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Abstract: - We are considering the problem of state observation in series-parallel resonant converters (LCC). 

This is a crucial issue in (LCC) output voltage control as the control model is nonlinear and involves 

nonphysical state variables, namely real and imaginary parts of complex electrical variables. An interconnected 

high gain observer is designed to get online estimates of these states. The observer is shown to be globally 

asymptotically stable. The global stability of the observer is analytically treated using the lyapunov theory; 

finally we present numerical simulation to illustrate the performance of the suggested approach. 
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1 Introduction 
In recent years, the conventional pulse-width 

modulated (PWM) converters are well studied and 

are still widely used such as power systems for 

computers, telephone equipment, and battery 

chargers.  However, as mentioned in [1-3], the 

inefficient operation of PWM converters at very 

high frequencies imposes a limit on the size of 

reactive components of the converter and 

consequently on power density. In fact, the turn-on 

and turn-off losses caused by PWM rectangular 

voltage and current waveforms limit the operating 

frequency and produces hard switching.  This yields 

in power losses in electrical switches and increases 

the potential for electromagnetic interference (EMI). 

To eliminate or at least mitigate the adverse effects 

of hard switching, most existing works  have studied 

these converters   along with circuitry arrangements 

to modify the current and voltage at the switches 

during the commutations [4-6]. 

Since the emergence of the resonant technology, 

major research efforts have been conducted to apply 

the enhanced features of resonant converters to 

practical applications. Robotics, electrostatic 

precipitators, X-ray power supply are a few 

examples in witch resonant converters are used 

today.  These applications are treated respectively in 

[7], [8],[9] and [10].  

The main advantages of resonant converters are well 

known as lower switching losses improving thus the 

conversion efficiency, lower electromagnetic 

interference; the size and weight are greatly reduced 

due to high operating frequency.  In fact, resonant 

converters can run in either the zero-current-

switching (ZCS) or zero-voltage-switching (ZVS) 

mode. That means that turn-on or turn-off 

transitions of semiconductor devices can occur at 

zero crossings of tank voltage or current waveforms, 

thus reducing or eliminating some of the switching 

loss mechanisms. Since the losses are proportional 

to switching frequency, resonant converters can 

operate at higher switching frequencies than 

comparable PWM converters. 

As mentioned in [11], Series and series- parallel 

resonant converters are variable structure systems.  

In fact, they are linear piecewise systems whose 

global behavior is strongly nonlinear. This nonlinear 

aspect is one of the reasons of the difficulties 

encountered when computing control laws, in [12], 

this problem is avoided by linearizing the system 

around a steady point and then applying the linear 

control techniques.  An efficient method for the 

analysis of the series-parallel resonant converter has 

been proposed by [13]. There the output rectifier, 

filter capacitor and load are substituted by an RC 

load model.  Unfortunately, these approaches gives 

only mediocre performances, to  obtain a robust and 

high quality performances, we have to consider the 

nonlinearity of the circuits structure when modeling 

the converter, such step implies the obtention of an 

efficient mathematical model witch describes the 

dynamical behavior of the converter accurately and 

later, the definition of a suitable control law.  

The point is that these models generally involve 

state variables that all are not accessible to 

measurement. Then, they cannot be used in control 

unless they allow the construction of observers.  
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State observation has yet to be solved for resonant 

converters (or was seldom been dealt with).  In the 

present work, it is shown that such an issue can be 

solved for the (LCC) resonant DC/DC converter. 

The focus is made on the circuit of Fig 1. 

Based on an extension of the first harmonic analysis 

proposed in [14],[15] and [16], a fifth order large 

signal nonlinear model that can describe the 

transient behavior of the converter and is useful in 

the development of nonlinear controllers is designed 

for the considered circuit. There, the output power is 

controlled by duty-cycle variation. However, most 

of involved state-variables turn out to be non-

accessible to measurement. Therefore, an 

interconnected high gain observer is developed and 

shown, under mild assumptions, to be globally 

exponentially convergent. The global exponential 

convergence feature makes the proposed observer 

readily utilizable in the converter control. The first 

step in the observer design is the construction of a 

state diffeomorphism map leading to a transformed 

model that fits the required form. Using this special 

form, an interconnected high gain observer can be 

designed in a rather straight way under some global 

Lipschitz assumptions on the controlled part [17-

19]. The gain of the proposed observer is issued 

from a differential Lyapunov equation.  

