
 

The stiffness of short and randomly distributed fiber composites 
 

E. SIDERIDIS, J. VENETIS, V. KYTOPOULOS  
 School of Applied Mathematics And Physical Sciences, Section Of   Mechanics 

National Technical University of Athens 
 5 Heroes Of Polytechnion Avenue, Gr – 15773 Athens  

GREECE 
Telephone: +302107721251 

Fax:  +302107721302 
Email: siderem@mail.ntua.gr, johnvenetis4@gmail.com, victor@central.ntua.gr  

 
Abstract: In this work, analytical calculations are described to estimate the elastic moduli of polymer 
composite materials consisting of short fibers, by extending and generalizing a reliable model. The fibers 
may have a finite length and an orientation characterized as random. An effort was made to complete and 
improve a previous procedure concerning transversely isotropic composites. To this end, a cylinder model 
with a short fiber in the centre of the matrix is considered. The elastic moduli were expressed in terms of 
the fiber content and fiber length. The obtained representations were used to evaluate the moduli of a 
randomly oriented short fiber composite. A comparison was made with theoretical values derived from two 
other authors who established trustworthy and accurate models. Finally, our theoretical values were also 
compared with obtained experimental results. 
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1 Introduction 
 
It is well known that from the commercial 
standpoint the composite materials are made from 
matrices of epoxy, unsaturated polyester and in 
addition of some other thermosets and a f ew 
thermoplastics. The reinforcements are glass, 
graphite, aramid, thermoplastic fibers, metal and 
ceramic. The reinforcement may be continuous, 
woven, or chopped fiber and a typical commercial 
composite contains from 20% to 50% by weight 
glass or other reinforcement. The percentage of 
reinforcement in advanced composites can be as 
high as 70%; these materials usually use epoxy as  
the matrix material, and graphite is the most 
common reinforcement. Glass fibers are usually 
used for low cost and wherever high stiffness is 
not necessary. 
The purpose of adding reinforcements to 
polymers is usually to enhance mechanical 
properties. 
One of the most useful forms of composites for 
the construction of high – performance structural 
elements, is the type of panels made from aligned 
fibers containing polymerized matrix. They can 
also be made with woven fibers or randomly 
oriented chopped fibers; these have inferior 
stiffness and cannot have such high fiber 
materials. In order to perform stress and stiffness 
analyses of the chopped – fiber resin composites, 
it is essential that the elastic properties be known. 

In reality, these materials are anisotropic and 
heterogeneous. Evidently, their properties depend 
on the elastic properties and volume fractions of 
the constituent materials, the fiber length or aspect 
ratio, the degree of the alignment, the adhesion 
between fibers and matrix and finally they are 
affected by the fabrication techniques.  
Nevertheless, one should primarily elucidate that 
chopped fibers, flakes, particles, and similar 
discontinuous reinforcements may enhance short 
– term mechanical properties, but these types of 
reinforcements are usually not as ef fective as 
continuous reinforcements in increasing creep 
strength and similar long – term strength 
characteristics, since continuous reinforcements 
serve to distribute applied loads and strain 
throughout the entire structure.  
If the fibers are randomly distributed with respect 
to orientation and position, then samples of 
material which contain statistically significant 
numbers of fibers seem to be isotropic. If several 
such samples   are compared to one another, the 
material can be considered as h omogeneous.  I f 
the fibers have a specific orientation, then the 
composite will be anisotropic. Besides, in case the 
statistical distribution of fillers’ orientation varies 
with position, then the composite becomes 
inhomogeneous even if the fiber density is 
uniform. 
Mostly, theoretical studies for the stiffness and 
strength of such materials have been concerned 
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with the aligned case, or with the situation of 
cross – ply laminates of continuous unidirectional 
fibers. The application of materials reinforced 
with short randomly – oriented   f ibers is not 
relatively new. For some reasons, the fibers may 
be arranged such that they have partially aligned 
whereby they are constrained to lie in a plane but 
are otherwise randomly oriented.  
Generally, the elastic moduli of a chopped – fiber 
composite can be derived from those of a 
unidirectional discontinuous fiber composite 
through a normalized integration process. There 
have been several previous studies of the random 
fiber case.  T he first such study was apparently 
that due to Cox [1] who studied the stiffness of 
cellulose fiber materials by assuming that the 
external load is carried entirely by the fibers. The 
result was the Cox formula i.e. 
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where fE is the fiber modulus and fU the its 
volume fraction. The corresponding result for the 
two dimensional case was found to be 
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The first consideration of fiber – matrix effects 
was provided by Tsai and Pagano [2], in the 
context of laminated plates. Nielson and Chen [3] 
used computational techniques to predict the 
modulus of the composite. Further work along the 
lines using the “Laminate analogy” was given by 
Halpin, Jerina and Whitney [4]. 
Lees [5], in order to explain his experimental data 
concerning the longitudinal modulus derived a 
formula for the elastic modulus of short fiber 
composites assuming  that the fiber and the matrix  
have different longitudinal strain under axial 
loading. One of the most important theories 
developed is that of Christensen and Waals [6], 
who provided a method for determining random 
orientation properties using a geometric averaging 
method. Later, Christensen [7], thought that there 
is a need to obtain analytical forms which directly 
admit physical interpretation. Assuming that the 
fiber phase is much stiffer than the matrix one he 
simplified the expressions based on the classical 
results of Hill [8,9] and Hashin [10,11] on 
unidirectional transversely isotropic composites 
which after a normalized integration process yield 
the elastic moduli of a randomly oriented fiber 
composite. The results for the three and two 

dimensional case respectively are represented as 
follows 
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where mE  is the matrix modulus 
The procedure presented in Ref. [6] was used by 
Eisenberg [12] in order to derive expressions 
which take into consideration the fabrication 
induced anisotropy of chopped – fiber resin 
composites. Except for the theory of Halpin and 
Pagano [2, 4], the above discussed theories do not 
consider the influence of fiber length or aspect 
ratio and therefore they are applicable for 
continuous fiber composites. 
There are several theoretical formulae appearing 
in the literature to study the elastic moduli of 
unidirectional short fiber composites. Ogorkievicz 
and Weidman [13] idealized the composite 
consisting of a polymeric matrix containing 
unidirectionally aligned discontinuous glass fibers 
into a prism of the polymeric material and within 
it, a prism of glass. The volume of the glass 
prism, expressed as a fraction of the volume of the 
larger prism is equal to the volume fraction of the 
glass fibers and its proportions are fixed by the 
aspect  ratio of the fibers. Some assumptions and 
a strength of materials approach led to Eq. (4) for 
the modulus. 
A theory to enable prediction of moduli from 
basic matrix and fiber properties is due to 
Krenchel [14] who considered the composite to 
comprise a number of plies of uniaxially aligned 
fibers with the fibers of each ply being aligned in 
a different direction. The  fiber – ply contributions 
are summed together with a contribution due to 
the matrix to give the continuous fibers length 
correction factors have been proposed to account 
for the reduction in composite stiffness that 
occurs with fibers of finite length. The factor 
proposed by Cox [1] is presented in the previous 
equations  in a form which takes into account  the 
wide distribution of fiber lengths. Halpin et al 
[15] adopted a more rigorous approach towards 
the prediction of the anisotropy of stiffness due to 
fiber orientation. They considered the composite 
to consist of a number of plies, each one 
containing matrix and uniaxially aligned fibers, 
again with the fibers of each ply to be aligned in a 
different direction. The moduli of each ply can be 
estimated. The simple relationships in these 
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equations are based on a generalization of the 
classical Rayleigh and Maxwell results, which 
may also describe short fibers with finite aspect 
ratio ff /d were used by Charrier and Sudlow 
[16] to calculate the moduli of short fiber systems. 
The fibers may have a finite aspect ratio and their 
orientation is characterized by one of the several 
parameters, intermediate between randomness and 
complete alignment in one direction. 
The longitudinal modulus can be evaluated via an 
expression derived in Ref. [17] and has been used 
by Berthelot [18] along with Hashin and Hill 
expressions for the other moduli to estimate the 
effective elastic properties of a u nidirectional 
fiber composite with misaligned discontinuous 
fibers. It was assumed that they are planar 
uniformly oriented between directions 1θ  and -

