
values.  

When the plot is open, the predicted response 
of our model is plotted against the actual, true 
response. A perfect regression model has a 
predicted response equal to the true response, so 
all the points lie on a diagonal line. The vertical 
distance from the line to any point is the error of 
the prediction for that point. A good model has 
small errors, and so the predictions are scattered 
near the line. Usually a good model has points 
scattered roughly symmetrically around the 
diagonal line. If we can see any clear patterns in 
the plot, it is likely that we can improve the 
model.  

The predicted vs. actual plot of linear SVM, 
quadratic SVM, and coarse Gaussian SVM are 
shown in Fig. 6, Fig. 7, and Fig. 8, respectively. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Evaluate Model Using Residuals Plot 
We further evaluate the model performance by 
using the residuals plot after training a model. 
The residuals plot displays the difference 
between the predicted and true responses.  

Usually a good model has residuals scattered 
roughly symmetrically around 0. If we can see 
any clear patterns in the residuals, it is likely that 
we can improve the model. We eapecially look 
for the following patterns: 

• Residuals are not symmetrically 
distributed around 0. 

• Residuals change significantly in size 
from left to right in the plot. 

• Outliers occur, that is, residuals that are 
much larger than the rest of the residuals. 

Fig. 8 The Predicted vs. Actual plot of coarse 
Gaussian SVM. 

Fig. 7 The Predicted vs. Actual plot of quadratic 
SVM. 

Fig. 5 The response plot of coarse Gaussian 
SVM. 
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Fig. 9 The residuals plot of linear SVM. 

Fig. 10 The residuals plot of quadratic SVM. 

Fig. 11 The residuals plot of coarse Gaussian SVM. 

• Clear, nonlinear pattern appears in the 
residuals. 

 
The residual plots of linear SVM, quadratic 

SVM, and coarse Gaussian SVM are shown in 
Fig. 9, Fig. 10, and Fig. 11, respectively. 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4 Model Statistics 
The model parameters are very useful and 
important to evaluate the performance of 
different models. They are defined as follows. 
• RMSE (Root mean square error). The RMSE 

is always positive and its units match the units 
of the response. Look for smaller values of the 
RMSE. 

• R-Squared. Coefficient of determination. R-
squared is always smaller than 1 and usually 
larger than 0. It compares the trained model 
with the model where the response is constant 
and equals the mean of the training response. 
If the model is worse than this constant model, 
then R-Squared is negative. Look for an R-
Squared close to 1. 

• MSE (Mean squared error). The MSE is the 
square of the RMSE. Look for smaller values 
of the MSE.  

• MAE (Mean absolute error). The MAE is 
always positive and similar to the RMSE, but 
less sensitive to outliers. Look for smaller 
values of the MAE. 
For each SVM algorithm, after the network 

has been well trained, we evaluate the 
performance of each featured subset. The 
comprehensive comparison is shown in Table 1. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 RSME R-
Sq 

MSE MAE Train 
Time 
(sec) 

Linear 6.61*10-7 0.98 6.61*10-7 6.61*10-7 0.4687 
Quadratic 1.79*10-6 0.86 3.23*10-12 1.46*10-6 0.1182 

Cubic 3.65*10-6 0.42 1.32*10-11 3.10*10-6 0.1149 
Fine 

Gaussian 
3.77*10-6 0.37 1.43*10-11 3.02*10-6 0.1217 

Median 
Gaussian 

6.38*10-6 0.98 4.07*10-13 4.71*10-7 0.1059 

Coarse 
Gaussian 

7.83*10-7 0.97 6.13*10-13 6.05*10-7 0.1444 

TABLE 1 COMPASIRON OF DIFFERENT SVM 
MODELS 
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5 Conclusions 
     
We propose a kernel based SVM algorithm with 
variable models to adapt to the high-dimensional 
but relatively small samples for remote 
explosive detection on photo-thermal infrared 
imaging spectroscopy (PT-IRIS) classification. 
For each SVM algorithm it reveals classification 
accuracy and minimum feature number 
objectives. After the network has been well 
trained, we evaluate the performance of each 
featured subset. The response plot，predicted vs. 
actual plot, and residuals plot of the linear, 
quadratic, and coarse Gaussian SVM are 
demonstrated. A comprehensive comparison of 
linear SVM, quadratic SVM, cubic SVM, fine 
Gaussian SVM, median Gaussian SVM, coarse 
Gaussian SVM is performed in terms of root 
mean square error, R-squared, mean squared 
error, and mean absolute error. The excellent 
experimental results demonstrated that the 
kernel based SVM models provide a promising 
solution to high-dimensional data sets with 
limited training samples. 
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