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Abstract: This paper addresses the optimal power flow (OPF) problem in direct current (DC) power grids via a
hybrid Gauss-Seidel-Genetic-Algorithm methodology through a master-slave optimization strategy. In the master
stage, a genetic algorithm is employed to select the power dispatch for any distributed generator while the slave
stage, Gauss-Seidel method is used for solving the resulting power flow equations without recurring to matrix
inversions. This approach is important since it can be easily implementable over any simple programming toolbox
finding the optimal solution of the OPF problem. Genetic-Algorithm proposed in this paper corresponds to a
continuous variant of the conventional binary approaches. Computational results show the efficiency and accuracy
of the proposed optimization method when is compared to GAMS/CONOPT nonlinear solver.
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1 Introduction

1.1 General context
Electrical power grids are an indispensable part of the
human development including all technological ad-
vances, which have allowed improving people quality
life [1, 2]; nevertheless, conventional electrical power
systems have also produced harmful effects around
the world mainly evidenced as global warming, which
is caused by the consumption of fossil fuels (trans-
portation system and thermo-electric plants) produc-
ing a lot of tons of greenhouse effect gases [3].

To deal with these problems new paradigms in
electrical systems have been developed in recent
decades as are the cases of smart grids and micro-
grids, based on a combination of renewable energy
resources and energy storage technologies as can be
seen in Fig. 11. These combinations allow replacing
gradually the dependence of fossil fuels for electricity
generation [3]. To supply all power consumption for
the constantly increasing demand two main electrical
distribution technologies based on alternating and di-
rect current (AC and DC) have been developed as well
as their hybrid combinations [5].

Power grids operating under AC reference frame

1This figure was transformed from the AC configuration pre-
sented in [4] into an equivalent DC grid
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Figure 1: Typical interconnection of distributed en-
ergy resources, which conform a DC power microgrid

have been widely explored in specialized literature
from the point of view of dynamical and static anal-
ysis [6], i.e., under transient and steady-state condi-
tions. In case of dynamical analysis, differential equa-
tion methods are required, while in case of static anal-
ysis nonlinear equations appear in the numerical rea-
soning [7, 8]. In this sense, power flow analyses in
case of static approaches correspond to one of the
most studied problems in AC power grids by using
linear and nonlinear techniques [9, 10, 11].

Electrical DC power grids are not the exception
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of these studies, mainly when power electronics have
allowed real DC power grid implementations [5], for
improving the conventional distribution system per-
formance [12]; following this line, DC power flow
analysis corresponds to the essential technique for
planning and operation [13, 14, 15], which becomes
this research topic to an excellent opportunity to pro-
pose novel, efficient and easily implementable solving
methodologies.

1.2 Motivation
When DC power grids are analyzed via power flow
methodologies, it is necessary to know that in special-
ized literature the expression DC optimal power flow
corresponds to an AC simplified power flow formula-
tion and it is not related with power flow analysis in di-
rect current power networks [14, 16]; nevertheless, the
usage of the same expression for two different prob-
lems could cause confusion between non-familiarized
readers. For this reason, we prefer to use the complete
name of the problem (i.e., optimal power flow analysis
in DC power grids) to make reference to this research
area.

This work is motivated by two main reasons. The
first corresponds to the needed of implementing an op-
timal power flow in DC microgrids for obtaining the
power values of the distributed generators that allow
reducing the active power losses and satisfying the
technical restrictions of the system. The second rea-
son is the importance of having easily implementable
tools for solving important and recurrent problems in
electrical engineering as is the case of optimal power
flow analysis avoiding to recur to sophisticated soft-
ware or optimization packages for solving these prob-
lems.

1.3 Brief state-of-art
In specialized literature exist multiple research papers
which analyses the OPF problem in electrical power
grids. These investigations can be divided into an
AC and DC power grids, respectively [9]. Neverthe-
less, it is important to point out that both OPF mod-
els share the same characteristics in terms of mathe-
matical complexity, i.e., nonlinear, non-convex prob-
lem [14]. We focus this review of state of the art on
DC power grids from high-voltage to low-voltage DC
power grids.