1θ  where 1θ  denotes the misalignment angle.             
         Amongst the proposed formulas concerning 
unidirectional fiber composites, one can 
distinguish Halpin – Tsai formulas since they 
appear to be capable to account analytically for 
the influence of fiber length on elastic properties. 
A successful theoretical investigation on the 
elastic moduli of randomly oriented short – fiber 
composites was carried out by Weng and Sun 
[20]. In this work, the longitudinal modulus and 
Poisson ratio of such a composite were found in 
terms of fiber content and the tip to tip spacing of 
the fibers. The proposed simulation was a 
composite cylinder model with a short cylindrical 
fiber, embedded in the centre of the matrix. 
Here, these expressions are modified to account 
for the influence of volume fraction and aspect 
ratio of the filler. These results together with 
Hashin – Hill formulas for the other moduli were 
used in Christensen and Waal’s normalized 
expressions to calculate the elastic modulus and 
Poisson ratio of such a composite in terms of the 
fiber content and its aspect ratios. 
Facca et al [21] applied six micromechanical 
composite models (theoretical and semi – 
empirical) to predict the properties of fibre 
reinforced composites. Kalaprasad et al [22] also 
selected a number of micromechanical composite 
models to predict the properties of the composites 
with longitudinally as well as randomly oriented 
fibres. The Hirsch and the Bowyer – Bader 
models were found to forecast the rates of elastic 
modulus of the composites with both types of 
fiber distribution most accurately, whereas both 
the rule of mixtures or parallel model and the 
inverse rule of mixtures or series model failed to 
predict it. 

The Halpin – Tsai model [23,21] is also a 
theoretical model, which except the elastic models 
of the constituent materials includes a geometrical 
parameter i.e. aspect ratio of the fiber. The model 
has a complicated mathematical structure, but still 
fails to meet the observations made in Refs. 
[21,22] satisfactorily. The developed semi – 
empirical modified Halpin – Tsai model [22, 23] 
however, is in good agreement with the  
experimental   results of Facca et al. 
On the other hand, the experimental results of 
Kalaprasad et al [22] were described satisfactorily 
by another semi – empirical model namely 
Bowyer – Badel model [24]. 
From the literature data [21,22,25], it has become 
evident that the theoretical models which do n ot 
contain any adjustable parameter, usually fail to 
predict the modulus of elasticity of fiber 
reinforced composites, and to predict the modulus 
satisfactorily and therefore one has to apply a 
relation with at least one adjustable parameter, 
which provide the model with semi-empirical 
nature. As there is no escape from the use of an 
empirical relation, it is easier to adopt some 
predictive model expressed in terms of mass 
fraction instead of volume fraction. 
A few years ago Mirbagheri et al. [26] conducted 
intensive research on hybrid composites 
consisting of ternary mixture of wood flour, kenaf 
fiber and polypropylene, and found that the rule 
of mixtures could successfully describe the 
modulus of elasticity of the polymer composites. 
Meanwhile, Fu et al. [27] applied two approaches 
i.e. the rule of mixtures along with laminate 
analogy approach in order to describe the elastic 
modulus of a ternary mixture of particle – fiber – 
polymer. Besides, Islam et al [28] performed a 
thorough analysis on t he existing theoretical 
models to predict the elastic modulus of short 
fiber reinforced polymer composites, whereas in 
Ref. [29] an Elasticity approach was adopted to 
predict the elastic constants of fibrous composites, 
reinforced with transversely isotropic fibers. 
In the present article, by extending and 
completing the theory of equivalent fiber based on 
a composite – cylinder model with a short 
cylindrical matrix the moduli of a unidirectional, 
short fiber composite were derived in terms of 
fiber content and aspect ratio of the fibers. These 
results were used to calculate elastic modulus and 
Poisson ratio of a randomly oriented short – fiber 
composite in terms of fiber content and aspect 
ratio.  The theoretical results were compared with 
those derived from two other dominant theories 
on this subject. Moreover, tensile experiments 
were carried out on p olyester resin – randomly 
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oriented short fiber composites to determine 
mechanical properties and compare experimental 
results with theoretical values. 
 
2 Theoretical Considerations 
In this unit, by adopting a composite cylinder 
model in accordance with the theory of elasticity 
the longitudinal and the transverse elastic 
modulus, along with the longitudinal Poisson ratio 
of a composite with unidirectional continuous 
fibers will be derived. The theoretical analysis is 
based on the following assumptions: 
i)    T he matrix and the fibers are isotropic and 
linearly elastic. 
ii) The composite reinforced with unidirectional 
fibers is linearly elastic, macroscopically 
homogeneous, transversely isotropic and without 
voids. 
iii)  The adhesion between the matrix and the 
fibers is perfect. 
iv)   The possible interaction amongst the fibers is 
neglected. 
Here we should elucidate that the aforementioned 
suppositions will be taken into account in the 
derivation of the elastic moduli of a unidirectional 
continuous fibrous reinforced composite material. 
 
a) Longitudinal elastic modulus 
 
In order to evaluate the longitudinal elastic 
modulus, let us consider a representative layer of 
the composite material reinforced with continuous 
fibers, as it can be seen in Fig. 1. 
 
 

 
Fig.1 Representative layer of the composite  

Then, let us concentrate on a cross – sectional 

area of the above model as it can be illustrated in 

Fig. 2. 

 
Fig. 2 Cross section of the model 

 

By the use of Airy stress – function the 

compatibility equation in cylindrical coordinates 

is expressed as follows  
4 3 2

2
4 3 2 2 3

2 1 1 0d d d d
dr r dr r dr r dr
Φ Φ Φ Φ

∇ Φ = + − + =     (1)  

Evidently, this ordinary differential equation 

belongs to Euler’s type and the its solution is 

given as 
2 2

1 2 3 4ln lnc r c r r c r cΦ = + + +                (2) 

Each one of the phases of the composite material 

is characterized by a corresponding stress 

function. 

Thus, the expressions for the stresses in each one 

of the aforementioned phases are 

( ), 2

1 1 2ln 2f
r f

d A B r C
r dr r

σ
Φ

= = + + +   (3)  

( )
2

, 2 2 3 2 ln 2f
f

d A B r C
dr rθσ
Φ

= = − + + + (4) 

( ), 2

1 1 2ln 2m
r m

d F G r H
r dr r

σ Φ
= = + + +  (5) 

( )
2

, 2 2 3 2 ln 2m
m

d F G r H
dr rθσ
Φ

= = − + + +  (6)  

To avoid infinite stresses at 0r =  both constants 

A  και B  should vanish. 

  

Thus, Eqns.  (3) and (4) respectively, become 

, , 2r f f Cθσ σ= =                                                                                             
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For the matrix material, it can be shown that 

0G =  and therefore  

, 2 2r m
F H
r

σ = +      and     , 2 2m
F H
rθσ = − +  

Next, let us apply a tensile stress cσ , which is 

exerted at the direction of  z  axis.  

The equilibrium of forces at this direction yields 

the following relationship 

ccmmff AAA ⋅=⋅+⋅ σσσ                               (7)                                                            

with 

, ,,z f f z m mσ σ σ σ= =  

where 

cmf AAA ,,  is the area of the fiber, matrix, and 

composite respectively. 