The paper is organized as follows: mathematical 

modeling of the series resonant converter is 

addressed in Section II; theoretical design of the 

state observer is coped with in Section III; a global 

stabilities analysis of established observer is treated 

in section IV.  The performances are illustrated by 

simulation in Section V; a conclusion and reference 

list end the paper. 

 

2 Modeling series-parallel resonant 

converters 

 
Resonant converters contain resonant L-C networks 

whose voltage and current waveforms vary 

sinusoidally during one or more subintervals of each 

switching period. The resonant network has the 

effect of filtering higher harmonic voltages such that 

a nearly sinusoidal current appears at the input of 

the resonant network [9]. Depending on how the 

resonant networks are combined with other circuit 

configurations, one can obtain several types of 

resonant converters. The studied series - parallel 

resonant DC-to-DC converter is illustrated by Fig 1. 

 
Fig 1.  Series parallel resonant converter under study 

 

A state-space representation of the system is the 

following: 
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di
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dt
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where csv  and si  denote  the resonant tank voltage 

and current respectively; ov  is the output voltage 

supplying the load (here a resistor R ), L  and sC  

designate respectively the inductance and 

capacitance of the series resonant tank.  The parallel 

resonant capacitor is designed pC . In order to 

simplify the analysis it will be assumed that: all the 

components are ideal and have no losses and that 

the voltage E  is constant and has no ripple The 

(SPRC) converter modeling is based upon the 

following assumptions: 

Assumption 1:  The voltage csv  and current si  are 

approximated with good accuracy by their (time 

varying) first harmonics  

Assumption 2: The time scale of the output filter is 

much larger than the resonant tank so that the ripple 

appearing in the output voltage can be neglected and 

ov  can be accurately approximated by its DC-

component. i.e.  oo Vv  .  

If one observes the waveforms of  Fig. 2. one can 

see that the resonant current si is almost sinusoidal. 

However, waveforms ABv , Ti  and cpv  do not have 

sinusoidal shape. That means their spectrum have 

high-order harmonics. Since the active power 

transferred to the load is dependent on the voltage 

ABv  and the resonant current si . As the resonant 

current si  (almost) sinusoidal, i.e., only has the first 

harmonic component in its spectrum, the high-order 

A si
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harmonics of ABv  will be multiplied by zero when 

one calculates the instantaneous power. Thus, the 

high-order harmonics of  ABv  do not contribute to 

the power transfer to the load. For this reason, the 

design procedure based on the first harmonic 

analysis produces good results.  
 

-

ABV

si

Ti

cpv

t

t

t

t



E

E

maxsi

maxsi

2

oV

2

oV

d

Fig 2 Time behavior of the characteristicvoltages and 

currents 

 

A control/observation oriented model can be 

obtained applying to (1-3) the first harmonic 

approximation procedure. This is developed in the 

next section. 
 

3. First harmonic approximation 

 
This approach relies on the assumption that the 

solution of a nonlinear oscillator system can be 

expanded in a Fourier series with time-varying 

coefficients. Then, a solution  is approximated 

by the Fourier series expansion of the function 

, defined in the interval . 

Mathematically, one has the following standard 

expressions: 

 (4a) 

  (4b) 

 

with .  The coefficients  undergo the 

following equation: 

 

 (5) 

 

In the case  is generated by a controlled 

nonlinear system  where  denotes the 

control signal, it follows from (5) that:  

 (6) 

Applying (6) with  to equations (1) to (3), we 

obtain the following „first harmonic‟ equations : 

 

(7) 

 (8) 

 (9) 

Given the waveforms  and shown in fig 2, the 

fundamental term is calculated as: 

 (10) 

The next step is to find the Fourier representation of 

the term , which represents the average 

current of the output rectifier. As shown in Fig.2, 

the current  is equal to the resonant current  

when the voltage across the parallel capacitor is 

clamped to and is equal to zero otherwise. one 

gets  

 

 (11) 

where is the peak value of the resonant current 

and  is the rectifier conduction angle. 

