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Abstract: - The problem is interesting theoretically and important for the practical applications in three aspects: 

1. Excitation of parameters’ oscillations in continua in touch with intensification of various technological and 

technical processes: heat and mass transfer, mixing, decreasing the viscosity, improving the quality for 

crystallizing metal and many other phenomena. 2. Excitation of parameters’ oscillations in touch with necessity 

of disintegration of jet and film flows: air spray, spray-coating, metal spraying, dispersing and granulation of 

materials (e.g. particles’ producing from molten metals), etc. 3. Suppression of oscillations for stabilization of 

unstable regimes and processes: jet-drop and film screens for protection of diaphragm of experimental 

thermonuclear reactor, thermal instability and fusion control in reactor, control of electromechanical and 

electrochemical instabilities, combustion stability, decreasing the hydrodynamic and acoustic resistance, etc. In 

some cases, parametric control makes possible not just intensification the processes but also running such 

processes, which are impossible without parametric control. 

A lot of different linear as well as nonlinear model situations have been considered. As a result some 

interesting peculiarities of parametric wave excitation and suppression in film flows including three new 

phenomena of parametric film decay were revealed: resonant decay, soliton-like decay and shock-wave decay. 

The phenomena were first theoretically predicted and then experimentally invented and investigated.  

Based on these new phenomena we developed, created and tested the prospective dispersion and granulation 

machines for some metals and other materials.
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1 Introduction to the Problem 
Parametric excitation of oscillations (vibrations) is 

an excitation of oscillations (vibrations) in some 

system by temporal variation of one or several 

parameters of a system (mass, momentum of inertia, 

temperature, stiffness coefficient; for the fluids: 

pressure, viscosity, etc.).  

The parametric oscillations are excited and 

maintained by parametric excitation. Examples of 

parametric oscillations are given as follows: 

1. Oscillations of temperature in loaded elastic solid 

are able to evoke oscillations of its stiffness 

coefficient with the next its vibrations. 

2. Oscillations of temperature (pressure) in fluid 

(gas) flow are able to evoke oscillations of its 

pressure (temperature) or (and) viscosity with the 

consecutive oscillations of other flow 

parameters. 

3. External vibrations in fluid (gas) flow are able to 

evoke oscillations of its velocity with further 

oscillations of another parameters of flow. 

4. Electric or magnetic fields are able to evoke 

oscillations in flow of conductive fluid producing 

the oscillations of other parameters, etc. 

 

 

1.1 Basic conceptions of the problem 
The following attendant conceptions are useful for 

further analysis of the problem: 

 Vibration: The motion of mechanical system by 

which though one generalized coordinate and 

(or) generalized velocity increase and decrease 

by turn in time.  

 Exciting force: Time alternating and 

independent from system state force causing the 

vibrations of this system. 
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 Force excitation: Excitation of mechanical 

system vibrations by exciting force. 

 Kinematic excitation: Excitation of mechanical 

system vibrations by moving of some its points. 

 Harmonic excitation: Forced or kinematic 

excitation of vibrations by harmonic law. 

 Autonomous oscillating (vibrating) system: 

Oscillating (vibrating) system by which energy 

source is absent or is its part. 

 Self-excited system: Autonomous oscillating 

(vibrating) system that is able to do periodical 

oscillations (vibrations) exciting by energy 

receiving from no oscillating (no vibrating) 

source, which is regulated by evolution (motion) 

of the system itself.  
 

 

1.2 Classification of parametric oscillations 
Classification of the parametric oscillations by the 

types of controlled objects and actions may be done 

as follows.  

 

1.2.1 The controlled objects 

The types of controlled objects are as following: 

 linear controlled object, 

 non-linear controlled object, 

 lumped-parameter controlled object, 

 distributed-parameters controlled object, 

 determinate/stochastic controlled object,  

 stationary/non-stationary controlled object, 

 single-loop (multi-loop) controlled object, 

 one-dimensional/multi-dimensional object, etc. 

 

1.2.2 The parametric actions 

The types of parametric actions could be: 

 internal/external action, 

 main parameter of the action (single-parameter 

action, multi-parameter action), 

 feedback action and deviation action, 

 analogue action and quantized action, 

 impulse-time and impulse-amplitude action, 

 periodic action and periodic amplitude action, 

 frequency action and phase action, 

 determinate and stochastic action, etc. 

 

1.2.3 The types of control 

Classification of the parametric oscillations by the 

types of control is considered as: 

 coordination;  

 coordinating control, stabilization;  

 stabilizing control (linear and nonlinear), 

 extreme control and feedback control, 

 disturbance control, 

 autonomous control, etc. 

 

 

1.3 History of the theory of parametric 

oscillations 
At first the parametric excitation of surface waves 

was studied [25] by M. Faraday (1831) who 

investigated that in vibrating tank with liquid the 

surface waves of double period of excitation 

relatively to external periodic action are excited.  

The theory of this phenomenon was developed 

later on [1-4,8-15] by N.N. Moiseev (1954), T.B. 

Benjamin, F. Ursel (1954), V.V. Bolotin (1956), 

V.I. Sorokin (1957), R. Skalak, M. Yarymovych 

(1962), R.H. Buchanan, C.L. Wong (1964), S.I. 

Krushinskaya (1965), F.T. Dodge, D.D. Kana, H.N. 

Abramson (1965), R.P. Brand, W.L. Nyborg (1965), 

V.E. Zakharov (1968), G. Schmidt (1978), E. 

Hasegawa (1983), Y. Warisawa (1983), etc. 

 

1.3.1 Increase of process effectiveness by 

parametric action 

The possibility for increase an effectiveness for 

technological processes using the parametric 

oscillations was at first observed by D.K. Chernov 

[21] (1879) for the crystallization. The phenomenon 

of crystal structure improving was investigated by 

R.F. Ganiev, V.F. Lapchinsky [27] (1978), G.A. 

Slavin, E.A. Stolnner et al. (1974), etc.  

A lot of the problems on parametric wave 

excitation on liquid surfaces were investigated [17-

39] with regard the possibility to stabilize the 

unstable states as follows: 

 Rayleigh-Taylor instability, 

 Kelvin-Helmholtz instability, 

 Tonks-Frenkel instability, 

 electrohydrodynamical instability,  

 various combinations of instabilities, etc. 

The common feature for all cases of parametric 

wave excitation on the boundary interfaces is 

perpetual sequence of unstable areas. For the wave 

excitation it is necessary that a periodic amplitude 

action exceeds some value which is critical for an 

unstable area [41, 46].  

 

1.3.2 Critical value for parametric excitation  

The existence critical value is caused by energy 

dissipation. Therefore energy of an external action 

must exceed this energy dissipation in a system.  

By periodical excitation with a frequency  the 

least of the critical values is at the oscillation 

frequency /2, then at the oscillation frequency , 

3/2 and so on. Moreover from all unstable areas 

the widest one is the area that corresponds to the 
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oscillation frequency /2. The other areas are too 

narrow and usually they are quite absent except a 

big amplitude action. Therefore instability of a first 

(ground) unstable area is often observed in 

experiments. 

 

1.3.3 Mathematical methods for investigation 

Mathematical methods for investigation of 

parametric oscillations are implemented both 

numerical (FEM, BEM, FDM), as well as analytical 

ones. Numerical methods have such advantage that 

they fit to any complicated systems (for the linear as 

well as for the non-linear problems). But their 

disadvantages are:  

 complicated interpretation of obtained results 

and distinguish the numerical and physical 

oscillations;  

 indistinct interconnection of parameters.  

Analytical methods applied are: integral 

transformations, averaging the differential and 

integral-differential operators, factorization the 

differential operators, reductive perturbation method 

[6, 7, 44], fractional differentiation, etc. Their 

advantages are: 

 distinct parameter connection and interpretation 

of obtained results,  

 good possibility to analyze an obtained solution 

of the problem.  

The best results are got by implementation of all 

numerical and analytical methods in their best 

combination according to the task being solved. 

 

 

2 Basics of the parametric oscillations 

in continua 
Parametric excitation of oscillations (vibrations) is  

an excitation of oscillations (vibrations) in some 

system by temporal variation of one or several 

parameters of the system (mass, moment of inertia, 

temperature, stiffness coefficient; for the fluids: 

pressure, viscosity, etc.).  