Now, if one puts 1f sσ = , 2m sσ = , c sσ =  and 

divide by  the term cF   the above relationship 

becomes 
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Moreover, from the stress – strain relationships 

we deduce that 
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where Ef and Em are the elastic moduli of fiber 

and matrix respectively 

Meanwhile, the radial displacements are given as 

, ,r f fu r θε=    and   , ,r m mu r θε=  

In continuing, the boundary conditions are 

formulated as follows 

At fr r=   

, , 22 2r f r m
f

FC H
r

σ σ= → = +                 (15)  
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, 20 2 0r m
f
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Since the axial strains in matrix and fiber 

coincide, it implies that 
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The solution of the system of eqns. (17) and (18) 

for the terms 1s and 2s respectively yields 
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A substitution of the above data back into Eqn. 
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where νf and νm are the Poisson ratios of fiber and 

matrix respectively 

From the solution of the system of eqns. (15),  

(16) and (21) one estimates the rates of the   

constants F , H , C as follows                           
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 A combination between the system of eqns. (25) 

to (28) and the system of eqns. (19) and (20) 

results in the following explicit expressions for 

the quantities 1s and 2s respectively 
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The longitudinal modulus EL of the composite can 

be estimated by the equalization of the overall 

deformation energy with the sum of 

corresponding ones for the constituent materials.  

Hence we can write out 
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Since we have initially proposed a modified 

version of Hashin cylinder model, the last 

relationship can be equivalently recasted as 

follows 
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Finally, by substituting the above expressions for 

both stresses and strains back into eqn. (32) one 

finds 
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b)  Transverse elastic modulus 

Next, in order to evaluate the transverse elastic 

modulus of the composite  let us consider a cross 

– sectional  area of this material under the 

following loading condition, as it can be seen in 

Fig.3, where, p2 is the applied external pressure 

and p1 denotes the common stress at the interface. 

Let us consider the stress function in eqn. (1) and 

the described relationship in eqns. (2) – (6). 

 
Fig. 3 Loading for the specification of transverse 

modulus  
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The boundary conditions are formulated as 

follows   
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Moreover, in the present analysis we have also 

assumed that the axial strains are a priori 

negligible, and therefore 
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Besides, from the stress – strain relationships we 
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Concurrently, the following relationships hold  
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Also, at fr r= it implies that 
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σσσε 







−−=

1  

( )1
z z LT x y

L

v
E

ε σ σ σ = − +   

2x y pσ σ= = −   and 0zε =  

where TE  denotes the transverse elastic modulus. 
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and LTv , TTv  are the longitudinal  and  

transverse Poisson ratio respectively  

Thus, by substituting the resultant relationships 

for the strains, the stresses and the unknown 

constants together with the auxiliary term λ  back 

into eqn. (32) which is modified properly in order 

to include at the left member the expression with 

Kc and p2 one obtains the following explicit 

expression for the transverse elastic modulus 
2 2 2 2

2

2 2 2

2

(1 2 ) (1 2 )( 1)1

(1 ) (1 ) (1 )

(1 )(1 ) 2

(1 ) (1 ) (1 )

f f f m m f

T f T T m f TT

f m LT

m f T T L T T

U v v v v U

E E v E U v

U v v

E U v E v

λ λ

λ

− − − − −
= + +

− − −

+ −
+

− − −

     (43a) 

 

c) Longitudinal Poisson ratio 

Next, the longitudinal Poisson ratio can be 

evaluated by means of the following reasoning.  

It is valid that  

r m
LT

z

d rv
ε

= −  

where rd  denotes the radial displacement  in the 

cylindrical area of the composite and zε  is the 

axial displacement. 

Thus 
2

2,

, 2

/ (1 ) 2 (1 )( ) /
4

m m m m mr m r r m
LT

z m m

F r v H v v su r
v

s Hvε
=

 − + + − − = − =
−

(43b) 

                       

A substitution of eqns. (22), (23), (30), back into 

(43b), leads to the following closed – form 

relationship 

    
(43c) 

 

d) Transverse Poisson ratio 

 

Moreover, the transverse Poisson ratio of the 

composite can be estimated by means of Halpin –

Tsai equation which is presented as follows:                                                                                                                                   

f

f
mTT U

U
vv

⋅−
⋅⋅+

=
1

11

1
1

η
ηξ

                  (44)                                                                                                                            

where: 

mf

mf

v
v

νξ
ν

η
1

1 +
−

=                                                                                                                                     

and  

...3,2,11 =ξ            

                                                                                                                                    

e) Shear Modulus 

On the other hand, to define shear modulus one 

can take into account Halpin – Tsai  formula i.e. 

f

f
mLT U

U
GG

⋅−
⋅⋅+

=
2

22

1
1

η
ηξ

                         (45) 

where 

mf

mf

GG
GG

2
2 ξ

η
+
−

=  

and 2ξ  is a constant term which depends on  the 

fiber volume  fraction and arises from the 

following empirical relationship 
10
f2 U401ξ ⋅+=  

Here mf GG , are the shear moduli of fiber and 

matrix respectively. 

Besides, Hashin and Rosen proposed the 

following expression concerning the shear 

modulus of a composite was proposed 

])()[(
])()[(

fmfmf

fmfmf
mLT UGGGG

UGGGG
GG

⋅−−+

⋅−++
=     (46) 

In continuing, to introduce the discontinuity of 

fibers we will use the model of equivalent fiber, 

which is described as follows: 

Let us suppose a composite material consisting of 

unidirectional discontinuous fibers 
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Fig. 4 Arrangement of the short fibers in the matrix 

 

Next, let as focus on the cross – sectional area of a 

representative volume element of this material.   

 
Fig. 5 Cross – sectional area of an arbitrary short 

fiber of the composite 

 

We transform the above volume element in order 

to create another volume element consisting of an 

equivalent fiber 

 
Fig. 6 Cross – sectional area of the equivalent fiber  

 

Here, we should emphasize that the real system 

consisting of short fibers and matrix is 

characterized by the elastic 

constants fE , mE , fU , mU  whereas the equivalent 

system consisting equivalent fiber and matrix, is 

described by the constants meqfeqmfeq UUEE ,,, . 

In this context, let as c alculate the fundamental 

elastic properties of the composite. 

Primarily, we have to estimate the filler content 

which in the real system is given as 

l
l

d
d

U
l

d

l
d

U ff
f

f
f

f ⋅=⇒
⋅⋅

⋅⋅
= 2

2

2

2

4

4

π

π
                (47) 

and in the equivalent system  

2

2

2

2

4

4
d
d

U
l

d

l
d

U f
feq

f

f =⇒
⋅⋅

⋅⋅
=
π

π
                    (48) 

Hence,      

    

f
f

feq U
l
lU ⋅=                                            (49) 

To evaluate the elastic modulus of equivalent 

fiber, one may adopt the Strength of Materials 

approach according to which the system filler – 

matrix is equivalent with a system of two ideal 

springs connected in series. Evidently, this 

implies that the exerted force is the same both for 

matrix and filler, while their lengthening differs, 

as it can be seen in Fig. 7 

 

 
Fig. 7 S trength of materials approach for the 

simulation of equivalent fiber 

 

f mF F F= =    and ( ) ( )f m
l l l∆ = ∆ + ∆    

Moreover the following relationships hold, 

F σ= ⋅Α , f f fF σ= ⋅Α  

m m mF σ= ⋅Α ,   feqEσ ε= ⋅  

f f fEσ ε= ⋅ ,    m m mEσ ε= ⋅  

( ) m mm
l lε∆ = ⋅  

and therefore, 

( ) f ff
l lε∆ = ⋅
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f f m m f f m m f f m ml l l l l V l V V Vε ε ε ε ε ε ε ε ε⋅ = ⋅ + ⋅ ⇒ ⋅ = ⋅ ⋅ + ⋅ ⋅ ⇒ = ⋅ + ⋅ ⇒
 

f f m m

feq f m

l l
E E l E l

σ σσ ⋅ ⋅
= +

⋅ ⋅
                                 (50)      

Besides, referring to the equivalent fiber the 

following equality holds 

f mσ σ σ= =  

Consequently we find 

m f
feq

f m
m f

E E
E l lE E

l l

⋅
=

⋅ + ⋅
 (51) 

To calculate Poisson ratio of the equivalent fiber 

we may consider without violating the generality 

of our presented mathematical formalism, that the 

overall lengthening and the dilatation of this 

hypothetical fiber are equal with the sum and the 

average of the real fiber and matrix respectively. 