The equation of the rectifier conduction angle can 

be written as a function of state variables, inputs and 

circuit parameters as follows: 

 (12) 

From the fact that   and ,  

equation (11) and (12) can be rewritten as  

  (13) 
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 (14) 

The new state variables are: ,  and . 

The state variables  and  are complex 

Fourier coefficients that can be rewritten with real 

variables by separating the real and imaginary parts 

of the equations (7) and (8). Thus, the state variables 

can be written as: 

,  ,    (15) 

The voltage across the parallel capacitor can be also 

written as a function of real variables: 

.   and  are expressed as a 

function of the existing state variables and  by: 

 (16) 

 (17) 

where 

 (18) 

 (19) 

Substituting (15) in (7)-(9) yields the following 

state-space representation: 

 (20) 

 (21) 

 (22) 

 (23) 

 (24) 

where 

,  (25) 

;  , (26) 

and 

 
 (27) 

where , In the above model, the only 

quantities that are accessible to measurements are: 

,  ,  (28)  

That is, the variables  must be estimated 

using some measurable quantities. To this end, an 

observer is built up in the next section 

 

4 high gain observer synthesis 

 

There is no systematic method to design an observer 

for a given nonlinear control system but several 

designs are available for nonlinear systems with 

specific structures. This is particularly the case for 

nonlinear systems that can be seen as the 

interconnection of several subsystems, where each 

subsystem satisfies specific conditions. The idea is 

to first design an observer for each subsystem 

supposing known the state of the others. Then, a 

global observer is developed for the whole nonlinear 

system combining the observers obtained separately.  

 

4.1. Model transformation 
 

We propose the change of coordinates 

 defined by: 

 (29) 

with 

 (30) 
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 (35) 

 (36) 

The above model can be rewritten in the form of 

two interconnected subsystem: 

 

(∑1) (37) 

 

(∑2) (38) 

The above subsystems are given the following 

compact forms: 

 (39) 

and 
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4.2. Observer design 

 

 In this Section, an interconnected observer will be 

designed for the interconnected system (39)-(40). 

Such design is performed under the following 

assumption: 

 

Assumption 1. The signals  and  are 

bounded and regularly persistent to guarantee the 

observability of the subsystems (39) and (40), see 

e.g. (Besançon and Hammouri, 1998). 

 

Under the above assumption, we propose the 

following observer candidate for the interconnected 

systems (39)-(40), see e.g.(Besançon and 

Hammouri, 1998): 
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where  and  are arbitrary positive real design 

parameters. The other notations are defined as 

follows: 

,  (52) 

 (53) 

 (54) 

 (55) 

The convergences of the interconnected observer 

defined by (48)-(49) are investigated in the next 

section. 

 

5  Global stability analysis 

Let us introduce the estimation errors: 

 (56) 

 (57) 

It readily follows from (39), (40), (48) and (49) that 

the above errors undergo the following differential 

equations: 

 

               (58) 

 

             (59) 

Rearranging terms on the right sides of (58) and 

(59) one easily gets: 

 (60) 

 

  (61) 

Now let consider the Lyapunov function candidate: 

 (62) 

with 

,     (63) 

From (62) and (63), it is clear that the time-derivative 

of is: 

 (64) 

Using (60)-(61), one obtains from (64) that: 

 

  

             (65) 

The right side of (65) can be upper bounded as 

follows: 

 

     

     

             (66) 

Now, from the fact that and are 

globally lipschitz with respect to  uniformly with 

respect to . And  is globally 

lipschitz with respect to  uniformly with respect 

to  we gets 

  (67) 

 (68) 

 (69) 

where  and  are the Lipschitz constants of 

the functions respectively; 

On other hand we have the following Inequalities  

 (70) 

 (71) 

   (72) 

 (73) 

where and denote the largest eigenvalue of  the 

positive definite matrices  and , respectively; 

 and are the upper bound of the state vectors 

 and , respectively (i.e. Assumption 1). 