 

 

2.1 Definitions and some examples  
Parametric oscillations (vibrations) are oscillations 

(vibrations) that are excited and maintained by some 

parametric excitation (action). 

 The examples are: 

1. Oscillations of temperature in loaded elastic 

solid are capable to evoke oscillations of its 

stiffness coefficient with following its 

vibrations. 

2. Oscillations of temperature (pressure) in fluid 

(gas) flow are capable to evoke oscillations of 

its pressure (temperature) or (and) viscosity 

with following oscillations of other parameters. 

3. External vibrations in fluid (gas) flow may 

evoke oscillations of its velocity with following 

oscillations of other parameters. 

4. Electric or magnetic fields may evoke 

oscillations in flow of conductive fluid with 

following oscillations of other parameters, etc. 

2.1.1 Some attendant conceptions 

The attendant conceptions are as follows: 

 Vibration: The motion of mechanical system by 

which though one generalized coordinate and 

(or) generalized velocity increase and decrease 

by turn in time. 

 Exciting force: Time alternating and 

independent from system state force causing the 

vibrations of this system. 

 Force excitation: Excitation of mechanical 

system vibrations by exciting force. 

 Kinematic excitation: Excitation of mechanical 

system vibrations by moving of some its points. 

 Harmonic excitation: Force or kinematic 

excitation of vibrations by harmonic law. 

 

2.1.2 The autonomous oscillating systems 

Oscillating (vibrating) system for which an energy 

source is absent or is its part is called the 

autonomous oscillating system. Self-excited system: 

Autonomous oscillating (vibrating) system that is 

capable to do periodical oscillations exciting by 

energy receiving from no oscillating (no vibrating) 

source, which is regulated by evolution of the 

system itself.  

 

 

2.2 Numerical and analytical methods for 

parametric oscillations 
 

2.2.1 Numerical methods 

The following numerical methods are applied for 

study of the parametric oscillations: 

- Finite Element Method 

- Boundary Element Method 

- Finite Difference Method. 

Advantages of them are:  

- the methods fit for any complicated systems 

(for the linear as well as for the nonlinear 

problems. 

Disadvantages:  

- complicated interpretation of the obtained 

results and 
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- distinguish of numerical and physical 

oscillations;  

- indistinct parameter connection. 

 

2.2.2 Analytical methods 

The following analytical methods are applied to 

study the parametric oscillations: 

- Integral Transformation Method 

- Averaging Method for Differential and 

Integro-Differential Operators 

- Method of Factorization of Differential 

Operators 

- Reductive Perturbation Method (reduction 

to standard evolutional equations) 

- Fractional Differentiation Method (non-

field method) 

- Asymptotic Decomposition Method 

- Method of Differential Connections, etc. 

Advantages: distinct parameter connection and 

interpretation of obtained results, good possibility to 

analyse obtained solution of the problem. 

Disadvantages: complication in use for the nonlinear 

and complicated linear systems, presence of some 

limits and approximations, limited specific area of 

applications of each method. 

Some of these methods give good results in 

diverse combinations and also together with 

numerical methods.   

 

 

2.3 Jet and film flows, solidification fronts in 

the channels, granular media 
Now some parametric oscillations and their control 

are studied on the examples of three classes of 

mechanics of continua: jet and film flows and their 

disintegration, stability and stabilization of the 

solidification front in the channel, thermal hydraulic 

oscillations in heterogeneous granular layers. 

 

 

3 Stability and stabilization of the 

solidification front  
Cylindrical channel is considered, the wall of which 

in general case consists of the N layers of different 

materials. On the internal wall surface there is thin 

solid sheet of the material that flows in channel in 

liquid state (Fig. 1). This thin solid sheet named 

garnissage sometimes is forming naturally (e.g. in 

metallurgical aggregates) and breaks the normal 

technological regimes due to solid overgrowing the 

channel cross-section.  

If the garnissage layer is controlled, it suits 

perfect for the wall’s protection. As far as a solid 

sheet and a flowing liquid represent two phases of 

the same material, the control system redoes 

garnissage locally in case of its partial destroying 

(due to shear stresses in the flow and interaction 

with aggressive high-temperature flow).  

 

 

3.1 Solidification front on the walls in 

cylindrical multilayer channel 
The controlled heat flux system allows dynamical 

maintaining of a garnissage interacting with each 

and every mode of perturbation in the system.  

 

 
Fig.1 Flow in cylindrical channel with solidification 

on the wall with heat flux control system 

 

 

In an effort to raise the effectiveness and specific 

capacity of metallurgical electric welding and 

various other devices, the engineers are faced with 

the problem of overcoming the instability of phase 

transition boundaries, or vice versa, destroying these 

boundaries, etc. For example, it was suggested that 

the walls of metallurgical aggregate machine be 

protected against thermal, chemical and other 

destructive effects through a maintaining of a 

thermal regime of the walls that would make the 

surface melt produce a thin solid phase layer. This 

layer could then constantly be renewed when worn 

out, thus reliably protecting the walls of such an 

aggregate machine against destruction.  

Besides, in the presence of strict melt purity 

requirements this problem could be solved 

simultaneously, since while being torn off the walls 

and acquiring liquid form, particles of that same 

substance would not alter the melt’s composition. 

But this outwardly unsophisticated multifunctional 

anti-destructive fettling technique proves difficult to 

introduce in daily practice. The main obstacle is the 

need to automatically control and keep the form of 

the solidified front within the present parameters. 

In metallurgical aggregate machines, natural 

garnissage more often than not produces negative 

effects, hindering the machine’s effective operation, 

causing overgrowth within the channels, and 

bringing forth other unwelcome phenomena. 

Therefore the key task was studying an instability of 

the solidified front and possibilities of controlling, 
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stabilizing or destroying the phase-transition 

boundaries. The first possibility would be important 

in solving the problem of fettling protection with the 

aid of automatically stabilized, artificial garnissage. 

The second possibility would be instrumental in 

combating natural garnissage hindering as it does 

the metallurgical process. 

 

 

3.2 Parametric oscillations and their control  
The theory of parametric oscillations in flat and 

cylindrical solidified fronts and their control by 

electromagnetic high-frequency fields and heat 

influx regulators is dealing with linear small-

amplitude perturbations.  

As for the non-linear occurrences, these haven’t 

been studied well enough, to say the least. Problems 

on stability and stabilization involving unstable 

phase transition boundaries were studied here in 

regard to influence of many factors simulating 

various real physical systems. For example, such 

complications are caused by multilayer composition 

of the channel’s wall; convection; change and 

regular perturbations in the thermodynamic 

medium, melt viscosity, current regime, etc. 

 

3.2.1 Mathematical model of the system 

Schematically represented, any given system can be 

illustrated in a simplified way as shown in Fig. 1.  

In controlling a phase transition boundary with 

the aid of an automatic heat flux regulator, the 

parameters of the regulating system’s effects are 

programmed at the boundary line with the regulator. 

The latter is then considered to be hooked onto a 

powerful energy source, so that here the reverse 

effects of the object can be ignored. As for the 

solidified front, it is supposed to be a surface having 

constant temperature, whereas the phase transition 

stage is allegedly “zero thin”. The transition from a 

liquid to a solid phase is a “leaping” process 

occurring at the phase transition boundary lines. In 

using heat flux regulators, considering that 

perturbation boundaries of the solidified front lead 

to disturbances in the magnetic field, with the 

concurrent alterations in the winding electric current 

which, amplified in the thin skin-layer close to the 

interface, suppresses or reinforces the relevant 

perturbation by Joule heat release, then we arrive at:  

 

    
kmkmkm TGdndT ,,, /  ,                       (1) 

 

where m,k is the value denoting the harmonic 

number (wave number as per circumferential and 

longitudinal coordinates); T is the temperature; n is 

the phase distribution surface normal vector; Gm,k is 

the control system’s feed-back factor.  

The Gm,k value may vary on a large scope, in that 

it can be altered constructively, so that it is possible 

to select the factor Gm,k for energy harmonic 

reading, necessary in solving the given problem.  