The overall lengthening is 

1 1
f m

f f m m f m

l ll l l
l l

ε ε ε ε ε ε⋅ = ⋅ + ⋅ ⇒ = ⋅ + ⋅    (52)                                                

whereas the dilatation is given as 

2
f m

f f m m

l lv v
l l

ε ε ε= − ⋅ ⋅ − ⋅ ⋅                    (53) 

Since  2

1
feqv ε

ε
= −  we have 

1

1

m f f m
f

feq

m f
f

lE E
l

v
lE E
l

ν ν
 

⋅ + ⋅ ⋅ −  
 =

 
+ ⋅ −  

 

 (54) 

Here, let us introduce a parameter named R  

which performs the ratio of the distance between 

two neighboring fibers and their length as it can 

be seen in Fig. 8 

 
Fig. 8 Dimension of the fibers in the composite 

 

This aforementioned parameter arises from the 

following expression 

1m

f f

l lR
l l

= = −                                         (55) 

Hence, after the necessary algebraic manipulation 

we find 

 

m f f m
feq

m f

E v E v R
v

E E R
⋅ + ⋅ ⋅

=
+ ⋅

  (56) 

( )1f m
feq

m f

E E R
E

E R E
⋅ ⋅ +

=
+ ⋅

  (57) 

( )RUU ffeq += 1                                     (58) 

 

Moreover, to examine the influence of aspect ratio 

of the fibers we introduce another parameter 

named  a  and given as 

   
f

f

f

f

r
l

d
l

2
a ==                                     (59) 

However, we have already found that 

S
d
d

U
l
l

d
d

U

d
d

U

f
f

ff
f

f
feq

⋅=⇒⋅=

=

2

2

2

2

2

2

 

where fl
S

l
=  

Therefore the latter relationship yields 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS E. Sideridis, J. Venetis, V. Kytopoulos

E-ISSN: 2224-3429 62 Volume 13, 2018



 

⇒⋅⋅=⋅

⇒⋅=⋅⇒⋅=

S
d
l

l
l

U

S
d
l

U
d
l

l
d

U

f
f

f
f

f

f

f
f

2

2

2

2
22

2

2
22

2

2

2

2

a

a

 

2
322a 






=⋅

d
lSU f                               (60) 

Here, one may additionally suppose, without 

violating the initial hypothesis concerning the 

randomness of fiber distribution and orientation, 

that the distance of two neighboring fibers in the 

longitudinal direction coincides with the distance 

of two neighboring fibers in the transverse 

direction as it can be seen in Fig.9. 

 
Fig. 9 Simplified approach of the fiber spacing 

 

Thus we can write out 

f fl l d d C− = − =  

Hence it follows 

 1 f f
f f

l dll d d l
d d d

= − + ⇒ = + −           (61) 

Since  
S

U
d
d

d
l

d
l ff

f

ff a=⋅= ,   eqn. (61) yields 

 
( )

S
US

d
l f 1a −⋅+
=                         (62) 

After an elementary algebraic manipulation, eqn. 

(62) results in the following quadratic equation 

 ( ) ( ) ( )2 2 21 a 2 a 2 0f f f f fU S S U S U S U S U⋅ − ⋅ − ⋅ ⋅ − ⋅ ⋅ + + − ⋅ ⋅ =   (63) 

Evidently, the roots of the above polynomial 

equation are 

( )
( )1

a
+⋅

⋅−⋅
=

SU
USUS

f

ff   

or   

( )
( )1

a
−⋅

⋅−⋅
=

SU
USUS

f

ff  

According to the nature of the examined physical 

problem, it is obvious that one should reject 

beforehand the first solution since it leads to 

unrealistic results.  

Thus, it im plies that the quantities S  and R  

should be related as follows 

1
1

S
R

=
+

 and therefore   

    







 −

+









⋅

+
−⋅

+
=

1
1

1
1

1
1

1

a

R
U

U
R

U
R

f

ff

                  (64) 

 

3 Evaluation of the moduli by 
applying the model of equivalent 
fiber 
Now, we apply the model of equivalent fiber in 

the relationships of the elastic constants which 

were previously derived, using Airy stress 

function. By this way, we introduce the 

discontinuity of fibers through the parameters R  

and a . 

Here, one may distinguish and examine the 

following three cases which have been motivated 

by the consideration of the aspect ratio 
f

f

d
l

=a  

 ∞=a   (continuous fibers) 

•  10a =  (discontinuous fibers) 

•   0a =    (particles) 

For each case, one can estimate the elastic 

constants of the composite material by 
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substituting the quantities fE , fv , fU , fG , mU  

which appear in eqns. (33), (43a), (43c) and (46) 

back into eqns. (51), (54) (56), (57), (58) which 

describe  the simulation of equivalent fiber and 

contain the terms f eqE , f eqv , feqU  , f eqG , meqU . 

Consequently, in regards to the longitudinal 

elastic modulus one obtains            

( )

( )

2 2

2 2 2

8 (1 ) 8

1
2 (1 ) 8 (1 ) 8 (1 )

1 1

eq eq eq eq

eq eq eq eq eq eq f

eq feq m m m feq
m

Leq feq

C v C v U

F U v H v H v U
E

E E
η η

ξ ξ

− − +

+ + + − − + −

=   (65) 

According to the same reasoning, the transverse 

elastic modulus arises from the following 

expression 
2 2 2 2

2

2 2 2

2

(1 2 ) (1 2 )( 1)1
(1 ) (1 ) (1 )

(1 )(1 ) 2
(1 ) (1 ) (1 )

feq f feq eq m m eq feq

Teq feq Teq m feq Teq

feq m eq LTeq

m f Teq L Teq

U v v v v U
E E v E U v

U v v
E U v E v

λ λ

λ

− − − − −
= +

− − −

+ −
+ +

− − −

     (66)    

Moreover, the longitudinal Poisson ratio and the 

shear modulus are respectively estimated as 
( )

mmmfeqfeqfeqeqmfeqfeqfeqmfeqfeqeqfeqeqeqeqeqm

mmfeqfeqfeqmfeqfeqeqfeqeqeqeqeqmmmfeqfeqfeqeq
LTeq KPLK

KPLK
ν)UEUE(U2W)νEUνE)U1((UW2)U)()((E
ν)νEUνE)U1((UW2)U)()((E)UEUE(U2W

ν
+++−−−++

+−−−++++
=

 (67) 

               and 

[( ) ( ) ]

[( ) ( ) ]
feq m feq m feq

LT eq m
feq m feq m feq

G G G G U
G G

G G G G U

+ + − ⋅
=

+ − − ⋅
        (68) 

 

4 Numerical Examples 
The numerical results of the above theoretical 

expressions are presented in the following tables, 

using the following fiber and matrix properties 

fE = 72 G Pa, mE =3.5 GPa, mv =0.36,  fG =30 

Gpa, mG =1.3 Gpa 

First case: ∞=⇒= a0R  (continuous fibers). 
 