For solving the OPF problem in DC power grids
have been proposed equivalent convex formulations
of the problem as presented in [17] and [18]. The
first case proposes a convex reformulation of the OPF
equations via semidefinite programming by relaxing
the non-convex constraint associated to rank one of

the matrix of variables, then, after solving the OPF
problem, the voltage profiles are recovering via eigen-
values and eigenvectors decomposition [19, 20]. In
the second case, a second-order cone programming
model is proposed, the authors apply the same relax-
ing concept to solve and recover the solution vari-
ables. Both approximations are compared to the ex-
act solution of the problem obtained through a GAMS
optimization package with a high grade of fidelity in
terms of objective function.

A port-Hamiltonian approach for solving OPF
problems in DC power grids is proposed in [21].
This formulation guarantees stability properties in the
sense of Lyapunov for passive DC circuits; neverthe-
less, not constant power loads are taking into account
in the formulation, which reduces its applicability to
linear circuits [22].

On the other hand, the existence of the power
flow solutions for DC power grids have also studied
in [13, 14, 23]. They mainly focus on the convergence
properties of the power flow equations and their solv-
ing region; nevertheless, they do not analyze the OPF
for power grids directly, since their objective is to an-
alyze the structural and geometrical properties of the
power flow equations.

Notice that the microgrids’ control theory solves
the OPF problem when analyses hierarchical con-
trollers [24] or consensus algorithms [25]; notwith-
standing, they concentrate their analysis on the control
design from the differential equations point of view,
which relegates the OPF for DC problem to a second
plan since constant power loads are included into the
DC grid via power electronic converters, which facili-
tate their manipulation in terms of stability properties
[26, 27, 28].

In terms of optimization, some approximations
of the OPF problem for DC power grids have been
presented, and their corresponding OPF equations
are solved via optimizing packages and optimization
techniques [17, 29, 30] considering the possible inter-
connection of distributed energy resources, including
wind and photovoltaic generation as well as battery
energy storage systems [31, 32, 33, 34].

It is important to stand out that in the revision of
state-of-the-art made in this paper was found that the
integration of DGs in DC grids is a research topic in
progress, for this reason in the specialized literature
exists low documentation and investigations about of
optimal sizing of distributed generation in DC elec-
trical distribution system. The aforementioned situa-
tion highlights the importance of exploring this prob-
lem and proposing new methodologies in this research
line. Additionally, to the best knowledge of the au-
thors, in the specialized literature, the OPF problem
for DC power grids have not addressed from hybrid
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metaheuristic optimization techniques (i.e., Genetic-
Algorithm) and conventional numerical methods (i.e.,
Gauss-Seidel), which is a clear gap that this research
tries to fill.

1.4 Contribution and scope
This paper presents as main contribution the hy-
bridization of a conventional numerical method
known as Gauss-Seidel [10] and optimization tech-
nique named genetic-algorithms [35] for solving the
optimal power flow problem in DC power grids. Ad-
ditionally, we present the possibility to adapt the clas-
sical binary-integer genetic-algorithm for solving con-
tinuous optimization problems. Another important
fact, it is that we propose the solution of the optimal
power flow problem in DC power grids from the point
of view 100% algorithmic avoiding the needed of us-
ing any specialized software to carry out this task.

The optimal power flow analysis for DC power
grids presented in this paper assumes that electrical
DC network has been designed to support all power
consumption guaranteeing voltage stability conditions
[36], which implies that we assume that the conven-
tional power flow equations exhibit solution for any
power load and distributed generation value in the
range of analysis [23].

1.5 Document organization
The remain of this document is organized as follows:
Section 2 presents of mathematical formulation for the
optimal power flow problem in DC power grids by us-
ing its nonlinear non-convex representation. Section
3 shows the hybrid Gauss-Seidel–Genetic-Algorithm
methodology, focusing on the main aspects associated
to the evolution strategies in the genetic algorithm as
well as the recursive equations for solving power flow
equations via Gauss-Seidel numerical method. Sec-
tion 4 presents the main characteristics of the test sys-
tem and the proposed simulation scenarios. Section 5
shows computational results via MATLAB software
and their comparison to GAMS conventional opti-
mization package. Finally, some concluding remarks
are provided in Section 6.

