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Abstract: - In this work, second part of this study, the high resolution numerical schemes of Yee and Harten, of 

Yang second order, of Yang third order, and of Yang and Hsu are applied to the solution of the Euler and 

Navier-Stokes equations in two-dimensions. All schemes are flux difference splitting algorithms. The Yee and 

Harten is a TVD (“Total Variation Diminishing”) second order accurate in space and first order accurate in 

time algorithm. The Yang second order is a TVD/ENO (“Essentially Nonoscillatory”) second order accurate in 

space and first order accurate in time algorithm. The Yang third order is a TVD/ENO third order accurate in 

space and first order accurate in time algorithm. Finally, the Yang and Hsu is a UNO (Uniformly 

Nonoscillatory) third order accurate in space and first order accurate in time algorithm. The Euler and Navier-

Stokes equations, written in a conservative and integral form, are solved, according to a finite volume and 

structured formulations. A spatially variable time step procedure is employed aiming to accelerate the 

convergence of the numerical schemes to the steady state condition. It has proved excellent gains in terms of 

convergence acceleration as reported by Maciel. The physical problems of the supersonic shock reflection at 

the wall and the supersonic flow along a compression corner are solved, in the inviscid case. For the viscous 

case, the supersonic flow along a compression corner is solved. In the inviscid case, an implicit formulation is 

employed to marching in time, whereas in the viscous case, a time splitting or Strang approaches are used. The 

results have demonstrated that the Yang ENO third order accurate algorithm has presented the best solutions in 

the problems studied herein. Moreover, it is also the best as comparing with the numerical schemes of Part I of 

this study. 

 

Key-Words: - Yee and Harten algorithm, Yang second order TVD/ENO algorithm, Yang third order TVD/ENO 

algorithm, Yang and Hsu UNO algorithm, Euler and Navier-Stokes equations, Finite Volumes. 

 

1 Introduction 
In recent years, many high resolution shock 

capturing finite volume schemes for the 

computation of the Euler equations have been 

developed. Of special interest are the methods that 

generate nonoscillatory solutions but sharp 

approximations to shock and contact discontinuities. 

This interest stems from the fact that even with the 

advances in high-speed supercomputing, grid 

generation, automatic adaptive grid procedures, etc., 

the lack of robust and accurate numerical schemes is 

a major stumbling block for the success of 

computational fluid dynamics. Most of these 

schemes [1-9] are very different in form, 

methodology, and design principle. However, from 

the standpoint of numerical analysis, these schemes 

are total variation diminishing (TVD) for nonlinear 

scalar hyperbolic conservation laws and for constant 

coefficient hyperbolic systems. The notion of TVD 

schemes was introduced by Harten [1-2]. Some of 

these methods can also be viewed as three-point 

central difference schemes with a “smart” numerical 

dissipation or smoothing mechanism. “Smart” here 

means automatic feedback mechanism to control the 

amount of numerical dissipation for nonlinear 

problems. In general, TVD schemes can be divided 

into two categories, namely, upwind and symmetric 

TVD schemes. A way of distinguish an upwind 

from a symmetric TVD scheme is that the numerical 

dissipation term corresponding to an upwind TVD 

scheme is upwind-weighted [1-6] as opposed to the 

numerical dissipation term corresponding to a 

symmetric TVD scheme that is centered [7-9]. 

 Harten’s method of constructing high resolution 

TVD schemes involves starting with a first order 

TVD scheme and applying it to a modified flux. The 

modified flux is chosen so that the scheme is second 

order at regions of smoothness and first order at 

points of extrema. This technique is sometimes 

referred to as the modified flux approach. Although 

the scheme is an upwind scheme, it is written in a 

symmetric form; i.e., central difference plus an 

appropriate numerical dissipation term. This special 
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form is especially advantageous for systems of 

higher than one space dimension. It results in less 

storage and a smaller operation count than its 

upwind form [10]. The modified flux approach is 

relatively simple to understand and easy to 

implement into a new or existing computing code. 

One can modify a standard three-point central 

difference code by simply changing the 

conventional numerical dissipation term into the one 

designed for the TVD scheme. 

 In [11], a preliminary study was completed on 

the implicit TVD scheme for a two-dimensional 

gasdynamics problem in a Cartesian coordinate. It 

was found that further improvement in computation 

efficiency and converged rate is required for 

practical application. 

 [12] proposed a modification in the work of [11], 

written via the modified flux approach, aiming to 

extend these methods to the multidimensional 

hyperbolic conservation laws in curvilinear 

coordinates. They presented various ways of 

linearizing the implicit operator and solution 

strategies to improve the computation efficiency of 

the implicit algorithm were discussed. Numerical 

experiments with some AGARD test cases for 

steady-state airfoil calculations showed that the 

proposed linearized implicit upwind TVD schemes 

were quite robust and accurate. 

 Very recently, a new class of uniformly high-

order-accurate essentially nonoscillatory (ENO) 

schemes have been developed by [13-15]. They 

presented a hierarchy of uniformly high-order-

accurate schemes that generalize Godunov’s scheme 

[16], its second order accurate MUSCL extension 

[3; 17] and the total variation diminishing (TVD) 

scheme [18] to arbitrary order of accuracy. In 

contrast to the earlier second-order TVD schemes 

which drop to first-order accuracy at local extrema 

and maintain second-order accuracy in smooth 

regions, the new ENO schemes are uniformly high-

order accurate throughout, even at critical points. 

The ENO schemes use a reconstruction algorithm 

that is derived from a new interpolation technique 

that when applied to piecewise smooth data gives 

high-order accuracy whenever the function is 

smooth but avoids a Gibbs phenomenon at 

discontinuities. An adaptive stencil of grid points is 

used; therefore, the resulting schemes are highly 

nonlinear even in the scalar case.  

 Theoretical results for the scalar coefficient case 

and numerical results for the scalar conservation law 

and for the one-dimensional Euler equations of gas 

dynamics have been reported with highly accurate 

results. Such high-order ENO schemes have the 

potential to be adapted to the current Euler/Navier-

Stokes flow solvers as one does for the second order 

TVD explicit and implicit schemes [11; 19-20] to 

further enhance the accuracy of flowfield 

simulation. Implementation can be either as a 

higher-order flow solver as in the present work or as 

a postprocessor to enhance the resolution. 

 [21] formally extended his second-order TVD 

schemes described in [22-23] to uniformly second-

order ENO schemes for the two-dimensional Euler 

equations in curvilinear coordinate systems. Both 

explicit and implicit schemes were described. The 

authors emphasized in this work that TVD schemes 

are a special case of ENO schemes in which the 

TVD requirement is replaced by a less restricted 

essentially nonoscillatory condition, a concept 

advanced by Harten and co-workers [13-15]. 

Numerical experiments with the ENO scheme for an 

one-dimensional blast wave diffraction around a 

cylinder, shock wave collision over a circular arc, 

and steady transonic flow over a circular arc in a 

channel were reported. 

