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Abstract - In the present paper a study is made in order to find an algorithm that can calculate coplanar orbital 
maneuvers for an artificial satellite. The idea is to find a method that is fast enough to be combined with 
onboard orbit determination using GPS data collected from a receiver that is located in the satellite. After a 
search in the literature, three algorithms are selected to be tested. Preliminary studies show that one of them 
(the so called “Minimum Delta-V Lambert Problem”) has several advantages over the two others, both in terms 
of accuracy and time required for processing. So, this algorithm is implemented and tested numerically 
combined with the orbit determination procedure. Some adjustments are performed in this algorithm in the 
present paper to allow its use in real-time onboard applications. Considering the whole maneuver, first of all a 
simplified and compact algorithm is used to estimate in real-time and onboard the artificial satellite orbit using 
the GPS measurements. By using the estimated orbit as the initial one and the information of the final desired 
orbit (from the specification of the mission) as the final one, a coplanar bi-impulsive maneuver is calculated. 
This maneuver searches for the minimum fuel consumption. Two kinds of maneuvers are performed, one 
varying only the semi major axis and the other varying the semi major axis and the eccentricity of the orbit, 
simultaneously. The possibilities of restrictions in the locations to apply the impulses are included, as well as 
the possibility to control the relation between the processing time and the solution accuracy. Those are the two 
main reasons to recommend this method for use in the proposed application.  
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1 Introduction 
For the general problem of orbital maneuvers, many 
alternatives are studied in the literature considering 
different conditions. An important field of research 
considers the so called low thrust maneuver. In this 
model, a force with low magnitude is applied during 
a finite time. To find the trajectory of the spacecraft 
is necessary to integrate the equations of motion. 
There are many results in the literature considering 
this model, beginning with the works of Lawden 
([1], [2]). Many other more recent researches are 
available dealing with this model, like references [3] 
to [8]. A second approach uses the idea of an 
impulsive thrust, which is the case where the thrust 
is assumed to have an infinity magnitude. Several 
papers used this approach, like references [9] to 
[13]. 
     Later, the idea of gravitational capture has been 
considered. In this situation the perturbation of a 
third-body [14] can be used to decrease the fuel 
consumption of an orbital maneuver. References 
[15] to [17] explain this idea in some detail. 
     Another approach that appeared in the literature, 
to find alternatives to reduce fuel expenditure in 
space missions, is the swing by maneuvers. 
References [18] to [32] show more details, as well 
as missions using this technique. 
     The problem of autonomous satellite maneuvers 
can be defined as the problem of searching for a 
solution of the orbital transfer problem that does not 
require any command from an Earth's control center. 
To develop this task is necessary that the satellite is 
able to determine its orbit by itself, which will be 
described in next sections. After getting this 
information, the satellite needs to solve the problem 
of the orbital maneuver with minimum fuel 
consumption and, after that, generates the 
commands to perform this change in its orbit 
autonomously.  

So, after having its orbit determined and 
considering that the information of the final 
expected orbit is available from the definition of the 
mission, a coplanar bi-impulsive maneuver is 
calculated, searching for the minimum fuel 
consumption. This sequence of calculations is based 
in the assumption that the control available to 
modify the orbit of the spacecraft is a bi-impulsive 
maneuver that is a very popular condition in space 
missions. The two orbits involved are assumed to be 
coplanar, which covers many important situations. It 
is also known that the CPU time allowed for 
calculating the optimal transfer is of the order of a 
few seconds. In this way, the orbit is estimated in 
intervals from 10 to 30 seconds and the initial point 
of the transfer is supposed to be the position of the 

satellite in that time. Next, the final orbit is divided 
in a certain number of points and, in each point, the 
optimal bi-impulsive orbital transfer is calculated. 
The consumption of each maneuver is stored and, 
from these data, the global minimum can be found.  

Three algorithms selected in the literature were 
tested to choose a method that can be used for 
calculating the orbital maneuver. From these three, 
two of them allow the calculation of the impulsive 
tri-dimensional maneuvers [33, 34], but they do not 
perform the calculations fast enough to be executed 
on board and in real-time for this application. In this 
way, the algorithm developed by Prado [35] for 
coplanar maneuvers is chosen. After this choice, 
some adjustments in the program code were made in 
order to make it fast enough to be compatible with 
real-time applications.  