65.0=fU  

f eqE  f eqv  f eqG  feqU  meqU  

7.2 1010 N / m2 0.2 3.1010 N / m2 0.65 0,35 

 
Table 1 Elastic constants for  ∞=⇒= a0R  
 

fU  
LeqE (N

/m2) 
T eqE (N

/m2) 
LT eqG (

N/m2) LT eqv  

0 3.5E+9 3.5E+9 
1.287E+
9 0.36 

0.1 
1.038E+
10 

5.541E+
9 

1.547E+
9 0.341 

0.2 
1.725E+
10 

6.976E+
9 

1.865E+
9 0.322 

0.3 
2.412E+
10 

8.493E+
9 

2.265E+
9 0.304 

0.4 
3.097E+
10 

1.031E+
10 

2.779E+
9 0.287 

0.5 
3.782E+
10 

1.262E+
10 

3.469E+
9 0.271 

0.6 
4.467E+
10 

1.575E+
10 4.44E+9 0.256 

0.7 
5.15E+1
0 

2.026E+
10 5.91E+9 0.241 

0.8 
5.834E+
10 

2.739E+
10 

8.395E+
9 0.227 

0.9 
6.517E+
10 

4.043E+
10 

1.35E+1
0 0.213 

1 7.2E+10 7.2E+10 3E+10 0.2 
              
Table 2 Elastic constants for  ∞=a  
 
The above numerical results concerning the three 
elastic constants TeqTeqLeq GLEE ;;  versus the 

filler content of the composite material are 
illustrated in Fig. 10 
 

0.0E+00

2.0E+10

4.0E+10

6.0E+10

8.0E+10

0 0.5 1 1.5

uf

Eleq
ETeq
GLTeq

 
 Fig. 10 Variation of  LeqE  , TeqE , LTeqG  vs  Uf for 

∞=a . 
 
 
Second case 10a =   (discontinuous fibers). 
 
 

65.0=fU  

f eqE  f eqv  f eqG  feqU  meqU  

5.023 0.251 2.008 0.665 0.335 

 Uf 

 

  (N/m2 ) 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS E. Sideridis, J. Venetis, V. Kytopoulos

E-ISSN: 2224-3429 64 Volume 13, 2018



 

1010 

N/m2 
1010 N / 
m2 

 
Table 3  Elastic constants  for  10a =  
 
 

fU  R  
LeqE (N/

m2) 
T eqE (

N/m2) 
LT eqG

(N/m2) LT eqv  

0 9.61 3.5E+9 3.5E+9 
1.287E+
9 0.36 

0.1 0.19 5.163E+9 
4.404E+
9 

1.511E+
9 0.355 

0.2 0.112 8.115E+9 
5.627E+
9 

1.806E+
9 0.348 

0.3 0.076 1.214E+10 7.05E+9 
2.184E+
9 0.337 

0.4 0.054 1.72E+10 8.77E+9 
2.676E+
9 0.324 

0.5 0.039 2.332E+10 
1.098E+
10 

3.339E+
9 0.309 

0.6 0.027 3.054E+10 
1.399E+
10 

4.278E+
9 0.292 

0.7 0.018 3.893E+10 
1.84E+1
0 

5.705E+
9 0.272 

0.8 0.011 4.857E+10 
2.549E+
10 

8.134E+
9 0.251 

0.9 
5.139E
-3 5.956E+10 

3.875E+
10 

1.318E+
10 0.227 

1 0 7.2E+10 7.2E+10 3E+10 0.2 
 
Table 4   Elastic Constants vs Uf for  10a =  
 

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

7.00E+10

8.00E+10

0 0.2 0.4 0.6 0.8 1 1.2

uf

ELeq

ETeq

GLTeq

 
   Fig.11 Variation of  LeqE  , TeqE , LTeqG  vs Uf  for 

10 a =  
 
 Third case 1a =  (particles) 
 

65.0=fU  

f eqE (N
/m2) 

f eqv  f eqG (N
/m2) 

feqU  meqU  

1,99 
1010 

N/m2 

0,322 7,529 
109  N / 
m2 

0,75 0,25 

 
Table 5   Elastic Constants vs Uf for  1a =  
 

                                                 
1 The value of r which arises for Uf =0.00001 

fU  r  
LeqE (

N/m2) 
T eqE (

N/m2) 
LT eqG

(N/m2) LT eqv  

0 45.412 
3.5E+
9 

3.5E+
9 

1.287
E+9 0.36 

0.1 1.154 
4.096
E+9 

3.984
E+9 

1.455
E+9 0.358 

0.2 0.71 
5.001
E+9 

4.653
E+9 

1.681
E+9 0.356 

0.3 0.494 
6.252
E+9 

5.529
E+9 

1.976
E+9 0.353 

0.4 0.357 
7.955
E+9 

6.684
E+9 

2.367
E+9 0.349 

0.5 0.26 
1.03E
+10 

8.249
E+9 

2.903
E+9 0.343 

0.6 0.186 
1.361
E+10 

1.047
E+10 

3.676
E+9 0.335 

0.7 0.126 
1.852
E+10 

1.388
E+10 

4.877
E+9 0.324 

0.8 0.077 
2.631
E+10 

1.974
E+10 

6.985
E+9 0.305 

0.9 0.036 
4.03E
+10 

3.204
E+10 

1.162
E+10 0.273 

1 0 
7.2E+
10 

7.2E+
10 3E+10 0.2 

 
Table 6 Elastic constants vs Uf  for 1a =   
 

 
  Fig. 12 Variation of LeqE  , TeqE , LTeqG  vs Uf for 

1a =  
 

Normally, in a particulate composite material the 
elastic constants LeqE and TeqE should be equal. 

The discrepancies in the values of these elastic 
constants in this case, are due to the fact that 
while the fiber volume fraction increases, keeping 
constant the aspect ratio a and equal to unity, the 
parameter R  (which as stated previously 
expresses the ratio of the distance between two 
neighboring fibers and their length) diminishes. 
As a r esult, there exists a transition from the 

                                                 
2 The value of r  which emerges for Uf =0.00001 

 Uf 

 
(N/m2) 
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particulate situation to the fibrous one although 
we have kept a=1. On the other hand, particulate 
composites are usually considered as spheres and 
not as short cylinders. From hence it is evident, 
that if we observe the results of the above table 
we can point out that for high values of the 
parameter R  the rates of LeqE and TeqE are too 

close. This can be seen well in the following 
table, where the fiber contents are much closer.  

fU  R 
LeqE (

N/m2) 
T eqE (

N/m2) 
LT eqG

(N/m2) LT eqv  

0 2143 
3.5E+
9 

3.5E+
9 

1.287
E+9 0.36 

0.01 3.642 
3.542
E+9 

3.538
E+9 

1.301
E+9 0.36 

0.02 2.684 
3.59E
+9 

3.58E
+9 

1.315
E+9 0.359 

0.03 2.218 
3.642
E+9 

3.623
E+9 

1.331
E+9 0.358 

0.04 1.924 
3.697
E+9 

3.669
E+9 

1.347
E+9 0.357 

0.05 1.714 
3.756
E+9 

3.717
E+9 

1.364
E+9 0.356 

0.06 1.554 
3.818
E+9 

3.767
E+9 

1.381
E+9 0.354 

0.07 1.426 
3.883
E+9 

3.819
E+9 

1.399
E+9 0.353 

0.08 1.321 
3.952
E+9 

3.872
E+9 

1.417
E+9 0.352 

0.09 1.231 
4.022
E+9 

3.927
E+9 

1.436
E+9 0.35 

0.1 1.154 
4.096
E+9 

3.984
E+9 

1.455
E+9 0.349 

            
Table 7  Elastic constants for vs Uf 1a =  
 
Next, let us perform the variation of elastic 
moduli versus filler content for the three distinct 
rates of the parameter a  
 

 
    Fig. 13 Variation of LeqE  , TeqE   vs Uf for the 
three different  values of a  

                                                 
3 The value of r for Uf = 0.0000001 

On the other hand, the variation of Poisson ratio 
LTeqν  versus filler content for the three distinct 

rates of the parameter a  is presented and 
illustrated at Table 8 and Fig. 14 respectively. 
 

LTeqν  
 

fU  ∞=a  10a =  1a =  
0 0.36 0.36 0.36 
0.1 0.341 0.355 0.358 
0.2 0.322 0.348 0.356 
0.3 0.304 0.337 0.353 
0.4 0.287 0.324 0.349 
0.5 0.271 0.309 0.343 
0.6 0.256 0.292 0.335 
0.7 0.241 0.272 0.324 
0.8 0.227 0.251 0.305 
0.9 0.213 0.227 0.273 
1 0.2 0.2 0.2 
                                           
Table 8 Variation of Poisson ratio vs filler content 
for the three different values 
 

 
Fig. 14 Variation of Poisson ratio vs filler content 
for the three different values 
 
Moreover, Table 9 a nd Fig. 15 describe the 
variation of shear modulus LTeqG  versus filler 
content for the three distinct rates of the 
parameter a . 
 