 [24] described a class of third-order, essentially 

nonoscillatory shock-capturing schemes for the 

Euler equations of gas dynamics. These schemes 

were obtained by applying the characteristic flux-

difference splitting to an appropriately modified flux 

vector that could have high-order accuracy and 

nonoscillatory property. Third-order schemes were 

constructed using upstream interpolation and ENO 

interpolation. Both explicit and implicit schemes 

were derived. Implicit schemes to two-dimensional 

Euler equations in general coordinates were also 

given. The author applied the resulting schemes to 

simulate one-dimensional and two-dimensional 

unsteady shock tube flows and steady two-

dimensional flows involving strong shocks to 

illustrate the performance of the schemes. 

 [25], following the works of [13-15], described a 

class of third-order (at least one-dimensional scalar 

case) shock capturing UNO schemes for the Euler 

equations of gas dynamics. Third-order schemes 

were constructing using UNO interpolation. The 

development was identical to those given in [24], 

except that Roe’s approximate Riemann solver [26] 

was employed instead of the characteristic flux 

difference splitting method. The main difference 

between the approach used in [24] and in this work 

was that the former one operated on the difference 

of flux vector, whereas in this work operated on the 

difference of conservative state vector. It is known 

that the conservative vector is not continuous across 

the shock whereas the flux is continuous; that is, the 

flux vector function is one order smoother than the 

conservative state vector function. The Roe’s 

averages [26] enable the Rankine-Hugoniot 
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relations to be satisfied across the shock. Also, the 

Roe’s linearization technique for nonlinear system 

permits the use of completely different characteristic 

fields and is one of the most popular approximate 

Riemann solvers currently in use. 

 Traditionally, implicit numerical methods have 

been praised for their improved stability and 

condemned for their large arithmetic operation 

counts ([27]). On the one hand, the slow 

convergence rate of explicit methods become they 

so unattractive to the solution of steady state 

problems due to the large number of iterations 

required to convergence, in spite of the reduced 

number of operation counts per time step in 

comparison with their implicit counterparts. Such 

problem is resulting from the limited stability region 

which such methods are subjected (the Courant 

condition). On the other hand, implicit schemes 

guarantee a larger stability region, which allows the 

use of CFL (Currant-Friedrichs-Lewis) numbers 

above 1.0, and fast convergence to steady state 

conditions. Undoubtedly, the most significant 

efficiency achievement for multidimensional 

implicit methods was the introduction of the 

Alternating Direction Implicit (ADI) algorithms by 

[28-30], and fractional step algorithms by [31]. ADI 

approximate factorization methods consist in 

approximating the Left Hand Side (LHS) of the 

numerical scheme by the product of one-

dimensional parcels, each one associated with a 

different spatial coordinate direction, which retract 

nearly the original implicit operator. These methods 

have been largely applied in the CFD 

(“Computational Fluid Dynamics”) community and, 

despite the fact of the error of the approximate 

factorization, it allows the use of large time steps, 

which results in significant gains in terms of 

convergence rate in relation to explicit methods. 

 In the present work, second part of this study, the 

[12] TVD, the [21] TVD/ENO, the [24] TVD/ENO, 

and the [25] UNO schemes are implemented, on a 

finite volume context and using a structured spatial 

discretization, to solve the Euler and Navier-Stokes 

equations in the two-dimensional space. All 

schemes are high resolution flux difference splitting 

ones, based on the concept of Harten’s modified 

flux function. The [12] is a TVD second order 

accurate in space and first order accurate in time 

algorithm. [21] is a TVD/ENO second order 

accurate in space and first order accurate in time 

algorithm. The [24] is a TVD/ENO third order 

accurate in space and first order accurate in time 

algorithm. Finally, the [25] is a UNO (Uniformly 

Nonoscillatory) third order accurate in space and 

first order accurate in time algorithm. An implicit 

formulation is employed to solve the Euler 

equations, whereas a time splitting or Strang 

methods, explicit methods, are used to solve the 

Navier-Stokes equations. A Linearized 

Nonconservative Implicit LNI form or an 

approximate factorization ADI method is employed 

by the schemes. The algorithms are accelerated to 

the steady state solution using a spatially variable 

time step, which has demonstrated effective gains in 

terms of convergence rate ([32-33]). All schemes 

are applied to the solution of physical problems of 

the supersonic shock reflection at the wall and the 

supersonic flow along a compression corner, in the 

inviscid case, whereas in the laminar viscous case, 

the supersonic flow along a compression corner is 

solved.  The results have demonstrated that the [24] 

ENO algorithm, third order accurate in space, has 

presented the best solutions, in this study. 

 

 

2 Navier-Stokes Equations 
As the Euler equations can be obtained from the 

Navier-Stokes ones by disregarding the viscous 

vectors, only the formulation to the latter will be 

presented. The Navier-Stokes equations in integral 

conservative form, employing a finite volume 

formulation and using a structured spatial 

discretization, to two-dimensional simulations, are 

written as: 

                      01  V dVPVtQ


,                 (1) 

where V is the cell volume, which corresponds to an 

rectangular cell in the two-dimensional space; Q is 

the vector of conserved variables; and 

    jFFiEEP veve


  represents the complete 

flux vector in Cartesian coordinates, with the 

subscript “e” related to the inviscid contributions or 

the Euler contributions and “v” is related to the 

viscous contributions. These components of the 

complete flux vector, as well the vector of 

conserved variables, are defined as: 
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In these equations, the components of the viscous 

stress tensor are defined as: 

             yvxuxu MMxx  322 ;          (4) 

                         xvyuMxy  ;                     (5) 

         yvxuyv MMyy  322 .          (6) 

The components of the conductive heat flux vector 

are defined as follows: 

                       xedPrq iMx  ;               (7) 

                       yedPrq iMy  .               (8) 

The quantities that appear above are described as 

follows:  is the fluid density, u and v are the 

Cartesian components of the flow velocity vector in 

the x and y directions, respectively; e is the total 

energy per unit volume of the fluid; p is the fluid 

static pressure; ei is the fluid internal energy, 

defined as: 

                         225.0 vueei  ;                     (9) 

the ’s represent the components of the viscous 

stress tensor; Prd is the laminar Prandtl number, 

which assumed a value of 0.72 in the present 

simulations; the q’s represent the components of the 

conductive heat flux; M is the fluid molecular 

viscosity;  is the ratio of specific heats at constant 

pressure and volume, respectively, which assumed a 

value 1.4 to the atmospheric air; and Re is the 

Reynolds number of the viscous simulation, defined 

by: 

                              MREF lu Re ,                    (10) 

where uREF is a characteristic flow velocity and l is a 

configuration characteristic length. The molecular 

viscosity is estimated by the empiric Sutherland 

formula: 

                       TSbTM  121 ,                 (11) 

where T is the absolute temperature (K), b = 

1.458x10
-6

 Kg/(m.s.K
1/2

) and S = 110.4 K, to the 

atmospheric air in the standard atmospheric 

conditions ([34]). The Navier-Stokes equations were 

nondimensionalized in relation to the freestream 

density, , and the freestream speed of sound, a, 

for the all problems. For the viscous compression 

corner problem it is also considered the freestream 

molecular viscosity, . To allow the solution of the 

matrix system of four equations to four unknowns 

described by Eq. (1), it is employed the state 

equation of perfect gases presented below: 

                      )(5.0)1( 22 vuep  .             (12) 

The total enthalpy is determined by: 

                                 peH .                         (13) 

 

 

3 Yee and Harten TVD Second Order 

Algorithm 
The [12] TVD algorithm, second order accurate in 

space, is specified by the determination of the 

numerical flux vector at the (i+½,j) interface. The 

extension of this numerical flux to the (i,j+½) 

interface is straightforward, without any additional 

complications. 