Prado’s method solves the bi-impulsive coplanar 
transfer problem with variations in the orbital 
elements semi-major axis, eccentricity, and 
argument of perigee, the three possibilities for a 
coplanar maneuver. The restriction of coplanar 
maneuvers does not compromise the use of the 
algorithm, because the planar maneuvers have 
important applications, since there are several 
missions that do not require orbital plane change. 
The method uses the “Minimum Delta-V Lambert 
Problem” [35] that will be shown later in this paper.  
 
 

2 Onboard orbit determination  
The Global Positioning System (GPS) is a satellite 
navigation system used to determine positions, 
velocities and time with high accuracy. The GPS 
system allows a GPS receiver to determine its 
position and time at any place using data from at 
least four GPS satellites. Using such a system, an 
algorithm to determine onboard the satellite orbit in 
real-time using the GPS system and Kalman 
filtering was developed by Chiaradia et. al. [36]. It 
is a simplified and compact model with low 
computational cost. The extended Kalman filter 
(EKF) estimates the state vector, composed by the 
position and velocity components, bias, drift, and 
drift rate of the GPS receiver clock. A simple fixed 
step size fourth order Runge-Kutta numerical 
integrator is found to be suitable to integrate the 
differential equations of orbital motion. The 
algorithm uses a large 30 seconds step-size of 
propagation (10 second step-size can be used as 
well). The force model in the equations of motion 
considers the perturbations due to the geopotential 
up to order and degree 10 of the spherical 
harmonics. The state error covariance matrix is 
computed through the transition matrix, which is 
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calculated analytically in an optimized way [37]. 
The raw single frequency pseudorange GPS 
measurements are used as observations by the 
Kalman filter. They are modeled taking into account 
most of the GPS satellite and receiver clock offsets. 
To analyze the developed algorithm, the 
Topex/Poseidon satellite (T/P) data were chosen, 
because it carries a dual frequency receiver GPS on 
board experimentally to test the ability of the GPS 
to provide precise orbit determination (POD). All 
T/P GPS data set and GPS navigation message are 
easily found in the Internet in Rinex format [38].  

The satellite orbit is estimated using the 
developed algorithm with a good accuracy and 
minimum computational cost. It can be noted that, 
for all the days tested, the real position and velocity 
errors are less than the estimated position and 
velocity errors given by the filter covariance. It 
shows the conservative behavior of the filter. In all 
cases, the filtering takes around one hour to 
converge. Before achieving the convergence, the 
onboard computer can use the GPS navigation 
solution provided by a GPS receiver at 30-meter 
level error. The position accuracy with SA off or on 
varies from 15 to 20 m with standard deviation that 
goes from 6 to 10 m. The velocity accuracy goes 
from 0.014 to 0.018 m/s with standard deviation 
varying from 0.006 to 0.009 m/s.  
 
 

3  Minimum Delta-V Lambert problem  
The original Lambert's problem is one of the most 
important and popular topics in celestial mechanics. 
It can be defined as: "A Keplerian orbit, about a 
given gravitational center of force, is to be found 
connecting two given points (P1 and P2) in a given 
time t". 

Prado [35] formulated and proposed several 
forms to solve a problem that is related to the 
Lambert's problem. His formulation is slightly 
different from the original one, but it also has many 
important applications. This problem is called 
"Minimum Delta-V Lambert's Problem" and it is 
formulated as follows: "A Keplerian orbit, about a 
given gravitational center of force, is to be found 
connecting two given points (P1 and P2), such that 
the V for the transfer is minimum". 

To solve this problem, the analytical expressions 
for the V (as a function of only one independent 
variable) and for its first derivative with respect to 
this variable are obtained. Furthermore, a numerical 
scheme to get the root of the first derivative and the 
numeric value of the V at this point is used. From 
this information it is possible to get all the other 

parameters involved, like the components of the 
impulses, their locations, etc. Its method is closely 
connected to the search for a minimum two-impulse 
transfer between two given coplanar orbits. 
 