2 Mathematical formulation
For obtaining the general formulation of the optimal
power flow problem in a DC grid, let us consider
a DC grid as a set of nodes represented by N =
{1, 2, ..., n}, a set of generator terminals G ⊆ N and
a set of constant power loads L ⊆ N . The DC grid
lines are represented by a set E = {(i, j)} ⊆ N ×N
and the DC nodal conductance matrix is defined as

Gbus ∈ Rn×n which is a symmetric and positive
semidefinite matrix such that [G ]i,j = Gij . Notice
that, any consumption modeled as a constant resis-
tance value is included into the conductance matrix
since its mathematical model is defined by a straight-
forward linear relation (i.e., Ohm’s law). Besides, it
is important to highlight that there is only two contin-
uous variables per node, this is, the voltage profile vi
and the net power injected pi, for the ith node, respec-
tively [37, 13].

Optimal power flow problem for DC power grids
can be formulated as a nonlinear-non-convex opti-
mization problem [13, 14], as follows:

Objective function:

min z =
∑
i∈N

∑
j∈N

Gijvivj

− Gi0vi
2

 (1)

Set of constraints:

pgi − pdi =
∑
j∈N

Gijvivj {∀i ∈ N} , (2)

vmin
i ≤ vi ≤ vmax

i {∀i ∈ N} , (3)

pg,min
i ≤ pgi ≤ pg,max

i {∀i ∈ G} , (4)

where pgi is the active power generated in the node
i, pg,min

i and pg,max
i correspond to the minimum and

maximum power generation limits for each generator
located in the node i, respectively; vmin

i and vmax
i are

the minimum and maximum allowed voltage profiles
at node i, while z is the total active power losses in the
DC network. Notice, that Gi0 represents the constant
impedance load connected at ith, which corresponds
to linear consumption (resistive load in the DC net-
work), and it can not be considered part of the active
power losses as presented in the first part of 1, (re-
member that the conductance matrix contains all re-
sistive effects in the network including the constant
resistive loads).

The mathematical optimization model given from
(1) to (4) has the next interpretation. Equation (1)
determines the total active power losses in the grid
caused by the resistive effects in all distribution DC
lines, these active power losses are calculated as func-
tion of the voltage profiles in the entire network; ex-
pression (2) determines the power balance per node,
i.e., this equation corresponds to a set of nonlin-
ear non-convex equations widely well-known in spe-
cialized literature as power flow equations [13, 36,
37]. On the other hand, expressions (3) and (4) are
bounded by constraints associated with voltage regu-
lation policies and power capabilities in all power gen-
erators.
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Notice that this paper focuses on the possibility to
decouple the optimization problem above presented in
two subproblems, which allows solving it via numer-
ical methods without approximating its mathematical
model; The general OPF problem is composed first by
the optimal selection of the total power generated by
any distributed generator, and second, by the calcula-
tion of the voltage profiles in the entire power grid,
for this reason, we propose a hybrid Gauss-Seidel–
Genetic-Algorithm (GS-GA) for decoupling this op-
timization problem into a generation problem named
master problem and classical power flow problem
named slave problem. The main advantage of this
approach lies that for solving the optimal power flow
problem in DC power grids any specialized optimiza-
tion package or specialized software is required to en-
hance its optimal solution, since it corresponds only to
an algorithmic solution (evolution optimization pro-
cess), as will be evidenced in next sections.

3 Proposed optimization methodol-
ogy

The optimal power flow problem for DC power grids
is addressed in this paper from the point of view of
master-slave solution strategy where the master prob-
lem defines the power generation for each distributed
generator through a genetic-algorithm optimization
approach that guarantees minimum power losses in
the grid; while the slave problem solves the conven-
tional DC power flow equations via Gauss-Seidel nu-
merical method [14].