 The right and left cell volumes, as well the 

interface volume, necessary to coordinate change, 

following the finite volume formulation, which is 

equivalent to a generalized coordinate system, are 

defined as: 

 

jiR VV ,1 , jiL VV ,   and   LR VV50V  .int ,   (14) 

 

where “R” and “L” represent right and left, 

respectively. The cell volume is defined by: 

 

        jijijijijijijijijiji yxxyxxyxxV ,1,1,1,1,1,11,1,1,, 5.0  

      1,1,1,,1,1,11,1,1,5.0   jijijijijijijijiji yxxyxxyxx , 

(15) 

 

where a computational cell, with its nodes and flux 

surfaces are defined in Fig. 1. 

 
Figure 1. Computational cell, interfaces and nodes. 
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 The area components at interface are defined by: 

SsS xx

'

int_   and SsS yy

'

int_  , where 
'

xs  and 
'

ys  

are defined as: Sss x

'

x   and Sss y

'

y  , being 

  5.02

y

2

x ssS  . Expressions to sx and sy, which 

represent the Sx and Sy components always adopted 

in the positive orientation, are given in Tab. 1. 

 

Table 1. Normalized values of sx and sy. 

 

Surface: sx: sy: 

i,j-1/2 
  

i+1/2,j 
  

i,j+1/2 
  

i-1/2,j 
  

 

The metric terms to this generalized coordinate 

system are defined as: 

 

intint_ VSh xx  , intint_ VSh yy   and intVShn  . (16) 

 

 The calculated properties at the flux interface are 

obtained by arithmetical average or by [26] average. 

The [26] average was used in this work: 

 

RLint ,    LRLRRL uuu  1int ,  (17) 

         
   LRLRRL vvv  1int ;           (18) 

    
   LRLRRL HHH  1int ;   (19) 

            2

int

2

intintint 5.01 vuHa  .         (20) 

  

 The eigenvalues of the Euler equations, in the  

direction, to the convective flux are given by: 

 

   yxcont hvhuU intint  , ncont haU int1  ,     (21) 

  contU 32    and   ncont haU int4  .     (22) 

  

 The jumps in the conserved variables, necessary 

to the construction of the [12] TVD dissipation 

function, are given by: 

 

 LR eeVe  int ,  LRV  int ,       LR uuVu  int ; 

(23) 

                          LR vvVv  int .                  (24) 

 

 The  vectors to the (i+½,j) interface are 

calculated by the following expressions: 

 

 bbaa  5.01 , aa2 , cc3 ;  (25) 

                       bbaa  5.04 ,                      (26) 

 

with: 

                    

        vvuuvue
a
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(27) 
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a

bb yyxx  '

int

'
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''
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1 ; 

(28) 

     uhvhuhvhcc yxýx  '

int

'

int

''
;  (29) 

            nxx hhh '
   and   nyy hhh '

.            (30) 

 

 The [12] TVD dissipation function is constructed 

using the right eigenvector matrix of the Jacobian 

matrix in the normal direction to the flux face: 
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 The numerical flux function or modified function 

of [1], g, responsible to the second order accuracy of 

the [12] scheme, is defined as: 

 

        
  l

j,/i
l

j,/i
l

j,i S,MIN,MAXSg 21210     (32) 

 

with: 

 

                              
 l

j,/isignS 21                      (33) 

 

 The entropy function to avoid non-physical 

solutions, is defined as: 
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with  = 0.2, as recommended by [11]. 
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 The numerical information propagation velocity, 

, responsible to transport the numerical 

information to the algorithm, is determined by: 
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 The  dissipation function to form the numerical 

dissipation operator is written as 
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(36) 

 

In all definitions, Eqs. (32-35), “l” varies from 1 to 

4 (two-dimensional space). 

 Finally, the [12] TVD dissipation function is 

constructed by the following matrix-vector product: 
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 The complete numerical flux vector to the 

(i+½,j) interface is described by: 
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with: 
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int FFF.F  50 .            (40) 

 

The viscous vectors at the flux interface are 

obtained by arithmetical average between the 

primitive variables at the left and at the right states 

of the flux interface, as also arithmetical average of 

the primitive variable gradients also considering the 

left and the right states of the flux interface. 

 The right-hand-side (RHS) of the [12] TVD 

scheme, necessaries to the resolution of the implicit 

version of this algorithm, is determined by: 
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(41) 

 

 The time integration to the viscous simulations 

follows the time splitting method, first order 

accurate, which divides the integration in two steps, 

each one associated with a specific spatial direction. 

In the initial step, it is possible to write for the  

direction: 
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and at the end step,  direction: 
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4 Yang TVD/ENO Second Order 

Algorithm 
A typical conservative numerical scheme, using a 

finite volume formulation, for solving Eq. (1) can be 

expressed in terms of numerical fluxes as follows: 
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where 
N

j,/iE 21  and 
N

/j,iF 21  are the numerical fluxes. 

For a first order upwind scheme, 
N

j,/iE 21  is given 

by: 
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with:     j,ij,ij,/i   121 , 
n

j,/iE 21  and 
n
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defined by: 
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and 

 j,/iÂ 21  defined as follows: 
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 

  ldiag ˆˆ   and      ll sign15.0ˆ ,  (47b) 

 

where: R  and 
1

R  defined by Eqs. (31) and (48), 

respectively, to the  direction; 
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with 
'

xh  and 
'

yh  defined according to Eq. (30); 

 diag  represents a diagonal matrix, as for 

instance: 
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 l  are defined by Eqs. (21-22) to the  direction; 

  lsign  is equal to 1.0 if 
 l   0.0 and -1.0 

otherwise. 

 

4.1 Uniformly second order essentially non-

oscillatory scheme 

[1] proposed to construct second order accurate 

TVD schemes by applying a first order approximate 

Riemann solver to a modified flux. Following [1], 

[21] proposed to define a modified numerical flux 

function with the definition of the modified fluxes: 
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nnMn FFFF  ,             (50b) 

 

where E
M

 and F
M

 are the modified fluxes which 

have essentially non-oscillatory property yet to be 

defined. In the following, a numerical method of 

uniformly second order accuracy in time and space 

which combines both characteristic and conversion 

features of Eq. (1) is discussed. 

 For the present ENO scheme, the numerical flux 

E
N
 is described by: 
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The components of the additional vector E  are 

given by: 
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and j,/ie~ 21  are components of the following 

column vector: 
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The  Asign  and A  in Eq. (54) are given by: 
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Similar derivations can be given for the F  vector in 

the  direction. In Equation (52), m is the minmod 

function: 
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and the m  function is defined by: 
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 For  = 0.0, one has a second order TVD 

scheme. For  = 0.5, one has a uniformly second 

order non-oscillatory scheme. The original 

numerical scheme of [21] is thus formed by Eq. (44) 

using the definition (51) to the numerical flux 

function.  