 
2.1 Definition of the Problem 
Suppose that there is a spacecraft in a Keplerian 
orbit that is called O0 (the initial orbit). It is desired 
to transfer this spacecraft to a final Keplerian orbit 
O2 that is coplanar with the orbit O0. The orbits are 
not co-axial and are not located in any specific 
position. To develop this transfer, the spacecraft 
departures from the point P1(r1,1), where one 
impulse is applied with magnitude V1 that makes 
an angle 1 with the transverse local direction 
(perpendicular to the radius vector). The transfer 
orbit crosses the final orbit in the point P2(r2,2), 
where a second impulse is applied with magnitude 
V2 that makes an angle 2 with transverse local 
direction. To define the basic problem (the 
"Minimum Delta-V Lambert's Problem"), it is 
necessary to specify the true anomaly (1) of the 
departure point in the orbit O0 (P1) and the true 
anomaly (2) of the point of arrival in the orbit O2 
(P2). With these two values given and all the 
Keplerian elements of both orbits known, it is 
possible to determine both radius vectors 


r1  and 


r2  

at the beginning and at the end of the transfer. Then 
the problem is to find which transfer orbit 
connecting these two vectors and using only two 
impulses is the one that requires the minimum V 
for the maneuver. This problem is what is called 
"Minimum V Lambert's Problem". The sketch of 
the transfer and the variables used are shown in Fig. 
1. It shows the initial, transfer and final orbit, as 
well as the variables used to describe the problem: 
ω0 (the argument of the periapsis of the initial orbit), 
P1 (the point where the first impulse is applied), r1 
(the distance between P1 and the central body), ϴ1 
(the angular position of P1, measured from the X-
axis), ∆V1 (the magnitude of the first impulse), 1 
(the angle that specify the direction of the first 
impulse, measured from the perpendicular to the 
position vector), ω2 (the argument of the periapsis of 
the final orbit), P2 (the point where the second 
impulse is applied), r2 (the distance between P2 and 
the central body), ϴ2 (the angular position of P2, 
measured from the X-axis), ∆V2 (the magnitude of 
the second impulse), 2 (the angle that specify the 
direction of the first impulse, measured from the 
perpendicular to the position vector). 

Using basic equations from the two-body 
celestial mechanics, it is possible to write an 
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analytical expression for the total V (= V1 + V2) 
required for this maneuver. To specify each of the 
three orbits involved in the problem, the elements D, 
h, and k are used. They are defined by the following 
equations: 

 


inehek

C
D s     ;cos     ;  ,             (1) 

 
where  is the gravitational parameter of the central 
body (in km3/s2); C is the angular momentum of the 
orbit (in km2/s), e is the eccentricity, and  is the 
argument of the perigee. 

 
 

 
  

Figure 1 - Geometry of the Minimum V 
Lambert's Problem. 

 
The subscripts "0" for the initial orbit, "1" for the 
transfer orbit, and "2" for the final orbit are also 
used. In those variables, the expressions for the 
radial (subscript r) and transverse (subscript t) 
components of the two impulses are: 
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 cos 
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

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kDkDDDVt


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 (5) 

 
Now, the problem is to find the transfer orbit that 

minimizes the total V and satisfies the two 
following constraints shown in Eqs. (6) and (7), 
expressing the fact that the orbits intersect: 

 
 
  ,0scos 1        

 cos 1

1111
2

1

1010
2
01




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

in hkD

sinhkDg
   (6) 

 
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 cos 1
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2

1

2222
2
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


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

sinhkD

sinhkDg
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The above equations are obtained from 

references [39] and [40]. The problem is then 
reduced to the one of finding the D1 that gives the 
minimum value for the expression 

2
2

2
2

2
1

2
1 trtr VVVVV  . 