3.1 Master problem
In general terms the master problem consists to deter-
mine the power generation in each power controlled
node, i.e., in all distributed generators without the ca-
pability to control voltage profile. In this sense, we
consider:

Assumption 1 The DC power grid contains at least
one constant voltage node.

A constant voltage node is completely necessary
to avoid trivial solution to the power flow equations
for electrical AC or DC power grids, in this sense, this
node has the capacity to generate (absorb) the missing
(excessing) power in the entire electrical network, in
other words, this node is widely used in specialized
literature as oscillating node or slack node [8, 17].

Considering that, the constraint (2) can be rewrit-

ten as follows:

pgi − pdi =
∑
j∈N

Gijvivj {∀i ∈ N − S} , (5)

vk = vck {∀k ∈ S} , (6)

pgk ∈ R {∀k ∈ S} , (7)

where S represents the set of constant voltage nodes
with well-know output voltages vck.

Now, it is important to point out that to solve (5),
i.e., to find all voltage profiles in the remains of set
of nodes, we need to know the power generation or
consumption in all these nodes, which does not hap-
pen yet, since pgi is an unknown variable for each gen-
eration node. Based on the aforementioned require-
ment, a genetic algorithm is proposed to determine the
power generation in all distributed generators.

3.2 Genetic algorithm
We propose a continuous genetic algorithm meta-
heuristic technique to solve the optimal power flow
problem considered that in each step the slave prob-
lem has been solved satisfactorily as will be presented
in next section. Now, we are going to explain the
main aspects of the genetic algorithm implementation.
Following this line, a genetic algorithm corresponds
to a classical well-known optimization technique to
solve mainly binary-integer optimization problems,
i.e., multi-stage transmission planning [38] or opti-
mal placement and sizing distributed generators in
distribution networks [39], among others; neverthe-
less, multiple authors have previously adapted this
optimization technique for continuous optimization,
such as, optimization of nonlinear continuous func-
tions [40], second-order boundary differential equa-
tions [41] or optimal AC power dispatch [42], among
others; with satisfactory results.

The genetic algorithm has five main characteris-
tics to know:

i. Generation of the initial population.

ii. Fitness function calculation.

iii. Genetic operators for generating the descending
population.

iv. New population calculation.

v. Stopping criteria.

All of them are extremely important to solve sat-
isfactorily any optimization problem via genetic algo-
rithms, for this reason, each one of them is going to
be explained as follows:
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3.2.1 Initial population

This is the first step for any optimization technique,
in this sense, we propose a population with a size of a
rows and s columns, i.e., an a×s matrix, where a cor-
responds to the number of potential solutions named
set of individuals and s is the number of distributed
generators to be dispatched (s = |S|). In the case of
the DC power flow problem, this initial population has
the following structure:

pg11 pg12 · · · pg1k · · · pg1s
pg21 pg22 . . . pg2k · · · pg2s

...
...

. . .
...

...
...

pgl1 pgl2 . . . pglk . . . pgls
...

...
...

...
. . .

...
pga1 pga2 . . . pgak . . . pgas


a×s

where plk represents the active power generated by
the generator k at the l solution individual. This
value is calculated as random number contained be-
tween pg,min

k and pg,max
k , i.e., pglk = pg,min

k +(
pg,max
k − pg,min

k

)
rand, where rand ∈ (0, 1). No-

tice that, this initial population fulfills generation ca-
pabilities defined by (4), which implies that all row
in the initial population is feasible in terms of power
generation.

3.2.2 Fitness function

The fitness function in metaheuristics theory corre-
sponds to the performance function assigned to any
individual contains in the population, in other words,
it determines what is the quality of an arbitrarily so-
lution l. It is important to mention that genetic al-
gorithms solve optimization problems by becoming
a constraint optimization problem into a conditional
problem. For this reason, we propose the following
fitness function.