 The first author introduced some modifications 

in the [21] scheme in this work. Equation (51) is 

redefined as: 
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with: 
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The positive splitting matrix 
  j,/i

A
21

 is defined as 
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with: 
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and the Jacobian matrix at the  direction is 

described by 
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 The vector j,/iE
~

21  is also redefined as: 
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Observe that the resulting scheme is equivalent to 

the original of [21], with the unique difference that 

the difference of fluxes in Eq. (54) is changed by the 

difference of conserved variables. With this new 

definition, the solutions present better behaviour, 

free of oscillations, undershoots and overshoots. The 

other expressions maintain the same structure. 

 The right-hand-side of the [21] scheme, 

necessaries to the resolution of the implicit version 

of this algorithm, is defined by: 
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The viscous formulation obeys the same procedure 

described in section 3. For explicit methods in two-

dimensions, the Strang-type directional splitting 

[35] was employed 
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The L operator is defined by 
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Similar expressions can be given for 
N

j,/iF 21  and the 

L operator. 

 

 

5 Yang TVD/ENO Third Order 

Algorithm 
 

5.1 TVD formulation 

In [36], second- and third-order upwind schemes 

have been described by one-dimensional cases. It 

was found that such high-order schemes can be 

constructed by using a more accurate flux 

representation (in the discrete sense) at each nodal 

point. [24] has taken such an approach following 

Harten’s work [18] in which he applied a three-point 

first-order upwind scheme to a modified flux to 

yield second-order TVD scheme. Therefore, [24] 

calls it the modified flux approach. 

 [24] has considered a high-order extension of the 

Euler equations in one-dimensional case. The 

extension to the two-dimensional case is as follows: 
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Here, 
M

j,iE  and 
M
j,iF  are called the modified flux 

vectors at nodal point (i,j) and is consisted of the 

original flux vectors j,iE  and j,iF  and additional 

terms of high-order accuracy that usually have some 
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nonlinear control terms to avoid oscillatory 

solutions. 

 In terms of numerical flux vector, a conservative 

scheme for Eq. (69) could be Eq. (44), with the 

numerical flux, in the  direction, defined as: 
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A third-order scheme for Eq. (44) can be 

expressed in terms of numerical flux of the form Eq. 

(70) with 
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 The components of Di,j are given by 
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and  l
j,iS   is the smoothness monitor given by [37] 

as 
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where 
l

j,iq  are components of the conservative state 

vector Qi,j; and the ’s defined as follows to the  

direction: 
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 The first author of this work introduces some 

modifications in the original scheme of [24]. These 

modifications are as follows: 
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Observe that the resulting scheme is equivalent to 

the original of [24], with the unique difference that 

the difference of fluxes in Eqs. (73-74) is changed 

by the difference of conserved variables. With this 

new definition, the solutions present better 

behaviour, free of oscillations, undershoots and 

overshoots. The other expressions maintain the 

same structure. 

 The same equations, considered in the  

direction, can be developed, without any additional 

complexity. The algorithm described above is 

referred by [24] as TVD3 and the present authors 

remain this nomenclature. 

 The definition of the RHS to the implicit 

formulation is done as follows: 

 

   TVD
ji

TVD
ji

ji

jiTVD
ji

TVD
ji

ji

jin
ji FF

V

t
EE

V

t
YRHS 2/1,2/1,

,

,
,2/1,2/1

,

,
,)(  





 .   

(81) 

 

The Strang method is applied to the viscous 

simulations. 

 

5.2 ENO formulation 

A third-order ENO scheme for Eq. (69) can be 

constructed using reconstruction by primitive 

variable. Here, it is adopted: 

 

               
n

j,i
n

j,i
n

j,i
ENO

j,i
M

j,i DGEEE  3
; 

                
n

j,i
n

j,i
n
j,i

ENO
j,i

M
j,i DHFFF  3

,        (82) 

 

and G, H, and D are the terms that make up for the 

higher order accuracy that also depends either the 
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TVD or the ENO property to avoid Gibbs 

phenomena. 

 In Eq. (82) the components of the column vector 

Gi,j are given by 

 

                      l
j,/i

l
j,/i

l
j,i g~,g~mg 2121  ,              (83) 

 

where 
l

j,/ig~ 21  is given by 

 

  2
~

,,2/1,,2/1,2/1 jijijijiji EAtIsignAG   .
 

(84) 

 

And the components of column vector j,iD  are 

given by 

 

  l
j,/i

l
j,/i

l
j,/i

l
j,/i

l
j,i qqifd

~
,d

~
md 21212121   ; 

 

or, 

 

  l
j,/i

l
j,/i

l
j,/i

l
j,/i

l
j,i qqifd̂,d̂md 21212121   , 

(85) 

 

where l
j,/id

~
21  and 

l
j,/id̂ 21  are components of 

j,/iD
~

21  and j,/iD̂ 21 , respectively. 

 j,/iD
~

21  is given by Eq. (73) and j,/iD̂ 21  is 

given by 

 

6ˆ
,

2

,2/1
2
,,2/1,2/1 jijijijiji EIAtsignAD  






  . 

(86) 

 

 The first author also introduces a modification in 

the original algorithm of [24] in its ENO3 (ENO 

third-order) version. This modification is the same 

as that applied to the TVD3 scheme. Hence, 
 

n
j,i

n
j,i

n
j,i

ENO
j,i

M
j,i DAGAEEE

j,/ij,/i 2121

3

   ; 

 n
j,i

n
j,i

n
j,i

ENO
j,i

M
j,i DBHBFFF

j,/ij,/i 2121

3

   . (87) 

 

  2212121 j,ij,/ij,ij,/ij,/i QAtIsignAG
~

  ; 

6ˆ
,

2

,2/1
2
,,2/1,2/1 jijijijiji QIAtsignAD  






   

 (88) 
 

and j,/iD
~

21  defined as in Eq. (79). The other 

equations maintain the same aspect. The extension 

to the  direction is straightforward. 

 The definition of the RHS to the implicit 

formulation is done as follows: 

 

   ENO
ji

ENO
ji

ji

jiENO
ji

ENO
ji

ji

jin
ji FF

V

t
EE

V

t
YRHS 2/1,2/1,

,

,
,2/1,2/1

,

,
,)(  





 .   

(89) 

 

The Strang method is applied to the viscous 

simulations. 

 

 

6 Yang and Hsu UNO Third Order 

Algorithm 

Unlike TVD schemes, nonoscillatory algorithms are 

not required to damp the values of each local 

extremum at every single time step, but are allowed 

to occasionally accentuate a local extremum. The 

design involves an essentially nonoscillatory 

piecewise polynomial reconstruction of the solution 

from its cell averages, time evolution through an 

approximate solution of the resulting initial value 

problem, and averaging of this approximate solution 

over each cell. 