 
 
2.2 Using the chain rule to obtain the 
derivatives  
The constraints (6) and (7) can be used to solve this 
system of equations for two of the variables, making 
the equation for the V a function of only one 
independent variable. The system formed by these 
two equations is symmetric and linear in the 
variables h1 and k1, so the system is solved for these 
two variables. The results are the Eqs. (8) and (9):  
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Now that the V is a function of only one 

variable (D1) (remember that 1 and 2 are fixed 
values for the Lambert's problem), elementary 
calculus can be used to find its minimum. All that 
has to be done is to search for the root of the 

expression 
 

1D

V


 

. From the definition of V it is 

possible to write: 
 

X
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Now, the chain rule for derivatives is applied to 

obtain expressions for the quantities 
       

1
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A general expression for them is: 
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where i = r,t; j = 1,2 and the word "Direct" stands 
for the part of the derivative that comes from the 
explicit dependence of Vij in the variable D1. The 

expressions for 
 

1k

Vij


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 and 
 

1h

Vij


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 can be 

obtained from Eqs. (2) to (5) and the expressions for 

1

1 

D

k




 and 
1

1 

D

h




 can be obtained from the Eqs. (8) 

and (9).  
With all those equations available, a numerical 

algorithm was built by Prado [35] to iterate in the 
variable D1 to find the only real root of the equation 
 

0
1



D

V




. To obtain the value of 
 

1D

V


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 for a 

given D1, necessary for the iteration process 
required, the following steps can be used: 

1. Evaluate k1 and h1 from Eqs. (8) and (9) for 
the given D1; 

2. With D1, h1 and k1 the Eqs. (2) to (5) are used 
to evaluate Vr1, Vt1, Vr2, Vt2, V1(

2
1

2
1 tr VV  ), and V2 (

2
2

2
2 tr VV  ); 

3. With all those quantities known, it is 

possible to evaluate 
 

1k

Vij


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 and 
 

1h

Vij


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(obtained from Eqs. (2) to (5)) and (10) to 

finally obtain 
 

1D

V


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 for the given D1. 

 

 

2.3 Solving the equation 
 

0
D

V

1



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At this point it is important to remark that the 

function 
 

1D

V


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 is very sensitive to small 

variations in D1, especially when close to the real 
root. Its curve is almost a straight line with a slope 
that goes to infinity when    - 12   goes to 180. 
Fig. 2 shows the detail for a transfer where    - 12 
= 3.14 rad, considering D0 = 3 ; h0 = 0; k0 = 1/3, 
D2 = 2 ; h2 = 1/4; k2 = 0.4333. 
. From that figure, it is easy to see that this fact 
comes from the sharpness of the curve V  D1, 
when close to the minimum. This characteristic is 
particular for the set of variables used and is not a 
physical problem. If another independent variable is 
used, like the argument of the perigee of the transfer 
orbit, the curve for the V  D1 has a much less 
sharp minimum and, in consequence, its derivative 
has no big jumps. 
 
 

 
 

 
 

Figure 2 - V and its derivative as a function of 
D1 (Adapted from Prado [35]). 

 
This behavior makes numerical methods to find 

the root based on derivatives (like the popular 
Newton-Raphson) not very adequate. The method of 
dividing the interval in two parts in each iteration 
shows to be very adequate. Expressions for the 

D1 

D1 

V 

V Derivative 
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components of the variation of the velocity are 
shown below. 
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Those equations allow the calculation of the 

expression for 
 

1D

V


 

 that is given by Eq. (10). The 

partial derivatives involved are given by: 
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Now, the same technique of dividing the interval 

in two parts in each iteration is used, to find the root 
of the Eq.(10). 
 
 

3 Simulations 
To analyze the proposed algorithm, the 

Topex/Poseidon satellite (T/P) data are chosen, 
because it carries a dual frequency receiver GPS on 
board experimentally to test the ability of the GPS 
to provide precise orbit determination (POD). All 
T/P GPS data set and GPS navigation message are 
easily found in the Internet in Rinex format [38,41].  

The mission of the Topex/Poseidon satellite is 
jointly conducted by the United States National 
Aeronautics and Space Administration (NASA) and 
the French space agency, Centre National d’Etudes 
Spatiales (CNES). The main goal of this mission is 
to improve the knowledge of the global ocean 
circulation. Other applications include studying the 
ocean tides, geodesy and geodynamics, ocean wave 
height, and winding speed. 