 

3.2.2 Axially symmetrical perturbations 

In case of an axial symmetry the mathematical 

model of the considered system for perturbations of 

the solidification front for moving liquid, in a linear 

approach, is the following: 

 

01 vdiv


,   ,/1// 1101 pxvutv  


 

 
2 2

1 0 1 1 1[ / (2 )( / )] ( /j j j jc t j u x v T r             

(2) 

       2 2 2 2 21/ / 1/ / / )j j jr r r x           ,         

       

where j=1,2, 

v1 ={u1,v1,w1}(r)u0expi(kx+m -t), 

p1, 1- perturbations of the velocity, pressure and 

temperature of a fluid. Index 2 corresponds to the 

parameters of a solid phase. Here T is the 

temperature of undisturbed system; j, cj are density 

and specific heat of j-th phase (j=1 - liquid, j=2- 

solid, from j=3 - wall layers as shown in the Fig.1).  

The perturbation of a boundary of the solidified 

front is modeled as 

 

               r=R[1+ expi(kx+m -t)].  

 

 

3.3 Perturbation of the solidified front 
Boundary conditions at the perturbed solid-liquid 

interface in a channel where liquid phase is moving 

along its axis are stated as follows: 

1) from the symmetry assumption:   

 

            r=0,      u1=0,        1=0;                 (3) 

 

2) on the perturbed boundary of solidified 

front  r=R[1+  expi(kx+m -t)]: 

 

        j(R,,x)+R(Tj/r)r=Rexpi(kx+m-t)=0,  (4) 

j=1,2; 

 

             r=R,     u1=(1-2/1)r/t,        

               (5)    

                22/r=11/r+221r/t;       

 

3) on the wall surface (r=R+r0), the 

impedance condition (1) is stated. 
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Here are: 2/1=2/1, r/t is velocity of 

solidification front (movement of the boundary due 

to solidification-melting on it), 21 is the heat of 

phase change (solidification). When all layers of the 

wall are considered in a thermal problem, also heat 

transfer equations for the wall layers and 

corresponding boundary conditions at the 

boundaries of these layers are analyzed as well. 

  

 

3.4 Instability and stabilization of the front  
The system of partial differential equations (2) with 

the boundary conditions (1), (3)-(5) was solved for 

the perturbations’ amplitudes using the asymptotic 

decompositions by small parameter =i. The 

solution in a zero approach by eigen values is next: 

 

=1/R{k
0

1[I
’
m(10)/Im(10)(1-iPe/(ka

2
1))

1/2
+ 

    (6) 

 (A1Bik,m+A2k)/(A3Bik,m+A4k)]+Pe/a
2
1(T1/x)r=1}, 

 

where 
0

1 =-(T1/r)r=1>0, R=221/(1*c1*T*) is the 

ratio of melting/solidifying heat to a heat capacity 

on the interface, Pe=u0R/a
2
1- the Peclet number, 

a
2
1=k1/(1c1), 10=k

2
-ikPe/a

2
1, a

2
1=a

2
1/a

2
1*. 

Bik,m=Gm,kR/kN is the modified dimensionless 

Bio criteria coinciding with the regular Bio number, 

in the absence of a heat flux regulating system. Here 

k1 is the thermal conduction coefficient in regard to 

the liquid, kN is the thermal conductivity in regard to 

the wall secreting the control shell, k,m are the wave 

numbers in the x and  directions correspondently 

(in cylindrical coordinate system: r, , x), i=-1.   

 

3.4.1 The case of immovable liquid in a channel  

If liquid is immovable in a stable state, then it is the 

following solution for the problem: 

 

=kJa/lns0[(A1Bik,m+A2k)/(A3Bik,m+A4k)+A5/A6], 

(7) 

where s0 is dimensionless thickness of the preaxle 

layer with a stable temperature, s0=R0/R, Ja=(K2/1)
-

1
 is the Jacob number characterizing the phase 

transition thermal indices, and those of liquid 

surplus heat output, as per solidifying temperature. 

K is the Kutateladze number: K=21/(c1*T*).  

Here are the following important functions: 

 

A1=Km(ks)I
’
m(k)-K

’
m(k)Im(ks)>0, 

 

A2=K’m(ks)I
’
m(k)-K

’
m(k)I

’
m(ks)>0, 

 

A3=Km(k)Im(ks)-Km(ks)Im(k)>0, 

(8) 

A4=Km(k)I
’
m(ks)-K

’
m(ks)Im(k)>0,            

A5=K
’
m(k)Im(ks0)-Km(ks0)I

’
m(k)<0, 

 
A6=Im(ks0)Km(k)-Km(ks0)Im(k)<0, 

 
where Im, Km are the modified Bessel and Hankel 

functions, s=r0/R. The stroke indicates the derivative 

of corresponding function.  

 

3.4.2 Calculation of the wave numbers  

The terms (6), (7) with the conditions (8) make 

possible to calculate the m,k wave number pairs in 

conformity with the stable ( re>0 ), unstable ( 

re<0 ), neutral ( re=0 ) system perturbations.  

The intrinsic values of Aj (j=1-6) are expressed 

through the modified Bessel and Hankel functions. 

Every type of such perturbations providing for 

appropriate heat flux control system yielding the 

desired effect in each case, e.g. suppression or 

stabilizing system; excitement of oscillations 

(destroying solidified front boundary lines). In 

different physical situations the terms under which 

garnissage stability and/or stabilization was 

achieved proved similar to those by our works.  

Here one had to reckon with a number of real 

factors (e.g. viscosity, heat convection, multilayer 

walls, non-linearity of the process, etc.). This made 

possible correct estimation of the effects of different 

factors and calculate the “optimal” parameters from 

a standpoint of stability, or (vice versa) of the 

solidified front for the relevant applied systems.  

Thus, by taking into consideration the melt 

viscosity indices, one can achieve a slight increase 

in the threshold stability count, at the expense of 

losses in perturbation dissipation energy. By 

properly selecting properties of multilayer fettling 

materials it is possible to suppress a number of 

harmonic modes (e.g., thermodynamic distributed 

damper).  

 

3.4.3 Stability and stabilization of the garnissage 

The results thus obtained were used in computer-

simulated experiments which revealed a number of 

regularities in the stability and stabilization of the 

garnissage layer in cylindrical aggregate machines: 

- in slight forced convection, long-wave 

perturbations at phase transition boundaries 

cause disturbances in the system’s parameters 

over the entire region having the same order, 

whereas the short-wave ones tend to attenuate 

close to the boundary line; 

- for the Peclet number Pe>>1, the linear theory 

produces resonant perturbations with a 

frequency of =kPe; 
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- there is a sharp increase in the Bi
*
k,m critical 

values with reductions in the thickness of the 

garnissage layer; 

- for big Peclet numbers and small garnissage 

layer’s thickness, those of Bi
*
k,m are big and the 

automatic regulation system is difficult to adjust 

to the programmed “moods”; 

- with Pe>>k, short-wave garnissage disturbances 

can also gain in time, provided the garnissage 

layer does not go beyond the critical mark: 

s<<1+1/k, where s is the layer’s dimensionless 

thickness in regard to the radius of the 

undisturbed liquid zone.  

 

3.4.4 The results of numerical simulation on 

computer 

The calculated parameters correspond to a number 

of practical systems for various metals and 

automatic heat flux regulating systems. These 

systems are made to stabilize the unstable artificial 

garnissage regimes (e.g., fettling protection and 

production of pure materials) and to destroy natural 

garnissage (means of combating “overgrowth” in 

the channels of metallurgical aggregate machines 

and breaches of the metallurgical regime).  

Such system boast high efficiency, are 

ecologically “clean” and economic in term of a use 

of the resources. The results of numerical simulation 

are given in Figs 2-4: 

 

 

Fig. 2 Modified Bio numbers depending on the 

wave numbers and garnissage thickness. Pe=5 

 

 

As shown in Figs 2-4, the modified Bio numbers 

required for stabilization of the unstable modes of 

perturbations group by value of the dimensionless 

garnissage thickness. The wave number m by 

circular coordinate increases stability (decreases the 

critical Bio number). 

 

 
 

Fig. 3 Modified Bio numbers depending on the 

wave numbers and garnissage thickness. Pe=50 

 

 

 

Fig. 4 Modified Bio numbers depending on the 

wave numbers and garnissage thickness. Pe=5000 

 

 

The higher is the Peclet number (l*  in figures), 

the shorter is region of the unstable k numbers. For 

example, for Pe=5000 (Fig.4) when convective heat 

transfer is about 5000 stronger than the conductive 

one, only the long-wave perturbations of the 

solidification front may be unstable, and only for 

small thin solid layer thickness (s~1, s-1<<1). Thus, 

inertia forces due to fluid flow may smooth the 

interface between the moving liquid and its thin 

solid sheet on the wall (garnissage). 