 A third-order UNO scheme for Eq. (1), based on 

[25] work, can be expressed by the following 

numerical flux, in  direction, for instance: 

 

     
 3

21211
3
21

2

1 UNO
j,/i

n,
j,/i

n
j,i

n
j,i

UNO
j,/i REEE 


  .  (90) 

 

The components of 
3
21

UNO
j,/i  are defined as: 

 

  l
j,i

l
j,i

l
j,/i

UNO,l
j,/i 121

3
21    

    

    



























otherwise

ˆˆˆˆ

if

~~~~

l
j,/i

l
j,/i

l
j,/i

l
j,/i

l
j,i

l
j,i

n
j,/i

l
j,/i

l
j,/i

l
j,/i

l
j,/i

l
j,/i

l
j,/i

l
j,i

l
j,i

n
j,/i

21212121121

2121

21212121121

(91) 

 

where the , ~  and ̂  functions are given by: 

 

                          2

2

1
ztz j,i ;                 (92) 

                 322
32

6

1
ztztz~

j,ij,i  ;        (93) 

                           zztˆ
j,i 

32

6

1
,                  (94) 

 

and 
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                     l
j,/i

l
j,/i

l
j,i ,m 2121   ;           (95) 

  l
j,/i

l
j,/i

l
j,/i

l
j,/i

l
j,i if,m

~
21212121   ; 

(96) 

  l
j,/i

l
j,/i

l
j,/i

l
j,/i

l
j,i if,mˆ

21212121   ; 

(97) 

   




 
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otherwise,
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j,il
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l
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0

021211
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(98) 
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
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
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
otherwise,
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l
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j,il
j,/i

l
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0

021211
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(99) 

   




 





otherwise,

ifˆˆ
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l
j,/i

l
j,/i

l
j,i

l
j,il

j,/i
l

j,/i
0

021211
2121 . 

(100) 

 

 The same expressions can be extended to the  

direction in a straightforward way. To the inviscid 

implicit cases, the LNI form is applied. The RHS for 

this algorithm is given by: 

 

   UNO
/j,i

UNO
/j,i

j,i

j,iUNO
j,/i

UNO
j,/i

j,i

j,in
j,i FF

V

t
EE

V

t
)YH(RHS 21212121  





 . 

(101) 

 

To the explicit viscous case, the Strang method is 

applied: 

 

                   n
j,i

n
j,i QtLtLtLtLQ  
2

   (102) 

 

The L operator is defined by 

 

          UNO
j,/i

UNO
j,/i

n
j,i

n
j,i EEtQQtL 2121   . (103) 

 

 

7 Implicit Formulation 

 
7.1 Implicit Scheme to the TVD algorithm of 

[12] and the UNO algorithm of [25] 
In the flux difference splitting cases of [12; 25] 

algorithms, a Linearized Nonconservative Implicit 

form is applied which, although the resulting 

schemes lose the conservative property, they 

preserve their unconditional TVD properties. 

Moreover, the LNI form is mainly useful to steady 

state problems where the conservative property is 

recovery by these schemes in such condition. This 

LNI form was proposed by [11]. 

 The LNI form is defined by the following two 

step algorithm: 

 

   n jijijijijijijiji RHSQJtJtI ,
*
,,2/1,2/1,,2/1,2/1,  





 , 

in the  direction;                                               (101) 

  *
,

1
,2/1,2/1,,2/1,2/1,, ji
n

jijijijijijiji QQKtKtI  






 , 

in the  direction;                                               (102) 

                        1
,,

1
,

  n
ji

n
ji

n
ji QQQ ,                      (103) 

 

where RHS is defined by Eq. (41), if the [12] 

scheme is being solved, and by Eq. (101), if the [25] 

scheme is being solved. The difference operators are 

defined as: 

 

   
      j,ij,1ij,2/1i   ,       j,1ij,ij,2/1i   ;  (104) 

   
      j,i1j,i2/1j,i   ,       1j,ij,i2/1j,i   ;  (105) 

 

As aforementioned, this three-diagonal linear 

system, composed of a 4x4 block matrices, is solved 

using LU decomposition and the Thomas algorithm, 

defined by a block matrix system. 

 The separated matrices J
+
, J

-
, K

+
 and K

-
 are 

defined as follows: 

 

  
  1





  RDdiagRJ ,   1





  RDdiagRJ
 
(106) 

  1





  RDdiagRK ,   1





  RDdiagRK  (107) 

 

in which the R and R matrices are defined by Eq. 

(31) applied to the respective coordinate; and 
1R 

  

and 
1R 

  defined by Eq. (48) applied to the 

respective coordinate direction.
 

 The diagonal matrices of the [12; 25] schemes 

are determined by: 
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(108) 
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with the D terms expressed as 

 

    llllD 

  5.0

 

                   llllD 

  5.0 ,     (109) 

 

where: 

 

  defined by Eq. (34); 

 

l

  and 
l

  are the eigenvalues of the Euler 

equations, determined by Eqs. (21-22), in each 

coordinate direction;  
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(110) 
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










 









0.0,0.0
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'

1,

'

2/1,

ji

l

ji

l

ji
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ji

l

ji

ji

l

if

ifgg
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(111)

    





 

 ,,0.0
,2/1,2/1,

'

ji

ll
ji

ll

ji
MINMAXsignalg

  
ji

ll
ji

lsignal
,2/1,2/1   ;                              (112) 

   

   





 

 ,,0.0
2/1,2/1,,

'

ji

ll
ji

ll

ji
MINMAXsignalg

 

  
2/1,2/1,  

ji

ll
ji

lsignal ;                              (113)
 

 lll 21   to steady state simulations.     (114) 

 

Finally, 
lsignal  = 1.0 if   0.0

,2/1


 ji

l  and -1.0 

otherwise; 
lsignal  = 1.0 if   0.0

2/1,


 ji

l  and      

-1.0 otherwise. 

 This implicit formulation to the LHS of the TVD 

or UNO schemes of [12] and [25], respectively, is 

second order accurate in space and first order 

accurate in time due to the presence of the 

characteristic numerical speed  associated with the 

numerical flux function g’. In this case, the 

algorithms accuracy is definitely second order in 

space because both LHS and RHS are second order 

accurate. 

 

7.2 Implicit Scheme to the TVD/ENO 

algorithms of [21; 24] 
For these algorithms, a backward Euler method in 

time and approximate factorization ADI form can be 

employed. The factorization in each coordinate 

direction is presented below: 

 

  n
j,i

*
j,ij,/ij,ij,/ij,i RHSQAÂtAÂtI  





 2121 ; 

(115) 

  *
j,i

n
j,i/j,ij,i/j,ij,i QQBB̂tBB̂tI  





 2121 ; 

(116) 

                       n
j,i

n
j,i

n
j,i QQQ 1 .                (117) 

 

 Equations (115-117) lead to standard block 

three-diagonal inversion procedure. The Thomas 

algorithm is employed to solve this system. 

 The matrices above are all defined along this 

manuscript, being unnecessary repeat them herein. 

 It is noted that each added high-order term of the 

right-hand-side operator [Eqs. (66; 81)] is a function 

of the time step ti,j, and consequently the steady 

state solutions will depend on the time step. 

 It is important to emphasize that the RHS of the 

flux difference splitting implicit schemes present 

steady state solutions which depend of the time step.  

With this behavior, the use of large time steps can 

affect the stationary solutions, as mentioned in [38]. 

This is an initial study with implicit schemes and 

improvements in the numerical implementation of 

these algorithms with steady state solutions 

independent of the time step is a goal to be reached 

in future work of both authors. 

 

 

8 Spatially Variable Time Step 

The basic idea of this procedure consists in keeping 