z̃ = z + fp
∑
i∈N

(
fi
(
vi, v

min
i , vmax

i

))
, (8)

where z̃ represents the fitness function, fp corre-
sponds to the penalty factor (fp � 0) and fi(·) rep-
resents a binary function which is calculated as pre-
sented below:

fi
(
vi, v

min
i , vmax

i

)
=


1, vi < vmin

i

1, vi > vmax
i

0, otherwise
, {∀i ∈ N}

Notice that to calculate the fitness function is re-
quired to know the voltage profiles in all nodes of the
system, which will be solved via slave problem. Ad-
ditionally, this penalty strategy tries to eliminate any
individual such that presents bad voltage performance
by assigning to its fitness function a higher losses
value; on the other hand, if the voltage profile is ful-
filled in all nodes of the system, then, the fitness func-
tion corresponds to the real active power losses of the
DC power grid, i.e., z̃ = z. It is important to high-
light that penalty factors are commonly employed for
evolutive algorithms, since they allow exploring in-
feasible regions, that would be closed to promissory
solutions.

3.2.3 Descending population

As a genetic algorithm corresponds to an iterative op-
timization process it is necessary to generate new po-
tential solutions to the studied problem, to replace
the bad solutions contained in the current population.
To generate this set of solving individuals a classical
selection, recombination and mutation operators are
adapted to solve continuous optimization.

Selection: The descending population starts se-
lecting an arbitrary subset of individuals contained
in the current population, in this selection a random
number r between 1 to a is chosen, i.e., r = 1 +
(a− 1)rand. If r < a, an additional (a− r)× s ma-
trix with potential solutions are generated by using the
same strategy employed for the initial population. The
total set of selected individuals are conformed by the
combination of the both aforementioned strategies.

Recombination: This process alters the descend-
ing population though the following principle. If the
recombination probability rp is grater than 50% (this
value has been arbitrary selected), then, two arbi-
trary individuals (randomly selected) are recombined
in an arbitrary position selected via random number
between 1 to s− 1. If rp is lower than 50%, then two
arbitrary individuals (randomly chosen) are averaged
to generate a new potential individual; notice that, this
operation always generates feasible individuals, since
the initial population as well as random solutions are
generate inside of the admissibility region of the dis-
tributed generators. This process continues to obtain
descending population with a potential solutions.

Mutation: In this point the mutation probability
mp is explored, i.e., if mp is grater than 50% (this
value has been arbitrary selected), an arbitrary posi-
tion of the potential solution l is modified by an arbi-
trary power generation value guaranteeing that (4) be
satisfied. If mp is lower than 50% the potential solu-
tion l is not modified. This process continues until all
descending individuals are analyzed.
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Once the descending population has been gener-
ated its fitness function are calculated as given in (8).

3.2.4 New population

In the new population will be saved the set of best so-
lutions found by the genetic algorithm, until the cur-
rent iteration t. To generate the new population, we
proceed as follows: A new population is generated by
combining the current and descending set of individ-
uals, which produces a population with 2a potential
solutions; then, two potential solutions are identical,
then, one of them is eliminated to this list. This pro-
cedure is repeated until guaranteeing that all potential
solutions are different.

Now, with the resulting potential solution list, we
ordered in ascendant form all individuals as a function
of their fitness function, and the first a potential solu-
tions are selected as a new population to pass to the
next iteration cycle t+ 1.

3.2.5 Stopping criteria

The proposed continuous genetic algorithm finishes
its optimization process, when one of the following
stopping conditions are achieved:

i. The total iteration cycles has been reached.

ii. The best potential solution does not been im-
proved after m consecutive iterative cycles.

Otherwise, the genetic algorithm back to the de-
scending population step.

3.3 Slave problem
The solution of the slave problem is indispensable to
carry out to determine the fitness function of each po-
tential solution contained in the population of the ge-
netic algorithm. The slave algorithm resolves the con-
ventional power problem given from (5) to (7) via
Gauss-Seidel numerical method as we will be pre-
sented in next section.

3.3.1 Power flow solution via Gauss-Seidel
method

Gauss-Seidel power flow method corresponds to one
of the first numerical techniques reported in special-
ized literature to solve power flow equations in power
grids. This solution methodology has been mainly
used for AC power flow problems; nevertheless, this
methodology is easily applicable on DC power grids
since its structure preserves the same structure of AC
grids, both formulations only differ in their solution

space, i.e., AC power flows are analyzed inside of the
complex number set, while DC power grids are ana-
lyzed inside of the real numbers set.