The problems studied in this field and their 

applications are presented in the Table 1. 

 

 

4 The new phenomena on parametric 

film flow control and their application 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Ivan V. Kazachkov

E-ISSN: 2224-3429 7 Volume 10, 2015



The next class of the problems considered is 

parametric control of the jet/film flow and their 

disintegration on the drops of given shape and size. 

 

Table 1 Stabilization of the solidification front 

 
 

 

4.1 Parametrically controlled jet/film flow 
Control of film flow decay (dispersion) by means of 

parametric excitation (electromagnetic, vibration, 

etc.) is an actual problem of the modern industry 

because it has a wide application for injectors, 

chemical and other reactors, metallurgical devices.  

Another problem - dumping of perturbations of a 

free film surface (stabilization of film flow) is 

directly opposite to the previous one.  

And the third case: the excitation and keeping of 

special wave regimes of film flow which are 

suitable from the point of view of mass- and heat-

exchange processes. 

The film devices are distinguished by the 

simplicity, presence of developed specific surface of 

a liquid and as a result of which - high intensity of 

running processes. That is why they considerably 

surpass the traditional devices with a working liquid 

body and appear as the ecologically pure devices. 

Many high-efficiency and ecologically pure 

processes and devices for the cleaning, degassing, 

heat withdrawal, heat- and mass-transport etc. can 

be constructed on the basis of the film flows. 

 

 

4.2 Parametric jet/film flow control 
The theories of liquid films have been inculcated. 

Theory of parametric excitation and dumping of 

oscillations, its application especially for the case of 

rapidly spreading films on the rigid surface has been 

studying from the beginning of the 80-th years. The 

results obtained allowed designing and successful 

testing the new prospective granulators of metals 

and some other devices as well. Our investigations 

of non-linear wave processes in film flows revealed 

the three new phenomena of film flow decay: 

- electromagnetic parametric resonance; 

- vibrating soliton-like film flow decay; 

- vibrating shock-wave decay. 

In the first case moving liquid film can be broken 

down in a drops of the given size depending on 

frequency of parametric excitation (e.g. alternating 

electromagnetic field), with comparatively low 

energy consumption.  

In the second case the system of solitons is 

excited and the solitons throw off drops as unit jets 

in the phase of modulation.  

The third case is a shock wave, it displays with 

excess of critical vibrating Euler’s number (10-100 

depending on the parameters of the system) and is 

realized very simply: when the base vibrates with 

given frequency and vibrating Euler’s number 

excides the critical value. 

 

4.2.1 Jet and film flow fragmentation 

The problem of jet and film flow fragmentation and 

drop formation is of paramount interest for a lot of 

the modern industry and technology tasks: 

metallurgy, chemical technology, energy, etc. 

Because of complexity of the real physical systems 

there is need to consider such processes together 

with the other ones, e.g.: phase crystallization and 

flows through porous (granular) media. Studying  

such complicated problems came true only in the 

last decades due to computer science and 

mathematical simulation theory achievements. 

Now the problem is not only to simulate the 

processes but also to control them with regards to 

the task being stated. So the problem of parametric 

control in continuous media is important for the 

practical applications in three aspects: 

 Excitation of the parameters’ oscillations in 

continua in touch with intensification of various 

technological and technical processes: heat and 

mass transfer, mixing, decreasing of viscosity, 

improving the crystallization metal quality and 

many other phenomena. 

 Excitation of the parameters’ oscillations with 

regards the necessity of the jet and film flows’ 

disintegration: air spray, spray-coating, metal 

spraying, dispersing and granulation the 

materials (e.g. particles producing from the 

molten metals), etc. 

 Suppression of the parameters’ oscillations 

(stabilization of some unstable regimes and 

processes): the jet/drop and film screens 

designed for the protection of  the diaphragm of 

the experimental thermonuclear reactor, thermal 

instability and control of the fusion reactor, of 
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electromechanical (and chemical) instabilities, 

the plasma and combustion stability, decreasing 

the hydrodynamic and acoustic resistance, etc. 

In some cases the parametric control makes possible 

not only the processes’ intensification but also to 

realize processes which are impossible without it. 

 

4.2.2 Why the processes are difficult to describe 

and what are the benefits to describe them well? 

The processes are difficult to describe because of: 

- lack of the models that fit the processes in 

questions adequately, 

- complexity of the mathematical models, 

- absence or inaccuracy of the physical properties 

of media to be strongly dependent on the 

changeable regimes. 

The benefits to describe the processes are: 

- possibility to simulate them and predict the 

regimes taking into account the real physical 

properties of media and external perturbations, 

- optimize the processes for given criteria, 

- control them for specified criteria. 

The considered problems and their applications 

are presented in the Table 2. 

 

Table 2 Problems and their applications 

P
ro

ce
ss

 Jet and film 

flows 

 

Channel flow 

with 

crystallization 

on the wall 

Multiphase 

flow in 

granular 

media 

P
ro

b
le

m
 

 

Stabilility, 

fragmentation, 

controlled drop 

formation 

 

Stability and 

stabilization 

of the 

front of 

crystallization 

 

Nonstationary 

nonisothermal 

vapour flow 

in granular 

medium  

A
p

p
li

ca
ti

o
n

s 

 

Development of 

granulators for 

producing the 

monodisperse 

metal powder 

and drop curtain 

for tokamak 

Solution of 

automatically 

controlled 

garnissage for  

channel wall 

protection 

Calculation of 

heat and mass 

transfer 

processes 

in geothermal 

system 

 

 

 

4.2.3 The methods to control the processes 

The methods to control the processes are:  

- electromagnetic force or heat action, 

- influence on the physical properties through 

heat or force action on the media, 

- vibrations, 

- various combinations of these methods. 

 

 

4.3 Jet flows, fragmentation, drop formation  

The jet and film flows have to be considered taking 

into account different external perturbations and 

variability of physical properties. The mono- and 

polyharmonic instability modes should be studied in 

linear and non-linear approaches. The drops forming 

due to jet and film decay were investigated with 

focus on the free surface forms in time for different 

physical situations. The tasks on jet/film flow 

control considered and their applications are given 

in the Table 3. 

The task was to reveal the crucial regimes and 

possibilities to control them. Since the modern 

technology of physical modeling does not allow us 

to study the evolution of free boundaries of jets and 

films effectively enough and to determine the 

dynamic and kinematic parameters of continuous 

flow (disperse flow - after decomposition), thus for 

these purposes the mathematical models were 

developed.  

 

Table 3 The tasks on jet/film flow control  

 
 

 

4.3.1 Jet fragmentation and parametric control 

The molten-metal jet decomposition was performed 

by introduction of periodical electromagnetic (or 

other) forces with the frequency 
0 0f= 2 d /u , where 

d0 and u0 are the diameter and velocity of a jet, 

respectively.  

Aforementioned forces are formed for example 

with the interaction of current flowing through the 

melt and the magnetic cross field. The behavior of 

current changing in time, the form and dimension of 

molten metal drops are interconnected. In order to 

obtain the particles of the predetermined dimensions 
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and shapes the current in metal has a series of the 

harmonics with the present harmonic composition. 

The decomposition mode is acceptable when the 

drops are formed on the distance equal to the 

present number of wavelengths z=
0= 2 dn n  , 

where   is the wave length on the decaying free jet.  

Thus, the position of jet decomposition point 

should be connected with the amplitude of the 

disturbing electromagnetic forces at the inputs into 

the nozzles. Velocity in a jet source is smaller than 

the axial one, the jet swirl is absent, the jet radius is 

much smaller than the length of its non-decayed 

part, the mode of outflow is laminar and magnetic 

Reynolds number is much less than 1.  

The periodic analytical solutions were found as          

0= r exp( )t kz    , where = ( )t   is a relative 

radial deviation of a free surface from the 

equilibrium position, corresponding to a cylindrical 

surface.  