The T/P spacecraft orbits the Earth at an altitude 
of 1336 km, inclination of 66o, and nearly zero 
eccentricity. The period of the orbit is 1.87 hrs. 
Table 1 shows the orbit in more detail [42] 
 

TABLE 1 - NOMINAL ORBITAL 
PARAMENTER FOR THE T/P SATELLITE 

PARAMETER NOMINAL VALUES

Semi major 
axis 

7 712.190 km 

Eccentricity 0.0015 

Inclination 66.039º 

Orbital period 112 min 

Perigee motion 0º/day 

Node motion -2.29º/day 
Mean motion 4 613.6º/day 
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This satellite carries a total of five tracking 
systems including Satellite Laser Ranging (SLR), 
DORIS Doppler, GPS, TDRSS, and the satellite 
altimeter itself. The satellite orbit must be 
determined with a RMS radial accuracy of 13 cm. 
This is an extremely stringent accuracy requirement 
for a satellite of this shape and altitude [43]. The 
T/P receiver can track up to six GPS satellites at 
once on both frequencies if Anti-Spoofing is 
inactive. 

The eccentricity is controlled to maintain the 
argument of perigee in 90º, producing a frozen orbit. 
This frozen orbit configuration minimizes height 
variations (with respect to the ellipsoid) and it is 
very favorable for altimeter mission [44]. 

After the T/P orbit is determined using the 
algorithm developed by Chiaradia et. al. [36], this 
orbit is considered the initial one for calculating the 
orbital maneuver. The final orbit is given as the 
initial conditions. Then, the optimized Prado's 
algorithm calculates the optimal transfer for this 
time. In each 30-second interval, this procedure is 
repeated. After 24 hours of integration, the 
procedure provides the optimal maneuver for the 
period.  

The algorithm allows developing maneuvers 
varying the semi major axis, the eccentricity, and/or 
the argument of perigee. In this work, only 
maneuvers varying the semi major axis and 
eccentricity are performed. In Tables 2 to 7 are 
shown the optimal maneuvers performed varying 
only the semi major axis for two days of simulation. 
Tables 8 to 13 show the optimal maneuvers varying 
the semi major axis and the eccentricity, 
simultaneously, for the same periods. Three 
simulations are made for each table of results. They 
consider different values for the semi major axis of 
the final orbit.  

The orbit determination is carried out using the 
osculating elements; however the algorithm for 
calculating the orbital maneuvers uses the mean 
elements. Therefore, it is necessary to perform a 
transformation from osculating to mean elements 
and to add it to algorithm. Then, the Keplerian 
elements shown in Tables 2 to 13 are mean 
elements.  
 
 
 
 
 
 
 
 
 

TABLE 2 - MANEUVERS VARYING SEMI 
MAJOR AXIS FOR 11/18/1993 –  

SIMULATION 1 

PARAMETERS SIMULATION 1 
a0 (m) 7728608.9 

e0 0.002515 

0 (degree) 257.85 
a2(m) 7730000.0 

1 (degree) 5.5 
2 (degree) 185.96 

a1(m) 7729303.8 
e1 0.002488 

1(degree) -138.90 
r1 (m) 7734460.1 
r2 (m) 7723907.8 

1 (degree) 0.61 
2 (degree) 0.61 
V1 (m/s) 0.32 

V2 (m/s) 0.32 

VTotal (m/s) 0.64 

t (s) 77251.1 
TABLE 3 - MANEUVERS VARYING SEMI 

MAJOR AXIS FOR 11/18/1993 – 
 SIMULATION 2 

PARAMETER
S 

SIMULATION 2

a0 (m) 7728608.9 
e0 0.002515 

0 (degree) 257.85 
a2(m) 7800000.0 

1 (degree) 5.5 
2 (degree) 185.96 

a1(m) 7764276.8 
e1 0.004511 

1(degree) 175.31 
r1 (m) 7734460.1 
r2 (m) 7723907.8 

1 (degree) 0.61 
2 (degree) 0.61 
V1 (m/s) 16.49 

V2 (m/s) 16.45 

VTotal (m/s) 32.94 

t (s) 77251.1 
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TABLE 4 - MANEUVERS VARYING SEMI 
MAJOR AXIS FOR 11/18/1993 – 