 

LTeqG (N/m2) 

fU  ∞=a  10a =  1a =  
0 1.287E+9 1.287E+9 1.29E+09 
0.01 1.547E+9 1.511E+9 1.46E+09 
0.02 1.865E+9 1.806E+9 1.68E+09 
0.03 2.265E+9 2.184E+9 1.98E+09 
0.04 2.779E+9 2.676E+9 2.37E+09 
0.05 3.469E+9 3.339E+9 2.90E+09 
0.06 4.44E+9 4.278E+9 3.68E+09 
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0.07 5.91E+9 5.705E+9 4.88E+09 
0.08 8.395E+9 8.134E+9 6.98E+09 
0.09 1.35E+10 1.318E+10 1.16E+10 
0.1 3E+10 3E+10 3.00E+10 
                     
Table 9 variation of shear modulus 
 
 
 

 
 
Fig. 15   Variation of shear modulus vs Uf 
   
 
To estimate the elastic constants in the case of a 

random orientation of the fibers in the composite 

material the procedure described in Eisenberg 

approximation [12] can be adopted. Thus, for 

each case we apply the stages described in the 

appendix and after all the obtained results for 

elastic modulus and Poisson ratio are presented at 

the Tables 10 a nd 11 a nd illustrated at Figs. 15 

and 16 respectively. 

 
Equivalent  
Fiber 
Equivalent 
fiber 

 
∞=a  

 
10a =  

 

 
1a =  

 

 

fU  
m

E
E

 
m

E
E

 
m

E
E

 

0 1 1 1 
0.1 1.878 1.292 1.145 
0.2 2.731 1.75 1.349 
0.3 3.614 2.348 1.623 
0.4 4.554 3.101 1.988 
0.5 5.583 4.042 2.489 
0.6 6.755 5.23 3.201 
0.7 8.175 6.776 4.278 
0.8 10.082 8.932 6.077 

0.9 13.16 12.412 9.666 
1 20.571 20.571 20.571 
 

Table 10 Values of the fraction 
m

E
E

 vs filler 

content  
 
 

 
 

Fig. 16 Variation of the fraction 
m

E
E

 vs filler 

content 
 
Equivalent  
Fiber 
Equivalent 
fiber 

 
∞=a  

 
10a =  

 

 
1a =  

 

fU  v  v  v  
0 0.36 0.36 0.36 
0.1 0.37386 0.3645 0.35899 
0.2 0.36235 0.36428 0.35773 
0.3 0.3521 0.35875 0.35571 
0.4 0.34313 0.35098 0.35263 
0.5 0.33453 0.34221 0.34824 
0.6 0.3253 0.33237 0.3421 
0.7 0.31411 0.32043 0.33325 
0.8 0.29837 0.30381 0.31917 
0.9 0.27117 0.27523 0.29138 
1 0.2 0.2 0.2 
 
Table 11 Values of Poisson ratio vs filler content 
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   Fig. 17 Variation of Poisson ratio vs filler 
content 
 
 
The values of the mean elastic modulus as 

resulted from our analysis which was actualized 

with the aid of Airy Stress Function and the 

model of equivalent fiber are higher that those 

obtained from Charrier and Sudlow approach [16] 

which appear in the Table 12. 

 
 
Sudlow 
formula 
[16] 
 

l
d
= ∞  10l

d
=  1l

d
=  

fU  

m

E
E

 
m

E
E

 
m

E
E

 

0 1 1 1 
0.1 1.603 1.424 1.281 
0.2 2.162 1.882 1.621 
0.3 2.759 2.408 2.038 
0.4 3.439 3.038 2.566 
0.5 4.253 3.820 3.254 
0.6 5.277 4.836 4.191 
0.7 6.648 6.230 5.544 
0.8 8.654 8.310 7.672 
0.9 12.09 11.902 11.515 
1 20.571 20.571 20.571 

Table 12 Values of the quotient 
mE

E
 vs filler 

content according to Charrier and Sudlow 
approach. Suggestively, by calculating the 
difference between the values which arise from 
the first and second approximation respectively, 
we obtain the results of the following table. 
 
 

 

fU  
(Equivalent 
Fiber) – 
(Sudlow 
[16]) for 
l
d
= ∞  

(Equivalent 
Fiber) – 
(Sudlow 
[16]) for 

10l
d
=  

(Equivalent 
Fiber) –
(Sudlow 
[16]) for 

1l
d
=  

0 0 0 0 
0.1 0.275 -0.132 -0.136 
0.2 0.569 -0.132 -0.272 
0.3 0.855 -0.06 -0.415 
0.4 1.115 0.063 -0.578 
0.5 1.33 0.222 -0.765 
0.6 1.478 0.394 -0.99 
0.7 1.527 0.546 -1.266 
0.8 1.428 0.622 -1.595 
0.9 1.07 0.51 -1.849 
1 0 0 0 
 
Table 13 C omparative representation of the two 
approximations vs filler content 
 
At the following diagram the values of the ratio 

m

E
E

 are illustrated for the cases of continuous 

fibers, discontinuous fibers and spherical particles 

both for Charrier – Sudlow [16] and equivalent 

fiber approaches. 

 

Fig. 18 C hange of the quotient 
m

E
E

 vs filler 

content for distinct rates of the ratio a and   
l
d

 

Next, the values of the averaging elastic modulus 

obtained for a random orientation of fibers and for 

the three aforementioned approximations are 

presented at the following table. 
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Sudlow 
approach 
[16] 

Eisenberg 
approach 
[12] 

Equivalent 
fiber 
approach  

l
d
= ∞ , 

1lC =  

  
∞=a  

fU  m

E
E

 
m

E
E

 
m

E
E

 

0 1 1 1 
0.1 1.603 1.689 1.878 
0.2 2.162 2.418 2.731 
0.3 2.759 3.171 3.614 
0.4 3.439 3.958 4.554 
0.5 4.253 4.794 5.788 
0.6 5.277 5.714 7.139 
0.7 6.648 6.788 8.724 
0.8 8.654 8.201 10.783 
0.9 12.09 10.643 13.984 
1 20.571 20.571 20.571 
 

Table 14 Values of 
m

E
E

vs filler content for the 

case of random fibers according to the three 
approximations  
 
 

 
 

Fig. 19 Variation of  
m

E
E

 vs filler content for the 

case of random fibers according to the three 
approximations 
 

Here, one can observe that the approximation of 

equivalent fiber yields higher values with respect 

to the two other analytical approaches.  This is 

caused by the fact that the change of the aspect 

ratio i.e. the quotient: length to diameter of the 

cylindrical fiber can be actually achieved by the 

choice of the value of the ratio of fiber distance to 

the length.    

 

5. Determination of the properties of 

randomly oriented fiber composites 

 
5.1 Determination of fiber content and 

density 
 

The weight of fibers contained in the material 

used for the experiments was determined using 

the burn – off test method which consists in to 

burn off the resin from a measured portion of a 

specimen. This gives the percentage weight of 

glass fibers by means of the following expression: 

⇔
+

=
mmff

ff
f MM

M
U

ρρ
ρ

//
/

 

⇔
++

=
)/(/(1

1

mfmf
f MM

U
ρρ

 

)1/1)(/(1
1

−+
=

fmf
f M

U
ρρ

                      (68) 

where 

fM  weight fraction of fibers 

mM  weight fraction of resin 

fρ    specific density of fibers 

mρ   specific density of resin 

Meanwhile, the composite density cρ can be 

expressed in terms of fρ  and mρ  by the 

following approximate equation 

)1( fmffc UU −+= ρρρ                            (69) 

 

5.2 Theoretical predictions of the variation 

of properties with glass content 
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To estimate the overall elastic modulus cE of a 

glass fiber resin, the simple rule of mixtures can 

be taken into consideration, which is usually 

stated in the following form:  

mmffec UEUEE +=η                               (70)                                                       

where eη  is an efficiency factor depending on the 

type and the fabrication of the reinforcement. This 

simplified equation ignores the presence of voids 

and of low modulus mat binding material but 

usually is of adequate accuracy at this instance. 