The density of a disturbed force in a jet’s source 

and the deformation velocity of generatrix appearing 

due to this fact are connected by the condition on 

the magnetic Euler number:  mEu 2 / (1 5 )n  . On 

assuming the demanded value n, in accordance with 

this condition, the current was supplied in molten 

metal under which the level of sufficient disturbance 

for the jet decomposition was provided. 

In a similar way - at the first wave-length of melt 

disturbed jets - the working process occurs in MHD 

granulators for technological purposes. The 

appearance of oxide films on the drop surface of 

real metals in metallurgy (such as aluminum, 

copper) results however in removal of jet 

decomposition point from its source. In this case the 

drops form is considerably non-spherical; the 

process of decomposition appears to be unstable.  

This circumstance has been managed to avoid 

either by putting the sources of decomposing jets in 

neutral gaseous atmosphere or by passing the 

current of polyharmonic composition through a 

melt. In the latter case, the particle form correction 

has been carried out due to sharp decay of outflow 

velocity at the end of drop formation period. 

 

4.3.2 Numerical simulation of a drop’s formation  

The computing of jet decomposition process with 

considerable displaying the inertia forces was 

performed by way of the numerical solution of the 

Navier-Stocks non-stationary equations (Dr. N.V. 

Lysak [33], see in Figs 5, 6).  

The calculations were done for different values 

of the ratio b of external electromagnetic force to 

the pressure at the jet’s outlet (b from 40 to 0.4), for 

the same Ohnesorge number / ReOh We , where 

We  and Re  are the Weber and Reynolds numbers, 

respectively. The Ohnesorge number is kinematic 

parameter, which is completely determined by 

physical properties of the fluid. The equation array 

with correspondent boundary conditions has been 

solved numerically using the Arbitrary Lagrangian-

Eulerian approach and that has regulated in 

determination of free surface forms in time for 

different physical situations [33]. 

 

 

Fig. 5 Isobars and isotachs in a drop for b=40 

 

 

 

Fig. 6 Isobars and isotachs in a drop for b=0.4 

 

 

4.3.3 Experimental study of the drop’s formation  

Some comparison with experiments to show 

validation of the model presented in Fig. 7, where 
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the filming of the drop decay’s process is shown 

below the analytical results: 

 

 

Fig. 7 Analytical solution vs. experimental data 

 

 

One can see that even computation by the linear 

model fits reasonably to the filming of the process 

in general. The jet’s disintegration phases are shown 

in time up to its decay and forming the drop, which 

detaches at the end of the process.  

Another parametric excitation of the jet’s 

disintegration using the vibration action is presented 

in Fig. 8, where the multiple series of the drops are 

produced after parametric disintegration of the jets 

on a vibrating horizontal plate: 

 

 

 
 

Fig. 8 Vibration jet decay 

 

 

4.4 Film flow fragmentation, drop formation  
Some of our investigations of determined case of 

film flow and parametric control of wave regimes 

are presented here.  

The real velocity profile of undisturbed film flow 

is considered and unexplored problem on film flow 

foundation as a result of encounter of high-velocity 

jets with a horizontal obstacle is also considered.  

 

4.4.1 Electromagnetic film flow control 

An external alternating electromagnetic field is 

applied in the direction perpendicular to the 

horizontal plate base as it is shown in Fig. 9.  

The radially spreading film flow is forming as a 

result of a vertical jet flow blowing on a horizontal 

plate. The problem on parametric wave excitation 

and suppression in film flow affected by progressive 

electromagnetic wave of the following type:  

 

               h=hm(z,r)expi(kr+m-t),               (9) 

 

is considered, where k,m are the corresponding 

wave numbers by coordinates r, and  is 

frequency of electromagnetic field, h is the vertical 

component of the magnetic field strength, hm is the 

strength amplitude. 

 

4.4.2 Vibration film flow control 

The other parametric oscillations in a film flow was 

considered for the case of the vertical harmonic 

vibration of the horizontal plate: 

 

            d
2
z/dt

2
=gvcost,            (10) 

 

where gv  is the acceleration due to vibration,  is 

the frequency of vibration. 

 

 

Fig. 9 Electromagnetic system for film flow decay 

 

 

4.5 Mathematical model for film flow 
The mathematical model for these two cases of 

parametric excitation (9), (10) was considered 

partially, as well as also together.  

 

4.5.1 General case of axisymmetrical film flow 
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The general case of axisymmetrical film flow is 

described with the following dimensionless system 

of partial differential equations: 

 

          /t+1/r/r+1/rq/r=0,  

  

   1/rq/t+/r(q/r
2
)+/2/t[u+/r(/t+ 

 

     +1/r/r)]+/r(1/Fr
2
-Eugcost)+       

     (11) 

+2Alhmhm/r+1/Re[3u+4/r(/t+ 

 

+1/r/r)]-/WeKc/r =0, 

 

h/t+1/rh/r=1/Rem(
2
h/r

2
+1/r

2


2
h/

2
+ 

(12) 

            +1/rh/r),             

where are: q=

0



 urdz,  u=(u/z)z=0, 

Kc={
2
/r

2
+1/r/r[1+(/r)

2
]}/[1+(/r)

2
]

3/2
, 

 

Eug=gva/u
2
0- vibrating Euler’s number, a- thickness 

of undisturbed film, u0- velocity of vertical jet 

(characteristic velocity of a film flow), - 

dimensionless perturbation of the film surface, 

We=au
2

0/- Weber number, - surface tightness 

coefficient, Al=mh
2

m/(1u
2
0)- Alphven number, 

Fr=ga/u
2

0- Froude number, Re=u0a/- Reynolds 

number, Rem=u0a/m- magnetic Reynolds number. 

The equation array (11) was obtained by the 

integration of the film flow equations with 

correspondent boundary conditions in a cross-

section from the rigid plate (z=0) to the disturbed 

free surface (z=). The similar equation array was 

also considered in a simpler flat case. 

 

4.5.2 Analytical solution of non-linear problem  

In case of vibrating wave excitation in film flow the 

approximate solution of equation array (11) was 

obtained the following: 

 

           =Bexp(r-1+Eug/sint-t/Fr
2
),             (13) 

 

where B is a constant determined by experiments. 

In a flat case a magnetic field excitation, a 

similar to the equation array (11), (12) 

dimensionless system of the equations obtained was: 

 

 q/t+q/x+0,5(
2
/tx+

2
/x

2
-u)/t+ 

 

 +/Fr
2
/x+3/Re(

2
/tx+

2
/x

2
-u)+2Al   

(14) 

 hh/x-/We/x{
2
/x

2
[1+(/x)

2
]

-1.5
}=0,   

/t+/x+q/x=0, 

 

h/t+h/x=1/Rem
2
h/x

2
; 

where q=

0



 udz is. The equation array (14) was 

solved by the reductive perturbation method. First it 

was reduced to the following matrix form: 

 

  U/t+A(U)U/x+C(U)
2
U/x

2
+B(U)=0,       (15) 

 

where: U=[h, q, , h/t, q/t, /t, h/x, q/x, 

/x, 
2
/xt, 

2
/x

2
]

T
, and the matrices A, C are 

11 by 11.  

The nonzero elements of the vectors and 

matrices are the following ones: 

 

b1=-h/t,    b2=-q/t,    b3=-/t, 

 

  b5=u/2[/t(q/x+/x)+
2
/xt+2Alh/x   

 

  (
2
h/tx+

2
h/xt)+(

2
/xt+/x/t)/Fr

2
+ 

 

   +3(
2
/x

2
)

2
{[1+(/x)

2
]

-5/2
/We}{/t/x+ 

 

   +
2
/xt-5

2
/xt(/x)

2
/[1+(/x)

2
]}; 

 

   b9 = -
2
/xt;    a4,1 = 1;    a5,4 = 2Alh/x;  

 

   a5,5 = 0,5(u-
2
/xt-

2
/x

2
)+1;   c4,4 = -1/Rem; 

 

    a5,8 = 0,5[/t(q/x+/x)+
2
/xt];   

 

      a6,5 = a6,6=1;    a7,4 = a8,5 = a11,10 = -1; 

 

    a5,10 = 6/x
2
/x

2
[1+(/x)

2
]

-5/2
/We;    

 

   a5,11 = {3(/x
2
/xt-/t[1+(/x)

2
]}[1+ 

 

   +(/x)
2
]

-5/2
/We; c5,5=0,5(q/x+/x)-1/Re;    

 

      c5,10=-[1+(/x)
2
]

-3/2
/We;   c10,5 = c10,6 = 1. 