In the case of the DC power flow problem the
Gauss-Seidel method solve iteratively (5) considering
that the following assumptions are fulfilled:

Assumption 2 The graph that describe the DC grid
is connected (radial or mesh grids), i.e., there are not
islanded nodes on the DC power grid.

Assumption 3 The DC power grid is operating un-
der steady state conditions, i.e., there are not external
perturbations.

Assumption 4 All possible generation-load scenar-
ios are inside of the admissible power flow solution
region, i.e., the DC grid is stable in terms of voltage.
and,

vb+1
k =

1

Gkk

pgk − pdk
vbk

+
∑
j<k

|Gkj | vb+1
j


+

1

Gkk

∑
j>k

|Gkj | vbj , {∀k ∈ {N − S}}
(9)

where b is the current iteration of the Gauss-Seidel
method and the voltage profile and generation in the
slack node(s) is(are) given by (6) and (7).

The accuracy of any power flow solution method
(Newton-Raphson, Gauss-Seidel, linear methods) is
highly dependent of the starting point, in other words,
of the assigned values for the first iteration calcula-
tion. A common practice in specialized literature is to
start all voltage in the grid as 1 p.u; nevertheless, we
employ the open voltage circuit of the network calcu-
lated as the voltage profile in all nodes of the network
when constant power loads and distributed generators
are disconnecting, since this practice allows improv-
ing the convergence rates of the numerical methods
for power flow analysis, in terms of number of itera-
tions and processing times [43].

3.3.2 Advantages of the Gauss-Seidel method
Gauss-Seidel numerical method for solving power
flow equations in DC power grids has the following
advantages [10]:

i. its convergence can be guaranteed through point
fixed theorems as presented in [14].

ii. it is not required to make inverse of the matrices
to obtain the solution vector which contains all
voltage profiles of the entire DC network.
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iii. it can be applied over mesh or radial DC power
grids indistinctly.

It is important to point out that Gauss-Seidel
method was selected over other power flow solution
methods since it is easily implementable of any pro-
gramming language, which implies that not special-
ized software or optimization package is needed.

3.4 Pseudo-code for the proposed methodol-
ogy

Algorithm 1 (pseudo-code version) shows the main
characteristics for solving optimal DC power flow
problem via hybrid GS–GA by using a master-slave
strategy.

Data: DC power grid, genetic algorithm,
Gauss-Seidel parameters.

for t = 1 : tmax do
m = 0;
if t == 1 then

Generate the initial population;
for i = 1 : a do

Solve the power flow problem;
Evaluate the fitness function;

end
else

Generate the descending popupulation;
for i = 1 : a do

Solve the power flow problem;
Evaluate the fitness function;

end
Determine the new population;
if (m > mmax || t == tmax) then

Result: Impress results
Break;

end
end

end
Algorithm 1: Proposed pseudo-code for the hybrid
Gauss-Seidel–Genetic-Algorithm for solving the op-
timal DC power flow problem

4 Test system and simulation scenar-
ios

As test system we employ a DC power grid reported in
[14] which has 10 nodes operating under radial topol-
ogy. This DC power grid has constant resistive load
as well as constant power loads as presented in Table
1. Notice that we assume that all values are showed

Table 1: Electrical parameters of the test system
From To R [pu] Type of node P [pu] - R [pu]

1 2 0.0050 Step-node —
2 3 0.0015 P -0.8
2 4 0.0020 P -1.3
4 5 0.0018 P 0.5
2 6 0.0023 R 2.0
6 7 0.0017 Step-node —
7 8 0.0021 P 0.3
7 9 0.0013 P -0.7
3 10 0.0015 R 1.25

AC

DC
1 2 3 10

6 7 8

9

4 5 DG

Figure 2: Electrical configuration of the low-voltage
dc power grid

in per-unit, considering 1 kV and 100 kW as voltage
and power bases. Besides, the power capabilities in
all distributed generators are contained from 0 p.u to
3.0 p.u, while the maximum and minimum voltages in
the grid are assigned from 0.9 p.u to 1.1 pu.