constant the CFL number in all calculation domain, 

allowing, hence, the use of appropriated time steps 

to each specific mesh region during the convergence 

process. 

 In this work were used two types of time step: 

one to convective flow (Euler equations) and the 

other to convective plus diffusive flow (Navier-

Stokes equations). They are defined as follows: 

8.1 Convective Time Step 
According to the definition of the CFL number, it is 

possible to write: 

                      jijiji csCFLt ,,,  ,               (118) 

 

where CFL is the “Courant-Friedrichs-Lewy” 

number to provide numerical stability to the 

scheme;    jiji avuc ,

5.022

,   is the maximum 

characteristic speed of information propagation in 

the calculation domain; and   jis ,  is a 

characteristic length of information transport. On a 
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finite volume context,   jis ,  is chosen as the minor 

value found between the minor centroid distance, 

involving the (i,j) cell and a neighbor, and the minor 

cell side length. 

8.2 Convective + Diffusive Time Step 
In this model, the time step is defined according to 

the [39] model: 

                 
 

jivc

vc

ji
tt

ttCFL
t

,

, 













 ,            (119) 

 

with tc being the convective time step and tv 

being the viscous time step. These quantities are 

defined as: 
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         intintintintint

max Sanvnu yx  ;    (122) 

                       
 

jiv

ji

vjiv

V
Kt

,

,

,


 ;                (123) 

                      
  jiL

23

ji
Vd

M
1p

,

/

,
PrRe


 ;              (124) 

  2
21

21

2
21

21

2
21

21

2
21

21

21212121
2 j,/i

j,/i

M

/j,i

/j,i

M

j,/i

j,/i

M

/j,i

/j,i

M

j,i SSSSp
j,/i/j,ij,/i/j,i















 




















; 

(125) 

                           
jijiv 2p1p

,,
 ,                 (126) 

 

where the interface properties are calculated by 

arithmetical average, M is the freestream Mach 

number and Kv is equal to 0.25, according to [39]. 

 

 

9 Initial and Boundary Conditions 

 

9.1  Initial Condition 
To the physical problems studied in this work, 

freestream flow values are adopted for all properties 

as initial condition, in the whole calculation domain 

([40-41]). Therefore, the vector of conserved 

variables is defined as: 
T

ji MMMQ











 

2

, 5.0
)1(

1
sincos1 , 

(127) 

being  the flow attack angle. 

9.2  Boundary Conditions 
The boundary conditions are basically of three 

types: solid wall, entrance and exit. The far field 

condition is a case of entrance and exit frontiers. 

These conditions are implemented in special cells 

named ghost cells. 

 
(a) Wall condition: This condition imposes the flow 

tangency at the solid wall. This condition is satisfied 

considering the wall tangent velocity component of 

the ghost volume as equals to the respective velocity 

component of its real neighbor cell. At the same 

way, the wall normal velocity component of the 

ghost cell is equaled in value, but with opposite 

signal, to the respective velocity component of the 

real neighbor cell. It results in: 

 

                            √       ⁄ ;              (128) 

                           √       ⁄ ;            (129) 

 

where, for the (i+1/2,j) interface: 

 

                                         ;              (130) 

                                         .              (131) 

 

Hence, the ghost cell velocity components are 

written as: 

 

                   (  
    

 )            ;     (132) 

                             (  
    

 )  ,   (133) 

 

with “g” related with ghost cell and “r” related with 

real cell. To the viscous case, the boundary 

condition imposes that the ghost cell velocity 

components be equal to the real cell velocity 

components, with the negative signal: 

 

                                      ;                          (134) 

                                      ,                          (135) 

 

The pressure gradient normal to the wall is 

assumed be equal to zero, following an inviscid 

formulation and according to the boundary layer 

theory. The same hypothesis is applied to the 

temperature gradient normal to the wall, considering 

adiabatic wall. The ghost volume density and 

pressure are extrapolated from the respective values 

of the real neighbor volume (zero order 

extrapolation), with these two conditions. The total 

energy is obtained by the state equation of a perfect 

gas. 

 

(b) Entrance condition: 
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(b.1) Subsonic flow: Three properties are specified 

and one is extrapolated, based on analysis of 

information propagation along characteristic 

directions in the calculation domain ([41]). In other 

words, three characteristic directions of information 

propagation point inward the computational domain 

and should be specified. Only the characteristic 

direction associated to the “(qn-a)” velocity cannot 

be specified and should be determined by interior 

information of the calculation domain. The pressure 

was the extrapolated variable from the real neighbor 

volume, to the studied problems. Density and 

velocity components had their values determined by 

the freestream flow properties. The total energy per 

unity fluid volume is determined by the state 

equation of a perfect gas. 

(b.2) Supersonic flow: All variables are fixed with 

their freestream flow values. 

 

(c) Exit condition: 

(c.1) Subsonic flow: Three characteristic directions 

of information propagation point outward the 

computational domain and should be extrapolated 

from interior information ([41]). The characteristic 

direction associated to the “(qn-a)” velocity should 

be specified because it penetrates the calculation 

domain. In this case, the ghost volume’s pressure is 

specified by its freestream value. Density and 

velocity components are extrapolated and the total 

energy is obtained by the state equation of a perfect 

gas. 

(c.2) Supersonic flow: All variables are extrapolated 

from the interior domain due to the fact that all four 

characteristic directions of information propagation 

of the Euler equations point outward the calculation 

domain and, with it, nothing can be fixed. 

 

 

10 Results 
Tests were performed in a personal computer 

(notebook) with Pentium dual core processor of 

2.20GHz of clock and 2.0Gbytes of RAM memory. 

Converged results occurred to 3 orders of reduction 

in the value of the maximum residual. The 

maximum residual is defined as the maximum value 

obtained from the discretized conservation 

equations. The value used to  was 1.4. To all 

problems, the attack or entrance angle was adopted 

equal to 0.0. 

 The physical problems to be studied are the 

shock impinging a wall, causing a reflection effect; 

and the supersonic flow along a compression corner, 

in both inviscid and viscous cases. 

 

10.1  Shock Reflection Problem - Inviscid 
The first problem to be studied is the shock 

reflection problem. It was suggested by [38] and is 

described by an oblique shock wave impinging a 

wall and reflecting in direction to the far field. 

Figure 2 exhibits the computational domain. 

 
Figure 2. Computational domain to the reflection 

shock problem. 

 
Figure 3. Mesh configuration (61x21). 

 

 Figure 3 shows the mesh configuration to this 

problem. It is composed of 1,200 cells and 1,281 

nodes or in a finite difference representation 61x21 

points. 

 