 

4.5.3 Solution of standard evolutionary equation 
The solution of the obtained standard evolutionary 

equation (14) was found in the following form 

(Asano N., Taniuti T., Yajima N., 1969;  Asano N., 

1974) [6,7]: U= 
 




0


U

()
, where are: =o(1), U

()
=

l 



 Ul
()

(,)expil(kx-t);  =(x-vgt); 1;  =
2
(t); 

U1
(1)

=R; W1R=0; LW1=0; W1=-ilI+ilkA
(0)

+ 

B
(0)

+l
2
k

2
C

(0)
; U0=const-undisturbed solution of 
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matrix equation (15); A
(0)

=A(U) by U=U0; 

(B
(0)

)j,k=(Bj/Uk) by U=U0; U~expi(kx-t);  

vg=/k- the group wave velocity. Here , are the 

“slow-acting” (“compressed”) variables introduced 

by Gardner-Morikawa procedure (Gardner C.S., 

Greene J.M., Kruskal M.D., Miura R.M., 1967;  

Gardner C.S., Morikawa G.M., 1969) [28]. 

 

4.5.4 The non-linear Schrödinger equation 

Taking into account all the above-mentioned yielded 

for the fundamental harmonic the following 

equation (Whitham G.B., 1974): 

 

   i/t+0,5(
2
/k

2
)

2
/

2
+

2
-=0.    (16) 

 

There is taken an assumption that the fundamental 

harmonic in considered time interval is dominant 

and the mode’s interaction can be neglected. The 

coefficients in equation (16) are as follows [31]: 

 

=C/LR; =r+ii;   C=CA+CB+CC;  

 

CA=ikL{2(A
(0)

R
*
)R2

(2)
- (A

(0)
R2

(2)
)R

*
+ 

 

+(A
(0)

R0
(2)

)R+(A
(0)

:RR
*
)R-0,5(A

(0)
:  

 

RR)R
*
};    CB=L{(B

(0)
(RR0

(2)
+R

*
R2

(2)
)+ 

 

+0,5B
(0)

:RR
*
R};  CC=-k

2
L{(C

(0)
R2

(2)
)R+ 

 

 +(C
(0)

R0
(2)

)R+(C
(0)

:   R
*
R)R+0,5(C

(0)
:  

 

RR)R
*
+4(C

(0)
R

*
)R2

(2)
};  =-d/LR;     

 

=r+ii;     d=L{ikA
’(0)

+B
’(0)

-k
2
C

’(0)
};   

 

R0
(2)

=-{ik[(A
(0)

R
*
)R+c.c.]+0,5(B

(0)
RR

*
+c.c.)-   

 

       -k
2
[(C

(0)
R

*
)R+c.c.]}/W0; 

     

R2
(2)

=-{ik(A
(0)

R)R+ 0,5B
(0)

RRk
2
(C

(0)
R)R}/ 

 

W2;    A
(0)

U
(1)

=Uj
(1)

(A/Uj)    by U=U0;  

 

A
(0)

U
(1)

U
(1)

=Uj
(1)

Uk
(1)

(
2
A/UjUk) by U=U0; 

 

W0= detW0; W2=detW2; 

 

A
(0)

U
(1)

U
(1)

U
(1)

=Uj
(1)

Uk
(1)

Um
(1)

(
3
A/UjUkUm) 

 

by U=U0; c.c.- complex-conjugated. 

 

The solution procedure is described in detail in [31]. 

The complex-conjugated values are signed with star. 

For the A, B, C,  the asymptotic decompositions 

by order of 
2
 were used.  

Thus, a rapid wave expi(kx-t) has an amplitude 

multiplier satisfying the non-linear Schrödinger 

equation (16) with dissipation, which has soliton-

like solutions (strict solitary waves are impossible 

due to dissipation). Therefore the soliton-like wave 

amplitude is filled with the rapid oscillations.  

 

 

4.6 Soliton-like solutions for the film flow 
The solution of the equation (16) for each harmonic 

having its own equation according to a value of  

(second term in (16)) can be found in the form                              

=expi(+kb), where 2/kb is a wave length for 

the amplitude-solution (big wave). Then the 

following solution is obtained by i0: 

 

 
(j)

={r
(j)

[
(j)

]
2
-0,5(

2


(j)
/k

2
)k

(j)
(k

(j)
)

2
+r

(j)
}+2n;  

(17) 

 [
(j)

]
2
=i

/
i[1exp(-2i)]

-1
;                 

 

<i
/
i corresponds in second equation of (17) 

to ”+”, while >i
/
i - to ”-”; k

(j)
=kb

(j)
; nN. 

The obtained approximate expression (17) allows 

analyzing stability of excited non-linear waves. 

Instability is available by i<0, while by i>0 the 

film flow is stable.  

 

4.6.1 Critical level of perturbations 

In a non-linear case the critical value of the 

perturbations in a film flow must be estimated 

because these stability conditions are only necessary 

and not sufficient ones.  

For the stability of the excited soliton-like waves 

the critical value of an excitation should be 

exceeded. In the case considered, this critical value 

is cr=i
/
i. By i<0, i<0, the stability of a 

soliton-like wave depends on an initial amplitude 
2
 

(-). For the (q,)=R[]expi(kx-t)+c.c. there is 

q
2
=

2
exp2i(kx-t)+2

2
+c.c. Then in case of 

u=0 (non-moisten surface) it is obtained the 

dispersive appropriate correlation: 

 

(-k)
2
+3i/Rek

2
(-k)+{k

4
(-k)

3
[(-k)

2
+4k

4


2
]}/ 

(18) 

{We[2k
4


2
-(-k)

2
]

5/2
}+2iAlkhh/x-k

2
/Fr

2
=0,  

 

For magnetic field H=Ho+h1exp[im=km(im/Rem-

1)] sign ”+” corresponds to electromagnetic wave 

spreading in opposite to the surface wave direction 

while ”-” – to the opposite direction [31,50]. Here 
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,k are supposed to be the weak non-linear 

functions of x. In this approach, the non-linear 

dispersive correlation (18) is justified for the non-

linear small-amplitude waves (with corresponding 

requirements to the magnetic field). 

In case of 2k
2
<<-k, the correlation 

(18) is simplified: 

 

(-k)
2
+3i/Rek

2
(-k)-k

4
/We[1+9k

4


2
/(-k)

2
+ 

 

+30k
8


4
/(-k)

4
]+2iAlkhh/x-k

2
/Fr

2
=0. 

 

For the =(x-vgjt), =
2
t, from equation (16) yields 

 

i
(j)

/
(j)

+0,5vgj/k
2


(j)
/

(j)2
+ 

 

+j/
(j)


2


(j)


2


(j)
-

(j)


(j)
=0. 

 

 

4.6.2 Critical values for the non-linear waves 

The critical values for the non-linear wave 

excitation are: 

 

  
(j)
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2
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2
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2
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(j)
)

2
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    q
(j)
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2
(kb

(j)
)

2
]{We[4(1/Fr+0,5Fr(kb

(j)
)

2
/ 

 

        We)
2
+9(kb

(j)
)

2
/Re

2
]}

1/2
/[62FrWe(kb

(j)
)

2
]; 

 

      
(j)

cr=q
(j)

cr[kb
(j)

/(j-kb
(j)

)]. 

 

 

4.6.3 Case of the high Reynolds numbers 

For the Re>>1 the dissipation effects are negligibly 

small, therefore the non-linear Schrödinger equation 

(16) has solitary solutions when 
(j)
0  

by
(j)
: 

 

  
(j)

=[-2A
(j)

/r
(j)

]
1/2

sech{[-0,5(
2
j/k

2
)/A

(j)
]

-1/2


(j)
}   

 

 exp(-iA
(j)


(j)
),    A

(j)
=-0,5r

(j)
[0

(j)
]

2
, 

 

where 0
(j) 

is the value of 
(j) 

by =0, 
(j)

=0. The 

solitary wave’s width s
(j)

=[(
2
j/k

2
)/(r

(j)
0

(j)
)]

1/2
, 

where As
(j)

=0
(j)

 is the wave’s amplitude and 

vs
(j)

=
2
j/k

2
  is its velocity. The non-linear addition 

to solitary wave’s frequency is s=0,5r
(j)

(0
(j)

)
2
. 