The proposed Gauss-Seidel–Genetic-Algorithm
is validated by considering two simulation scenarios
as described below:

Esc. 1: The OPF problem is solved considering
the possibility to allocate a distributed generator
(one at time) at the ending nodes of the test sys-
tem as presented in Fig. 2.

Esc. 2: The OPF problem is solved considering
the possibility to allocate two distributed genera-
tors (two at time) at the ending nodes of the test
system.

It is important to mention that the location of the
DGs in the test system is made in arbitrary form, since
the approach of this article it is to analyze the optimal
sizing of the DGs (OPF in DC grids) and it does not
corresponds the optimal location of these. Addition-
ally, all simulation results are compared in terms of
objective function (see (8)) with GAMS optimization
package.
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5 Computational results
The computational implementation was carried-out
through MATLAB 2017a software in a desk computer
with 8 Gb RAM, 3.6 GHz, windows 10 Home Single
Language, 64 bits.

For comparison purposes, the active power losses
to the base case corresponds to 6.447 kW, which has
been calculated by solving the power flow problem
via GS method considering null the power injection at
all distributed generators. Additionally, for the GA,
the population size, number of iteration and conver-
gence’s error are selected in 10, 2000 and 1 × 10−9,
respectively; while the GS numerical method allows
1000 iterations and the convergence’s error is fixed at
1× 10−6.

5.1 First simulation scenario
Table 2 presents the power losses after applying the
optimization process (see Esc. 1.). It is important to
highlight that the proposed GS–GA and the CONOPT
solver find the same objective function, which im-
plies that the proposed method converges 100% to the
global optima; nevertheless, the power generation per
node suffers small variations, which may be attributed
to the numerical precision of GAMS and MATLAB.
On the other hand, Fig. 4 shows the percentage of
power losses reduction for each possible location of a
distributed generator analyzed in the Esc. 1.

Table 2: Power generation and active power losses for
Esc. 1. [kW]

Node GAMS/CONOPT GS–GA
pg z pg z

5 196.323 3.037 196.474 3.037
8 168.603 3.283 168.067 3.283
9 195.994 2.455 195.558 2.455

10 252.285 1.353 252.469 1.353
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Figure 3: Total reduction of power losses for for Esc.
1.

Notice that the location of the distributed genera-
tor affects significantly the objective function perfor-
mance, in this sense, when one distributed generator
is considered, the node 8 is less attractive for power
losses reduction (49.08%), while the node 10 is the
most attractive node with 79.01% of power losses re-
duction. Nonetheless, their difference (29.93%) im-
plies around of 84.402 kW additional of power injec-
tion, which may be not efficient from the economical
point of view.

5.2 Second simulation scenario
In this simulation scenario, we present the possibility
to solve the OPF problem for a combination of two
distributed generators in four nodes, which produces
six different alternatives. Table 3 presents the results
obtained when GS-GA as well as CONOPT solver are
employed to solve this problem.

Notice that the GS–GA and GAMS optimizing
package find exactly the same optimal solution, which
guarantees the 100% of convergence of the proposed
GS–GA when is compared to a commercial widely-
known solver.

In Fig. 4 are presented the percentage of power
losses reduction as function of the distributed gener-
ators allocation. In this since, it is possible to ob-
serve that the combination between nodes 9 and 10
represent 91.59% of power losses reduction, which
is the most important reduction obtained in the Esc.
2., while the combination between 8 and 9 reduces
the active power losses around 62.40%, which corre-
sponds to the lower reduction in this scenario. Nev-
ertheless, the combination between 9 and 10 nodes
requires 291.538 kW, while 8 and 9 nodes requires
only 199.986 kW, which implies that for improving
the power losses reduction from 62.40% to 91.59%
are needed 91.552 kW additional, which may be non-
economical sustainable by the grid operator.