Figure 4. Sketch of the shock reflection solution. 

 

 The physical problem presents an oblique shock 

wave generated at the far field, with shock angle β 

of 29º, impinging a wall. After the interaction with 

the wall, the reflected shock is directed to the far 

field. The freestream Mach number to this 

simulation is 2.9, a moderate supersonic flow. The 

analytical solution, in terms of pressure contour 

lines as well in terms of pressure coefficient, is 
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presented and serves as numerical comparison. The 

sketch of the pressure contour lines and the pressure 

coefficient distribution at y = 0.5m are presented in 

Figs. 4 and 5, respectively. 

 
Figure 5. Pressure coefficient distribution 

at y = 0.5m. 

 

 In the figures below is employed the following 

nomenclature: TVD2 (Total Variation Diminishing, 

second order accurate in space), ENO2 (Essentially 

Nonocillatory, second order accurate in space), 

TVD3 (Total Variation Diminishing, third order 

accurate in space), ENO3 (Essencially 

Nonoscillatory, third order accurate in space) and 

UNO3 (Uniformly Nonoscillatory, third order 

accurate in space). 

 Figure 6 shows the pressure contours obtained by 

the [12] TVD algorithm. It is possible to note that 

the region of the incident shock and the region of 

the reflected shock agree with the analytical results. 

Only the intermediate region between the two shock 

waves is in disaccord with the analytical solution. 

The error in this prediction is about 1.84%, the same 

error found in the first part of this study [42].  

 
Figure 6. Pressure contours ([12]-TVD2). 

 

 In Figures (7-8) are exhibited the pressure 

contours of both TVD2 and ENO2 solutions due to 

[21] algorithm. As can be observed the two 

numerical solutions present a good comparison in 

the shock regions, only presenting error at the 

intermediate region between shock waves. The error 

found is again 1.84%. The shock waves thicknesses 

are also thicker in relation to the solution of [12], 

emphasizing that the [12] algorithm presents the 

best description of such shock waves. 

 
Figure 7. Pressure contours ([21]-TVD2). 

 
Figure 8. Pressure contours ([21]-ENO2). 

 
Figure 9. Pressure contours ([24]-TVD3). 
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 Figures (9-10) show the pressure contours 

obtained by the [24] algorithm in its third-order 

accuracy version, for both TVD and ENO 

formulations. As can be seen, the shock waves are 

well captured, the thicknesses of the shock waves 

are thicker than the [12] solution, and the 

intermediate region between shock waves presents 

an error of 1.84% in relation to the analytical 

solution. 

 
Figure 10. Pressure contours ([24]-ENO3). 

 

 Finally, Figure 11 presents the results of the [25] 

algorithm, in its UNO3 version. The shock waves 

thicknesses are thicker than the [12] solution, but 

are well captured. Only the intermediate region 

between shocks is in disagreement with the 

analytical solution, presenting an error of 1.84%. 

 
Figure 11. Pressure contours ([25]-UNO3). 

 

 As seen in Figure 12, the six (6) Cp distributions 

relative to the six (6) studied algorithms are plotted 

and compared. Notably, the solution presented by 

the [12] scheme is the closest with the analytical 

solution, demonstrating the excellent properties of 

this TVD2 scheme. All solutions are free of 

oscillations. Hence, the best solution on this 

problem is due to [12]. 

 
Figure 12. Cp distributions at y = 0.5m 

 

10.2  Compression Corner Problem - Inviscid 
The compression corner configuration is described 

in Fig. 13. The corner inclination angle is 10
o
. An 

algebraic mesh of 70x50 points or composed of 

3,381 rectangular cells and 3,500 nodes was used 

and is shown in Fig. 14. The points are equally 

spaced in both directions. 

 
Figure 13. Computational domain to the 

compression corner problem. 

 
Figure 14. Mesh configuration (70x50). 

 

 This problem consists in a moderate supersonic 

flow impinging a compression corner, where an 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Edisson Sávio De Góes Maciel, 
Eduardo Manfredini Ferreira

E-ISSN: 2224-3429 330 Issue 4, Volume 7, October 2012



oblique shock wave is generated. The freestream 

Mach number is equal to 3.0. The solutions are 

compared with the oblique shock wave theory 

results. 

 
Figure 15. Pressure contours ([12]-TVD2). 

 
Figure 16. Pressure contours ([21]-TVD2). 

 
Figure 17. Pressure contours ([21]-ENO2). 

 

 Figure 15 exhibits the pressure contours obtained 

by the [12] TVD2 scheme. As can be seen, a 

pressure peak appears at the corner beginning and it 

is reflected in the value 1.49 of the pressure legend, 

far from high than the other solutions. Due to this 

behavior in the pressure contours, the wall pressure 

distribution of [12] presents this peak. 

 Figures (16-17) show the pressure contours 

obtained by the [21] scheme, in its TVD and ENO 

second order accurate versions. Both solutions are 

free of oscillations, presenting a good transition 

between smooth and discontinuity regions. 

 Figures (18-19) exhibit the pressure contours 

obtained from [24], in its TVD and ENO versions of 

third-order accuracy, respectively. The solutions are 

free of oscillations and present good capture of 

shock discontinuity. The TVD3 version of the [24] 

algorithm presents the smallest shock wave 

thickness. 

 
Figure 18. Pressure contours ([24]-TVD3). 

 
Figure 19. Pressure contours ([24]-ENO3). 

 

 Figure 20 exhibits the pressure contours resulting 

from the [25] UNO3 scheme. As can be seen, no 

oscillations and good capture of the shock 

discontinuity are observed. 
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Figure 20. Pressure contours ([25]-UNO3). 

 

 Figure 21 shows the wall pressure distributions 

obtained by all schemes. They are compared with 

the oblique shock wave theory results. The best 

solution is that obtained with the [24] TVD3 

scheme. 

 
Figure 21. Wall pressure distributions. 

 
Figure 22. Wall pressure distributions. 

 In Figure 22, it is exhibited all pressure 

distributions with symbols to identify the number of 

cells necessary to capture the shock discontinuity. 

All schemes capture the discontinuity using three 

(3) cells, which is a good result for high resolution 

schemes. 

 One way to quantitatively verify if the solutions 

generated by each scheme are satisfactory consists 

in determining the shock angle of the oblique shock 

wave, , measured in relation to the initial direction 

of the flow field. [43] (pages 352 and 353) presents 

a diagram with values of the shock angle, , to 

oblique shock waves. The value of this angle is 

determined as function of the freestream Mach 

number and of the deflection angle of the flow after 

the shock wave, . To the compression corner 

problem,  = 10º (ramp inclination angle) and the 

freestream Mach number is 3.0, resulting from this 

diagram a value to  equals to 27.5º. Using a 

transfer in Figures 15 to 20, it is possible to obtain 

the values of  to each scheme, as well the 

respective errors, shown in Tab. 2. As can be 

observed, the [24] algorithm, in its ENO3 version, 

and the [25] UNO3 algorithm have yielded the best 

results. Errors less than 2.00% were observed in all 

solutions. 

 

Table 2. Shock angle and percentage errors. 

 

Algotithm  () Error (%) 

[12] – TVD2 27.4 0.36 

[21] – TVD2 27.0 1.82 

[21] – ENO2 27.4 0.36 

[24] – TVD3 27.8 1.09 

[24] – ENO3 27.5 0.00 