This equation, although by its nature only 

approximate gives a feel of the qualitative effect 

of the various parameters. Since, usually   

mf EE >> , it is evident that the modulus of the 

composite from the simple rule of mixtures will 

increase with increasing filler content. Therefore, 

with eq. (70) in hand and taking into account that  

1=+ mf UU  we obtain the following equation  

f
m

f

m

f

fmfe
mc

M

MEE
EE











−+

−
+=

ρ
ρ

ρ
ρ
η

1

)(
                    (71) 

 
On the other hand, Christensen equation [7] which 
has already been referred in the Introduction Unit 
has been derived from a more rigorous analysis of 
the micromechanics involved than the simple rule 
of mixtures.  
 

2

1
3 3

(1 ) (1 )19
27 (1 ) (1 )

f f
D f m

f f m f
m

f f m f

E U
E U E

E U E U
E

E U E U

−
= +

 + + −
+   − + + 

           (72) 

 
The theory employs a quasi – isotropic model 
together with a geometric averaging technique to 
predict an asymptotic value for the elastic 
modulus of randomly reinforced short fiber 
composites, for the two – dimensional case, (i.e. 
when the fibers are aligned only in the plane of 
the laminate).  

 
6. Experimental Work  
 
6.1 Material and Method of Construction 
 
The material was manufactured by a commercial 
fabricator. The resin was a pre – accelerated 
isophthalic polyester used with a peroxide 
catalyst. The reinforcement was powder bound, E 
glass fiber, chopped strand mat (CSM) of various 
weights per layer with glass tissue. The panels 
were laid up on the plate so that the lower surface 
of the panel was always flat and relatively 
smooth. A gel coat consisting of resin with two 
layers of surface tissue was first applied to the 
glass, which had previously been coated with 
release agent. The layers of CSM were then added 
ensuring that each layer was well wetted – out 
with resin. Finally, a second resin – rich layer 
(RRL) with a s ingle piece of surface tissue was 
applied, mainly to improve the external 
appearance of the laminate. Most of the panels 
were post – cured for 48 hours at 50 0C. To 
evaluate the volume fraction of fibers, the burn – 
off test method was performed.  
 
6.2 Testing of Materials 
 
At first, tests were carried out to determine the 
fiber content and the density of the composite 
materials used. A prismatic sample was cut from 
each unbroken specimen or from each broken 
tension specimen as close as possible to the site of 
fracture. 
The samples were measured and weighed before 
being placed in a furnace for several hours at 620 
0C + 200C to “burn off” the resin. From the weigh 
of the residues assumed to be all glass, the fiber 
content by weight Mf and the volume fraction can 
be calculated for each specimen. The obtained 
value is the average of the three measurements. 
Similarly, prismatic samples of given dimensions 
and volume were cut from specimens and were 
weighed in order to determine the density of the 
materials tested. Tension tests were carried out on 
an Instron universal testing machine using Istron 
measuring and recording equipments. Load was 
measured by a strain gauge extensometer of 25 
mm gauge length. The extensometer was attached 
to one surface of the specimen which was loaded 
to approximately 0.3% strain and unloaded. Then, 
without removing the extensometer, the specimen 
the specimen was loaded to failure at a rate of 0.2 
cm/min. Thus the main information sought, the 
initial stress data and the ultimate strength data, 
was obtained. In each case, the properties were 
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expressed in terms of the elastic modulus and 
ultimate tensile stress. Values of ultimate strain 
were also measured. Again, the obtained values 
are the average of the three measurements. 
Specimens were cut from material panels with 
nine layers of CSM having a nominal thickness of 
1 cm and they were taken from each of the two 
perpendicular directions using a band – saw. The 
edges of the specimens were machined in a 
milling machine to the shape of a dog bone 
specimen having total length 150 mm and width 
25.4 mm whereas at the narrow measuring area 
gauge length 60 mm and width 12.4 mm 
respectively according to BS 2782. Before testing, 
the width and thickness of each specimen were 
measured with a micrometer at three points inside 
the gouge length.  F rom these measurements 
mean values of thickness and width were 
estimated of each specimen. 
 
 
7. Results and Discussion 
 
The procedure of the burn – off test yielded the 
value of the mean weight fraction of the fiber as 
0.31. In continuing, by the aid of eq. (68) and 
using the values 3/2560 mKgf =ρ  and 

3/1100 mKgm =ρ the mean fiber volume 
fraction was evaluated as 172.0 . As to the density 
of the composite, it has been estimated 
experimentally by weighting pieces of given 
dimensions and dividing the weight by the 
volume. The mean value was 3/1419 mKgc =ρ . 
Besides, the theoretical value of the composite 
density calculated from eq. (69) using the above 
mentioned numerical values, can be found 
as 3/1426 mKgc =ρ . Here, one can pinpoint that 
there exists a s light discrepancy between these 
two values which partly can be attributed to the 
difficulty of determining the mean thickness of 
the sample pieces since, as mentioned previously, 
they varied significantly. The main properties of 
the CSM composite are presented in the Table 15.  
 

Mater
ial 

t(c
m) Mf Uf 

σu 
(MN/m) εu 

Eexp(G
N/m2) 

Rule of 
mixture

s 
E(GN/

m2) 

Christe
nsen 

formula 
E(GN/

m2) 

1 
0.8
7 

0.
32 

0.1
81 105 

0.0
15 9.31 7.75 8.66 

2 
0.9
6 

0.
29 

0.1
61 110 

0.0
18 8.19 7.46 8.30 

3 
0.9
4 

0.
30 

0.1
67 114 

0.0
18 8.51 7.62 8.50 

4 
0.9
0 

0.
31 

0.1
74 104 

0.0
15 8.77 7.75 8.66 

Mean 
Value 

0.9
2 

0.
31 

0.1
71 108 

0.0
17 8.70 8.70 8.70 

Table 15 Main properties of the CSM composite 

 
Also, Fig. 20 illustrates the variation of the tensile 
modulus of the composite material versus fiber 
content according to the above experimental data 
together with the numerical values obtained from 
the rule of mixtures and Christensen formula [6]. 
 

 
 
Fig. 20 Variation of the tensile modulus vs 
fiber content 
 
Here, we should clarify that the material 
properties were calculated by considering the 
material as homogeneous and therefore they can 
be supposed as effective property values for the 
laminate as overall and consequently called 
laminate properties. In the first column, the 
specimen reference number is given whereas in 
columns two to four, mean thickness, fiber weight 
fraction and fiber volume fraction for each 
specimen appear.  In the next columns, the results 
of the tensile experiments appear. The values at 
failure from the load cell and extensometer gave 
the ultimate stress σu, and ultimate strain, εu, 
respectively whereas the elastic modulus, E was 
obtained from the mean slope of the load – 
extension curves at a l evel strain below 0.2%. 
From Table 15 i t can observed that between the 
specimens of the same nominal thickness there 
exists a remarkable variation of the thickness and 
the fiber volume fraction tended to vary 
significantly between different regions of the 
material as it was observed for the mean measures 
properties.  Although this latter could also 
constitute an indication of orthology as specimens 
were cut from perpendicular directions, a 
consistent relation could be observed between 
properties in the two directions. Apparently, fiber 
volume fraction is an important factor for the 
strength and stiffness characteristics of glass fiber 
reinforced composites. Both ultimate stress and 
elastic modulus should increase with the 
concurrent increment of the glass fiber volume 
fraction. As it can be seen from Table 15 there is a 
tendency for these properties to increase with 
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fiber content. On the other hand, the theoretical 
value for the elastic modulus derived from eq. 
(70) using the fixed rate 0.375 for the coefficient 
ηe which is given for randomly distributed short 
fibers and with Ef = 72GPa, Ef =3.5 GPa and Uf = 
0.172 yields the value Ec = 7.54 GPa. Meanwhile, 
Christensen formula for the two – dimensional 
case given by eq. (72) yields the value Ec = 8.61 
GPa which evidently is greater than the rule of 
mixtures. The comparison between theory and 
experiment shows that the values of Ec calculated 
by the Christensen formula is in a very good 
coincidence with experimental result whereas that 
arising from the rule of mixtures is lower than the 
experimental one and thus presents a l arge 
discrepancy. 
 