 Electromagnetic modulation in linear approach: 

 

  =k-1.5ik
2
/Re{k

2
(1/Fr

2
-,25k

2
/Re

2
+k

2
/We)+2ik   

 

   kmAl[h0+2hmcos(kmx-mt)][2hmsin(kmx-mt)]}
1/2

. 

 

Moreover, the soliton-like excitation for a film flow 

requests also the Lighthill’s condition: 

 

              We(k+1)(1+k
2
Fr

2
/We)>k

4
Fr

2
,              (19) 

 

that is a limitation on minus-plus signs of the 

coefficients by a terms 
2
/

2
 and a non-linear 

term of a standard evolutionary equation.  

As follows from the equation (19), this criterion 

is easier to satisfy by small value of k. Therefore the 

short-wave solitons are harder to excite than the 

long-wave solitons.  

 

4.6.4 Critical parameters of soliton-like solutions 
The calculations have shown critical parameters: 

     scr=3*10
-2

 -  in general case; 

     scr=3*10
-3 

-   by k>>1 (short-wave solitons); 

     scr=10
-6

-10
-8 

- by k<<1 (long-wave solitons). 

 

 

4.7 Three new phenomena of the parametric 

film flow decay 
A number of different linear, as well as non-linear 

modeling situations were considered. As a result 

there were obtained some interesting peculiarities of 

the parametric wave excitation and suppression in 

the film flows including the three new phenomena 

of parametric film decay [31,50]:  

 electromagnetic controlled resonance film 

flow decay,  

 soliton-like vibration film flow decay,  

 vibration shock-wave film flow decay.  

The phenomena were first theoretically predicted 

and then experimentally invented and investigated. 

Based on these new phenomena, the prospective 

dispersing and granulation machines were 

developed, created and tested for some metals and 

other materials [33,50]. 
 
  

 

 

5 Experimental study and applications 

of the new phenomena 
Controlled film flow decay (dispersion) by means of 

the parametric excitation (electromagnetic field, 

vibrations, etc.) is an actual problem of the modern 

industry because of wide applications for the 

injectors, chemical and other reactors, metallurgical 

devices.  

Another problem - dumping of perturbations of a 

free film surface (stabilization of film flow) is 

directly opposite to the previous one. And the third 

case: the excitation and keeping of special wave 
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regimes of a film flow which are suitable from the 

point of view of mass- and heat-exchange processes.  

The film devices are distinguished by simplicity, 

presence of a developed specific surface of a liquid 

and as a result of which - high intensity of the 

running processes. That is why they considerably 

surpass the traditional devices with a working liquid 

body and appear ecologically pure. The many high-

efficiency withdrawal, heat- and mass-transport, etc. 

devices can be constructed on the basis of a film 

flows. 

 

5.1 Electromagnetic and vibration type 

devices for controlled film decay 
For the experimental studies of the controlled film 

flow decay we developed two electromagnetic and 

one vibration type devices, which general views are 

presented in Figs 10-12. The scheme of the 

vibration type granulation machine built on the 

principle of the parametrically controlled film flow 

decay with nitrogen atmosphere and liquid nitrogen 

coolant is shown in Fig. 13. 

 

 
 

Fig. 10 Electromagnetic deep vacuum  

film flow device 

 

 

The vibration type granulation machine is 

working using the standard 10 kW vibrator but with 

special membranes, which characteristics a 

presented in Fig. 14. These types of membranes 

were used in the experiments allowed obtaining the 

required vibration frequency and vibration 

acceleration up to 2000 m/s
2
. 

The discovered and investigated three new 

phenomena of resonant, soliton-like and shock-wave 

film disintegration were used for the development of 

prospective film granulators and dispersers.  

These devices were developed at first in the 

world and have no analogues.  

 

 
 

Fig. 11 Electromagnetic light vacuum 

film flow device 

 

 

The shock-wave regime (with conical shock 

wave on the vertical jet) is showed only 

schematically because the particles producing by it 

are too small. This process could be used for 

spraying on coatings. 

 

 

5.2 Electromagnetic controlled film decay 
Electromagnetic controlled film flow decay 

process studied in the device shown in Fig. 10 is 

presented in Figs 15, 16. Fig. 15 shows the process 

of the film flow decay on the drops of different size 

due to film flow instability. The drop’s distribution 

by size is chaotic and very wide.  

 

 

Fig. 14 Resonance curves for the vibration 

acceleration for three types of the membranes  
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Fig. 12 Vibration film flow device with nitrogen 

atmosphere and liquid nitrogen coolant 

 

 

 

 Fig. 13 The scheme of the Vibration type 

granulation film flow device with nitrogen 

atmosphere and liquid nitrogen coolant 

 

 

In contrast to the free film flow decay the 

electromagnetic resonant controlled film flow decay 

shown in Fig. 16 clearly demonstrates that the 

drops’ size is nearly uniform. The drops of 

controlled size are regularly produced from the film 

flow, which important for the granulation machines. 

This process was proven on different metal melts 

and was used for granulation of the metals for 

special metallurgy (in production of the new 

materials). 

 

 

Fig. 15 Free film flow decay due to instability  

 

 

 

Fig. 16 Electromagnetic resonant controlled  

film flow decay  

 

 

5.3 Vibration controlled film flow decay 
The vibration controlled film flow decay is shown in 

Fig. 17. This is an element of the device presented 

in Figs 12, 13. In this type of granulation machine 

the new phenomena of the soliton-like film flow 

decay and shock-wave film flow decay were 
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implemented. The first one is observed in Fig. 17, 

where drops are levitating over the vibrating plate 

looking chaotic but being not chaotic indeed.  

 

 

 
 

Fig. 17 Vibration controlled soliton-like  

film flow decay  

 

 

  
 

Fig. 18 Particles of metal produced in soliton-like 

regime on vibration type granulation machine 

The process is controlled and regular as far as the 

drops are produced from the solitons, which are all 

nearly the same. Here we got drops’ size 

distribution with deviation of about 50% as shown 

in Fig. 18 (for comparison, in a free film decay it is 

over 1000%). 

The shock wave regime is got by nearly ten 

times higher vibration Euler number and looks like 

conical shock-wave on the vertical jet, which 

produces fine particles from the jet (Fig. 19). The 

film flow does not exist in this case. It may be used 

for production of small particles or for the spraying 

of materials. Vibration type devices are applicable 

for any appropriate melts except highly viscous – 

conductive, as well as non-conductive melts. 

By comparably low vibration Euler numbers film 

flow decay is ineffectively controlled as shown in 

Fig. 20, where the drops are produced from the 

edges of the vibrating film flow bell. Here only 

some regularization of the process is available, e.g. 

to narrower the drop’s size distribution about twice.  

 

Fig. 19  Shock-wave film flow decay regime 

 

 

 

 
 

Fig. 20 Vibration controlled film flow decay 
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6 Heat transfer in granular media 
 

6.1 Description of the multiphase system 
The problem of a non-stationary non-isothermal gas 

(steam) flow in porous granular media with account 

of the real physical properties of the media, which 

can strongly depend on the temperature spatial 

distribution, is of paramount interest for a lot of 

modern industrial, technological and natural 

processes, for example the following ones:  

 Coolability of a heat­generating porous beds in 

a severe accidents at the Nuclear Power Plants. 

 Gas and steam flow through the underground 

permeable layers in Geothermal and Gas 

Industry as well as Vulcanology. 

 Diverse gas and steam flows in Chemical 

Reactors, porous elements of the Avionic 

Components, etc. 

 

6.1.1 Assumptions about the system 

The study of steam flow through granular medium 

was performed taking into account:  

 heat transfer between flow and particles of 

porous medium and surrounding medium,  

 local heat sources,  

 non-linearity of physical properties.  

This new model allowed revealing the crucial 

regimes such as localizations of dissipative 

processes and abnormal heat up/flows regions 

appearance. The studied processes are their fileds of 

applicability are presented in the Table 4. 