Using (67)-(73), we get from (66) that: 
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As  and  are bounded and positive definite, one 

has 
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where and are respectively the 

minimum and the maximum eigenvalue of ,

. In view of (76)-(77), inequality (74) implies 

   (78) 

with 

 (79) 

 (80) 

, (81) 

Applying the well known inequality  

with  and , one gets  

. This, together with (78) yields: 

  (82) 

Up to now, the design parameters  and  are 

arbitrary. Let them be chosen such that: 

 (83) 

 (84) 

Then, (82) gives:  

 (85) 

with: 

 (86) 

It is readily seen from (85) that  is negative 

definite, implying the global asymptotic stability of 

the error system (58)-(59). The result thus 

established is summarized in the following theorem.  

 

Theorem 1 (main result). Consider the error system 

described by (58)-(59) obtained applying the 

interconnected observer (48) to (51) to the system 

(39)-(40) subject to Assumptions 1. If the observer 

parameters and  are chosen as in (83)-(84), 

then the error system is globally exponentially 

stable. Consequently, the estimates  will 

converge exponentially fast to their true values 

, whatever the initial conditions  . 

Remarks 1.  

1) From (30) it is readily seen, that the estimates of 

the  are given by: 

 

Then Theorem 1 implies that these estimates 

converge exponentially to their true values.  

2) The observer (48)-(51) is a high gain type, 

inequality (85), together with (86), shows that the 

estimates convergence speed depends on the design 

parameters  and : the larger these parameters, 

the more speedy the convergence. On the other 

hand, excessive values of  and  make the 

observer too sensitive to output noise inherent to 

practical situations. Therefore, the choice of the 

observer parameters must be a compromise between 

the rapidity of estimates convergence and sensitivity 

of estimates to output noise. 

 

6 Simulation results 

In order to illustrate the performance of the proposed 

observer, digital simulations using 

MATLAB/SIMULINK are performed. the LCC 

resonant converter is given the following 

characteristics: 

 

Table 1: numerical values of the LCC 

characteristics 

parameter Symbol value    unit 

Inductor L 16x10
-6

 H 

Capacitor 

Capacitor  

Cs 

Cp 

48x10
-6 

15x10
-9

 

F 

F 

Capacitor 

Resistance 

Co 

R 

1x10
-6 

100 

F 

Ω 

 

The DC voltage source is fixed to E=50V. The initial 

value of the state vectors and parameter estimates are 

chosen as follows: 

x(0)=[0.1  0.3 -0.5 -0.2 0]
T 

  (87) 

,   (88) 

 The LCC converter is controlled in open-loop applying 

 a variable control signal (duty-cycle). Fig (3) shows 

the magnitude of the complex coefficients obtained 

via the averaging method when the system starts up 

in open loop with predetermined duty cycle and 

switching frequency .  

The results for the resonant converter, the output 

voltage y1 across capacitor Co, the resonant current y2 

and resonant voltage y3, are shown in Fig. 3. Fig 4 

show the resulting state variables . The 

zoom of fig 5 illustrate the behavior of the state 

variables over the first 5x10
-6

 s period.   Figure 6 

show the state estimation errors ; 

;  and  obtained 

with , . It is seen that the estimates 

state variables converge well to their true values 

within about 200μs,   confirming Theorem 1. This is 

further illustrated by the zoom of Fig. 7. Note that the 

convergence rate depends on the value of the observer 

gain. 
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111 ẑzer 
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Fig 3: start up response of  the amplitude of the 

simulated waveforms: output (a) , current resonant 

(b), resonant voltage vcs(t) 

 
Fig 4:  State variable trajectories  

 
Fig 5:  zoom in state variable transients  

 
Fig 6. State estimation errors with  

,  

 
Fig 7:  zoom in errors variable transients  

 

7 Conclusion 

 

In this paper, based on the first approximation 

technique, we have designed a fifth order large 

signal nonlinear model of the full-bridge series – 

parallel resonant DC-DC converter, which involves 

non-physical state variables. Then we have designed 

an interconnected high gain observer to get online 

estimates of these states. The observer global 

exponential convergence is formally established 

(Theorem 1).  The exponential convergence feature 

makes the observer useful in control strategy. These 

results have been confirmed through numerical 

simulation. 
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