 
8. Conclusions 
 
In this manuscript an improved model to predict 
the elastic constants of short fibrous polymer 
composites was described.  
The theoretical values obtained from modified 
micromechanical model looking at both the effect 
of fiber aspect ratio and content were compared 
with theoretical values obtained from other 
models.  
It was found that both parameters have an 
important influence on the stiffness. 
In general, this modulus increases with the 
augmentation of fiber length together with the 
volume fraction. Then by the use of an averaging 
approach the elastic constants of this type of 
materials were calculated.  T he theoretical 
predictions were compared with experimental 
results, as well as with theoretical values yielded 
by some reliable formulae derived from other 
workers, and a reasonable agreement was found. 
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Appendix 
Here, we shall present a brief remark of the two 
aforementioned reliable models [12, 16] aiming at 
the prediction of the elastic properties of fibrous 
composites, whose numerical values were 
compared with our presented formulas. 
Charrier and Sudlow method [16], focuses on the 
prediction of the elastic properties of randomly 
distributed short fiber composites. 
To this end, a thin layer of this material was 
considered such that the direction of its 
continuous fibers to coincide with axis L as it can 
be seen in Fig. A1. 
 

 
Fig. A1 Thin layer of the composite 
 
The flexibility matrix with respect to axes LT is 

formulated as follows 
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Next, eqn. (A1) was recasted with respect to 

xyzΟ  frame of reference yielding  
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4 4 2 2cos ( ) sin ( ) sin (2 ) 1
4

xy LT

L T LT L

vS
E E G E
θ θ θ  

= + + − 
 

                        (A3) 
4 4 2

22
2sin ( ) cos ( ) sin (2 ) 1

4
xy LT

L T LT L

vS
E E G E
θ θ θ  

= + + − 
 

 

                       (A4)  

2
66

2 21 1 1 1 1
cos (2 )xy LT LT

L L T L L T LT

v v
S

E E E E E E G
θ= + + − + + −
 
 
 

 

                                    (A5)  

2

16

sin(2 )
1 sin ( ) 1 2

2
xy L L L

LT LT

L LT T LT

E E E
S v v

E G E G

θ
θ= + − − + + −

  
    

 

                                                (A6)  

2

26

sin(2 )
1 cos ( ) 1 2

2
xy L L L

LT LT

L LT T LT

E E E
S v v

E G E G

θ
θ= + − − + + −

  
    

                                                 (A7)

  

Here, to introduce the parameter of fiber 

discontinuity it has been considered that the 

fundamental elastic constants of the composite are 

given by the following explicit representations 

( )( )2( / ) 1 ( / ) 1
1

( / ) 2( / ) (( / ) 1)
f m f

L m
f m f m f

l d E E U
E E

E E l d E E U

+ −
= +

+ − −

 
  
 

   (A8)               

( )( )( / ) 2 ( / ) 1
1

(( / ) 1 ( / ) (( / ) 1))
f m f

T m

f m f m f

d l E E U
E E

E E d l E E U

+ −
= +

+ + − −

 
 
 

   (A9) 

( )( )( / ) 2 ( / ) 1
1

(( / ) 1 ( / ) (( / ) 1))
f m f

LT m

f m f m f

d l E E U
G G

G G d l G G U

+ −
= +

+ + − −

 
 
 

   (A10)                

ffmfLT vUvUv +−= )1(   (A11) 

where 
l a
d
=  is the ratio between length and 

diameter of a fiber, whereas the other quantities 

have been already defined. 

On the other hand, Eisenberg method [12] which 
also focuses on the prediction of the elastic 
properties of randomly distributed short fiber 
composites can be synopsized as follows. The 
stiffness matrix Q  for an orthotropic layer of a 

composite with respect to the principal material 
axes is defined as                                                                     
 

[ ]
















=

66

2221

1211

00
0
0

Q
QQ
QQ

Q                        (A12) 

 
Then a transformation of the matrix consisting of 
the coefficients  ijQ  to 'ijQ    which       
corresponds to a turn of the rectangular Cartesian 
coordinate system at angle θ  around zΟ axis.   

[ ]
















=
'
66

'
62

'
61

'
26

'
22

'
21

'
16

'
12

'
11

QQQ
QQQ
QQQ

Q                       (A13) 

with 
' 4 4 2 2
11 11 22 12 66cos sin (2 4 )sin cosQ Q Q Q Qθ θ θ θ= + + +

 
' 4 4 2 2
22 11 22 12 66sin cos (2 4 )sin cosQ Q Q Q Qθ θ θ θ= + + +

 
' 2 2 2 2 2
66 11 22 12 66( 2 )sin cos (cos sin )Q Q Q Q Qθ θ θ θ= + − + −

 
' 2 2 4 4
12 11 22 66 12( 4 )sin cos (cos sin )Q Q Q Q Qθ θ θ θ= + − + +

 
' 2 2 2 2
16 11 22 12 66sin cos cos sin ( 2 )(sin cos )Q Q Q Q Qθ θ θ θ θ θ = − + + − 

 
' 2 2 2 2
26 11 22 12 66sin cos sin cos ( 2 )(cos sin )Q Q Q Q Qθ θ θ θ θ θ = − + + − 

 
Next, to evaluate the elastic constants of a 
composite layer with a random distribution of the 
short fibers, an averaging term of any of the above 
entries of the matrix 'Q  is considered and 
therefore  

'

0

1
ij ijQ Q d

π

θ
π

= ∫                                             (A14) 

From hence it is evident that, 

11 22 12 6611 22
1 (3 3 2 4 )
8

Q Q Q Q Q Q= = + + + (A15) 

11 22 12 6612
1 ( 6 4 )
8

Q Q Q Q Q= + + −       (A16) 

11 22 12 6666
1 ( 2 4 )
8

Q Q Q Q Q= + − +       (A17) 

16 26 0Q Q= =                                               (A18) 
Referring to an isotropic material in a state of 
plane stress, the matrix Q  is simplified as follows  
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2 2

2 2

0
1 1

0
1 1

0 0
2(1 )

E vE
v v

vE EQ
v v

E
v

 
 − − 
 =  − −
 
 
 + 

                         (A19) 

After all, by equalizing the individual items of the 
above matrix with the quantities obtained from 
eqs. (A15) to (A18) one obtains  

2 2

11 22 12 11 22 12 6611 12

11 22 12 6611

( 2 )( 2 4 )
3 3 2 4

Q Q Q Q Q Q QQ QE
Q Q Q QQ

+ + + − +−
= =

+ + +
(A20) 

11 22 12 6612

11 22 12 6611

6 4
3 3 2 4
Q Q Q QQv
Q Q Q QQ

+ + −
= =

+ + +
        (A21) 

1 f f m mE E U E U= +                                        (A22) 

2
f m

f f m m

E U
E

E U E U
=

+
                                      (A23) 

12 f f m mv v U v U= +                                          (A24) 

2(1 )
f

f
f

E
G

v
=

+
                                             (A25) 

)1(2 m

m
m v

EG
+

=                                            (A26) 

mmff

fm

UGUG
GG

G
+

=12                                  (A27) 
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