[25] – UNO3 27.5 0.00 

 

10.3  Compression Corner Problem - Viscous 
To the viscous case, it was chosen the compression 

corner problem again. The computational domain 

and the mesh configuration are described in Figs. 23 

and 24, respectively. The mesh is composed of 

7,761 rectangular cells and 8,000 nodes on a finite 

volume context (equivalent to a mesh of 200x40 

points in finite differences). 

 

 
Figure 23. Computational domain to the problem of 

the compression corner for viscous simulation. 
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 In this viscous problem, the flow is compressed 

at the corner region and a detached boundary layer 

is characterized. A circulation bubble is formed at 

this region. The points of detachment and 

reattachment are, respectively, 0.90m and 1.10m. 

 The initial condition to this problem considers a 

freestream Mach number of 3.0. The Reynolds 

number was estimated in 1.688x10
4
, according to 

[34], considering the characteristic length of 

0.00305m and an altitude of 20,000m. 

 
Figure 24. Mesh configuration (200x40). 

 

 Figures (25-27) show the boundary layer 

separation at the corner wall, obtained by the [21] 

and [24] algorithms. The [12] TVD2, the [24] TVD3 

and [25] UNO3 did not present converged solutions. 

In Figure 25, presenting the solution obtained with 

the [21] TVD2 scheme, the detachment and 

reattachment points are positioned, respectively, at x 

= 0.96m and x = 1.09m, as seen in Fig. 28. A small 

circulation bubble is formed at this region, 

according to the expected behavior. Considering x = 

0.90m and x = 1.10m as the correct values to 

detachment and reattachment points, the above 

results can be admitted as good. 

 
Figure 25. Boundary layer separation and 

circulation bubble formation ([21]-TVD2). 

 In Figure 26, presenting the solution obtained 

with the [21] ENO2 scheme, the detachment is 

positioned at x = 0.80m and the reattachment is 

positioned at x = 1.60m, as seen in Fig. 29. In this 

case, a great circulation bubble is formed, which 

disagrees with the expected solution. 

 
Figure 26. Boundary layer separation and 

circulation bubble formation ([21]-ENO2). 

 

 In Figure 27, the solution obtained with the [24] 

ENO3 algorithm is shown. The detachment and 

reattachment points are 0.80m and 1.80m, as seen in 

Fig. 30. A great circulation bubble is formed, 

opposed to the expected boundary layer behavior. 

 It is clear from these figures that the best solution 

is obtained with the [21] TVD2 scheme, in terms of 

detachment and reattachment points locations. 

 
Figure 27. Boundary layer separation and 

circulation bubble formation ([24]-ENO3). 

 

 Figure 28 exhibits the skin friction coefficient 

distribution, obtained by the [21] TVD2 scheme. As 

can be observed, the small separation region at the 
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corner wall is appropriately captured by the 

numerical algorithm. 

 
Figure 28. Skin friction coefficient distribution at 

wall ([21]-TVD2). 

 

 Figure 29 shows the skin friction coefficient 

distribution at the corner wall, obtained by the [21] 

ENO2 algorithm. It is notable the enormous 

boundary layer separation formed at the corner wall. 

This separation develops further downstream from 

the corner. The points of detachment and 

reattachment of the boundary layer are clearly 

pointed out. 

 
Figure 29. Skin friction coefficient distribution at 

wall ([21]-ENO2). 

 

 In Figure 30, the skin friction coefficient 

distribution to the [24] ENO3 algorithm is shown. It 

also captures a circulation bubble greater than that 

obtained with the [21] TVD2 algorithm. Hence, in 

terms of circulation bubble formation, an actual 

physical phenomenon, the best solution is due to the 

[21] TVD2 scheme. 

 Figure 31 exhibits the pressure distribution along 

the corner wall, obtained by the three converged 

solutions. As can be seen, the best pressure 

distribution curve is that obtained by the [24] ENO3 

scheme, presenting a solution closest to the 

experimental results of [44] and the numerical 

results of [45], mainly at the range 1.50m and 

1.60m. 

 
Figure 30. Skin friction coefficient distribution at 

wall ([24]-ENO3). 

 
Figure 31. Wall pressure distributions. 

 

10.4 Conclusion of this work 

Concluding this analyze, the best algorithm was the 

[24] ENO3 scheme, presenting good pressure 

distributions in the shock reflection and 

compression corner problems, in the inviscid case. 

Moreover, this scheme also presented the best value 

to the shock angle of the oblique shock wave, with 

0.00% of error. Finally, this algorithm also provides 

the best wall pressure distribution in the 

compression corner viscous problem. Hence, this 

algorithm is the selected one to describe the three 
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physical problems studied herein, as comparing 

these six (6) numerical schemes. 

 

10.5 Conclusion of this study 

Comparing the results obtained in this work with 

those obtained in the first part of this study, it is 

possible to conclude that the [24] ENO3 algorithm 

is the best as involving all thirteen (13) schemes 

studied in Part I and the six (6) schemes studied 

herein. The smooth pressure distributions at the 

reflection shock problem and at the corner wall, in 

the inviscid case, rendered the distinction of best 

algorithm to the ENO3 one. Even not yielding the 

best pressure distribution, which was better captured 

by the [46] TVD algorithm, the ENO3 scheme 

presented a reasonable pressure distribution in the 

viscous compression corner problem; so, ratifying 

its choice as the reference scheme to the problems 

studied herein. 

 

 

11 Conclusion 
In the present work, second part of this study, the 

[12] TVD, the [21] TVD/ENO, the [24] TVD/ENO, 

and the [25] UNO schemes are implemented, on a 

finite volume context and using a structured spatial 

discretization, to solve the Euler and Navier-Stokes 

equations in the two-dimensional space. All 

schemes are high resolution flux difference splitting 

ones, based on the concept of Harten’s modified 

flux function. The [12] is a TVD second order 

accurate in space and first order accurate in time 

algorithm. [21] is a TVD/ENO second order 

accurate in space and first order accurate in time 

algorithm. The [24] is a TVD/ENO third order 

accurate in space and first order accurate in time 

algorithm. Finally, the [25] is a UNO third order 

accurate in space and first order accurate in time 

algorithm. An implicit formulation is employed to 

solve the Euler equations, whereas a time splitting 

or Strang methods, explicit methods, are used to 

solve the Navier-Stokes equations. A Linearized 

Nonconservative Implicit LNI form or an 

approximate factorization ADI method is employed 

by the schemes. The algorithms are accelerated to 

the steady state solution using a spatially variable 

time step, which has demonstrated effective gains in 

terms of convergence rate ([32-33]). All schemes 

are applied to the solution of physical problems of 

the supersonic shock reflection at the wall and the 

supersonic flow along a compression corner, in the 

inviscid case, whereas in the laminar viscous case, 

the supersonic flow along a compression corner is 

solved. The results have demonstrated that the [24] 

ENO algorithm, third order accurate in space, has 

presented the best solutions, in the two works of this 

study. 
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