 

6.1.2 Non-thermal equilibrium in granular layer 

The non­thermal equilibrium flow through a porous 

medium is of special interest. R.I. Nigmatulin [47] 

derived the equations of a saturated monospherical 

particle layer in heterogeneous non­thermal 

equilibrium approach, with account of the 

deformable properties of the layer. Based on his 

equations, the two-dimensional mathematical model 

and numerical algorithm were developed and 

successfully applied to a few complex real problems 

[48, 49] for the steam flow in a particle layer 

surrounded by the impermeable medium. The model 

was applied for numerical simulation of a non-

stationary non-isothermal filtration in geothermal 

systems, also for severe accidents at NPP, etc. the 

The system’ structural scheme is shown in Fig. 21. 

 

 

6.2 The mathematical model of the system 
By a development of the mathematical model, the 

following assumptions were employed: 

 Flow is single phase, compressible (gas, steam) 

 The particles’ sizes are significantly larger than 

molecular-kinetic scales but significantly less 

than the characteristic scale of the system 

 The physical properties of the media such as 

thermal conductivity, viscosity, density, etc. are 

temperature dependent functions 

 Solid particles are immovable, porosity is 

constant in each monolayer. 

 

Table 4 Multiphase processes in granular media 

 
 

  

Gas inlet into the particle layer 

Outflow  

from the layer 

Monolayer  

of spherical particles 

Impermeable  

surroundings 

 
Fig. 21 Structural scheme of heterogeneous media 

 

 

6.2.1 Dimensionless equation array  

The mathematical model obtained [48, 49] includes 

the following equation array:  
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The boundary problem for the non-stationary 2-

D equation array (20) is stated in a dimensionless 

form. For this purpose, the following length, time, 

velocity, pressure and temperature scales were 

introduced: H , 0

2

2 / aH , Ha /0

2
, 

0

0

210 / Ka  and T  as 

the characteristic temperature in a system.  

 

6.2.2 The initial and boundary conditions 

The initial and boundary conditions for the system 

(20) have the following dimensionless form: 
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Here are the following dimensionless criteria: 
0

20 / aHwPe - Peclet number, )/(2

* TRgH Re , 

DaGrPrRa
**  - Rayleigh number, 

10

3

2 HgGr , 

*Pr  and 2/ HKDa - Grasshoff, Prandtl and Darcy 

numbers, respectively, Hta /0

2Fo  is the Fourier 

number.  

Then 
10

0

200 / Kgw   is the character filtration 

velocity, a  is the heat diffusivity coefficient, e.g. 

)/( 0

101

0

1

0

1 pcka  . The other parameters are the 

following: 0

1

0

2 / aaa  , 0

10

0

20 /    , 0

12 / kkk  , 

2332 / kkk  ,  
111 / vp cc ,   0

2332 / aaa  , 
1

2

12 /bHs  

(parameter of the structure of the granular layer), 

12s  is a specific interfacial area,  )3/2(21  bb  

is the character pore radius, b - particle radius 

(constant in each monolayer), 
22 TT , 2T  is 

the particle’s thermal expansion coefficient. 

 

6.2.3 The features of the multiphase system 
The system considered is multiphase, interactions of 

the three different processes occur:  

 non-thermal equilibrium between gas and solid 

particles in the layer,  

 non-linear processes’ mutual influence and  

 non-linearity of the physical properties of gas 

and particles (mainly, gas properties strongly 

depend on temperature and pressure).  

The first above-mentioned peculiarity is touched 

with the term )( 21 TT  , which describes the local 

heat transfer between particles and flow. From the 

mathematical point of view it causes some 

limitation on the parameter   because the term 

)( 21 TT   in the energy equations for solid particles 

and gas flow is huge by the very small particles. 

And these energy equations have terms like “ 0 ” 

because by small particles the temperature 

difference )( 21 TT   is going fast to zero.  

Therefore as far as the temperature difference 

between particles and gas flow is going to zero, in 

limit there is a homogeneous mixture. Then 

heterogeneous model considered should be replaced 

with a homogeneous one to avoid this peculiarity 

causing numerical inaccuracy.  

The most important new phenomenon is a 

localization of the dissipate processes due to non-

linear heat conductivity. This phenomenon was 

studied at first by A.A. Samarskii et. al. [51] for the 

quasilinear parabolic equations, e.g. one-

dimensional heat conductivity equation with a non-

linear heat conductivity mTkk 0  (m=0.5–1.0). 
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Some gases and steam follow this law under certain 

range of the temperature and pressure. In our case 

all these phenomena are interconnected. 

 

 

6.3 Numerical solution of the problem 
For the numerical solution of the boundary problem 

(20), (21), the method of fractional steps was 

employed. The strategy of the method is in a split of 

a basic equation into several equations each of those 

is one-dimensional equation.  

A few results from numerical simulation of the 

problem are presented in Figs 22-25 below: 

 

 

Fig. 22 Initial temperature perturbation in a steam 

flow T1 and surrounding T3 ( 0Fo  ),  

computed by time step 8102 Fo . 

 

 

Further evolution of the temperature field, 

vapour density and filtration velocity in the granular 

medium due to this initial perturbation is shown in 

Figs 23-25 for the temperature, density and velocity: 

 

 

 

Fig. 23  Local abnormal heating in a particle layer 

with internal heat generation (
5102 Fo ) 

     

Fig. 24  Local abnormal density distribution due to 

abnormal heating in particle layer ( 5102 Fo ) 

 
 

With a local abnormal heating due to non-linear 

heat conductivity of steam temperature escalation in 

some narrow regions causes local vicosity increase, 

which, in turn, leads to decrease in steam flow 

velocity. Therefore heat conductivity becomes 

higher while convective heat transfer falls down.  

Inversely, in the local regions with lower 

temperature viscosity is lower, thus, velocity of 

steam flow grows and convective heat transfer 

dominates, so that in such localities temperature is 

lower. Local abnormal heating due to non-linear 

conductivity and non-linear interaction of the 

processes results in a complex non-uniform 

distribution of the parameters of steam flow in a 

particle layer.  

 

 

Fig. 25  Local abnormal filtration velocity due to 

abnormal heating in particle layer (
5102 Fo ) 

 

 

7 Conclusions by the results obtained 
The classes of the problems studied and their field 

of applicability are presented in the Table 5.  
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Table 5 Classes of problems and their applicability 

 
 

 

Based on the results obtained the following 

conclusions have been made: 

 The three new phenomena of parametric film 

flow decay were discovered and studied [32,50]:  

 electromagnetic controlled resonance 

film flow decay,  

 soliton-like vibration film flow decay,  

 vibration shock-wave film flow decay.  

 The phenomena were first theoretically 

predicted and then experimentally invented and 

investigated. Based on these new phenomena, 

the prospective dispersing and granulation 

machines were developed, created and tested for 

some metals and other materials.  

 Particularly complex are the behaviors of free 

boundaries in case of essential physical 

properties variation with the non-linear wave 

interaction and energy exchange.  

 Especially serious problem appears to be 

confined in case of high-speed jet/film flows. 

But this process determines the flow instability 

and peculiarities of a drop formation/evolution.  

 The instability conditions, drop formation, 

features, for example the drop size and shape, 

their further evolution seem to be poor studied 

yet. Therefore it needs further investigations. 

 The linear and non-linear mathematical models 

and computer codes were developed for the jet 

and film flows including peculiarities of the 

drop formation and evolution.  

 The results may be applied in case of essential 

physical properties’ variation: surface tension 

coefficient, viscosity, density, heat transfer 

coefficient, which could be strongly dependent 

on the temperature spatial distribution. 

 Specific advantages of the methods developed 

by us, compared to other ones worldwide, 

consist in the results obtained on the subject 

considering practically complicated cases. This 

activity is continued taking into account the 

additional real physical properties.  

 The both analytical, as well as numerical 

methods were grasped and developed for 

solving the non-linear boundary problems. 

 The original method and computer code for an 

investigation of the stability and stabilization of 

the thin solid layer on the channel wall have 

been developed to be used for studying the more 

complicated practical cases taking into account 

the solidification of the one phase with 

corresponding heat transfer between the phases 

and melting of the other phase.  

 The obtained new model and computer code for 

heterogeneous system of the particles and steam 

were developed for study the steam flow 

through porous medium accounting the heat 

transfer between the particles and flowing 

steam, physical properties' variation, etc. The 

local abnormal heating due to non-linear heat 

conductivity was revealed and studied. 
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