Nod
es

5-8

Nod
es

5-9

Nod
es

5-1
0

Nod
es

8-9

Nod
es

8-1
0

Nod
es

9-1
0

60

70

80

90

67.66

75.41

84.97

62.4

86.23

91.59

Po
w

er
lo

ss
es

re
du

ct
io

n
[%

]

Figure 4: Total reduction of power losses for Esc. 2.
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Table 3: Power generation and active power losses for Esc. 2. [kW]

Nodes GAMS/CONOPT GS–GA
pg pg z pg pg z

5 - 8 135.121 107.367 2.085 135.941 106.607 2.085
5 - 9 116.762 139.144 1.585 115.063 140.601 1.585
5 - 10 82.237 200.568 0.969 83.160 198.985 0.969
8 - 9 31.171 168.815 2.424 32.117 169.578 2.424
8 - 10 76.349 204.355 0.888 75.616 205.247 0.888
9 - 10 106.012 185.526 0.542 105.657 185.740 0.542

5.3 Additional analysis and commentaries
For the sake of completing, in Fig. 5 is presented the
voltage profile performance for the best power reduc-
tion impact, i.e., node 10 for Esc. 1. and nodes 9 and
10 for Esc. 2. as well as the base case. Recall that
the performance of the voltage profile is highly de-
pendent of the total power injection, nevertheless, it is
not possible to affirm that the voltage profile increases
linearly with the power injection, since the power flow
equations have nonlinear intrinsic relations between
both variables that complicates their analysis. On the
other hand, it is important to mention that, when the
Esc. 2. is observed, the voltage profile evidences
a constant tendency for all nodes, this behavior oc-
curs because the injection of active power in different
nodes reduce significantly the current through the dis-
tribution lines, which reduces the voltages drops be-
tween neighborhood nodes which tend to equilibrate
their voltage profiles. Nevertheless, in the Esc. 2. this
situation is less evident since the total power injection
is concentrated in a unique point, which has local and
not global consequences in the voltage profile.

We consider that the results presented in this re-
search are important for optimization as well as con-
trol issues since the GS–GA presents a straightfor-
ward form to solve complex nonlinear problems with
classical and well-known optimization and numerical
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Figure 5: Voltage profile at load nodes when for dif-
ferent increments of the capacity of generation and
consumption

techniques, without recurring to specialized software,
which is mainly attractive for free-software develop-
ers and researchers.

Finally, it is important to mention that for future
comparison purposes the averaged time employed for
the Gauss-Seidel method for each power flow evalua-
tion is 2.8 ms; with 439 iterations.

6 Conclusions and future works
A hybrid GS–GA for solving the optimal power flow
problem in DC power grids was presented. The main
advantage of the proposed methodology was that it
did not require any specialized software or optimiza-
tion packages to the determine the optimal power
generation in each distributed generator for minimiz-
ing the total power losses. Besides, the proposed
methodology avoided making inverse matrices since
GS worked directly on the power flow equations by
recursively solving the convergence under normal op-
erating conditions of the network.

A modification of the conventional binary GA
was proposed to solve nonlinear continuous opti-
mization problems through transforming the con-
strained optimization problem into an equivalent non-
constrained problem; in addition, most of the con-
straints were directly fulfilled by the GA codification
making easier to resolve the optimizing problem un-
der analysis.

Simulation results allowed validating the applica-
bility and the quality of the results regarding the val-
ues of the objective function since these were the same
found by the GAMS commercial optimization pack-
age. Additionally, the numerical results presented in
this paper showed that for minimizing power losses
on DC power grids, not only the optimal power flow
problem was important, since the location of the dis-
tributed generators, as well as the quantity of them,
affects the total power losses of the grid significantly.

As future investigation works, the optimal loca-
tion and dimensioning of distributed energy resources
such a renewable generation and energy storage sys-
tems can be explored by using hybrid algorithms, such
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as binary-continuous genetic algorithms as well as
conventional power flow solutions like Gauss-Seidel
or Gauss-Jacobi or linear approximations. In addition,
the hybrid GS–GA proposed in this paper can be used
for microgrid control application to determine the set
point of the controllers under any possible operating
condition (combination of loads and distributed en-
ergy resources.)
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