 SIMULATION 3 

PARAMETER
S 

SIMULATION 3

a0 (m) 7728608.9 
e0 0.002515 

0 (degree) 257.85 
a2(m) 7850000.0 

1 (degree) 5.5 
2 (degree) 185.96 

a1(m) 7789257.5 
e1 0.0074 

1(degree) 170.12 
r1 (m) 7734460.1 
r2 (m) 7843813.8 

1 (degree) 0.61 
2 (degree) 0.61 
V1 (m/s) 27.93 

V2 (m/s) 27.82 

VTotal (m/s) 55.74 

t (s) 77251.1 
 
 

TABLE 5 - MANEUVERS VARYING SEMI 
MAJOR AXIS FOR 01/21/1994 –  

SIMULATION 4 

PARAMETER
S 

SIMULATION 4

a0 (m) 7726538.9 
e0 0.002169 

0 (degree) 235.23 
a2(m) 7730000.0 

1 (degree) 5.14 
2 (degree) 183.97 

a1(m) 7728268.8 
e1 0.002144 

1(degree) -123.40 
r1 (m) 7729361.4 
r2 (m) 7727444.1 

1 (degree) 1.05 
2 (degree) 1.05 

V1 (m/s) 0.80 

V2 (m/s) 0.80 

VTotal (m/s) 1.60 

t (s) 62081.0 
 
 

TABLE 6 - MANEUVERS VARYING SEMI 
MAJOR AXIS FOR 01/21/1994 –  

 SIMULATION 5 

PARAMETER
S 

SIMULATION 5

a0 (m) 7726538.9 
e0 0.002169 

0 (degree) 235.23 
a2(m) 7800000.0 

1 (degree) 5.14 
2 (degree) 183.97 

a1(m) 7763256.6 
e1 0.004878 

1(degree) 136.23 
r1 (m) 7729361.4 
r2 (m) 7797420.9 

1 (degree) 1.05 
2 (degree) 1.05 
V1 (m/s) 16.98 

V2 (m/s) 16.93 

VTotal (m/s) 33.91 

t (s) 62081.0 
 
 

TABLE 7 - MANEUVERS VARYING THE 
SEMIMAJOR AXIS FOR 01/21/1994 – 

SIMULATION 6 

PARAMETER
S 

SIMULATION 6

a0 (m) 7726538.9 
e0 0.002169 

0 (degree) 235.23 
a2(m) 7850000.0 

1 (degree) 5.14 
2 (degree) 183.97 

a1(m) 7788247.9 
e1 0.0079 

1(degree) 137.89 
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r1 (m) 7729361.4 
r2 (m) 7847404.4 

1 (degree) 1.05 
2 (degree) 1.05 
V1 (m/s) 28.41 

V2 (m/s) 28.30 

VTotal (m/s) 56.71 

t (s) 62081.0 
 
 

TABLE 8 - MANEUVERS VARYING SEMI 
MAJOR AXIS AND ECCENTRICITY FOR 

11/18/1993 – SIMULATION 7 

PARAMETER
S 

SIMULATION 7

a0 (m) 7726950.7 
e0 0.00505 

0(degree) 341.97 
a2(m) 7730000.0 

e2 0.0001 

1 (degree) 314.96 
2 (degree) 299.94 

a1(m) 7729835.5 
e1 0.00048 

1 (degree) -163.42 
r1 (m) 7729835.5 
r2 (m) 7730772.9 

1 (degree) 73.59 
2 (degree) 1.47 
V1 (m/s) 0.15 

V2 (m/s) 1.38 

VTotal (m/s) 1.53 

t (s) 53521.1 
 

TABLE 9 - MANEUVERS VARYING SEMI 
MAJOR AXIS AND ECCENTRICITY FOR 

11/18/1993 – SIMULATION 8 

PARAMETER
S 

SIMULATION 8

a0 (m) 7728608.8 
e0 0.002515 

0(degree) 257.85 
a2(m) 7800000.0 

e2 0.0001 

1 (degree) 5.5 
2 (degree) 155.97 

a1(m) 7764773.0 
e1 0.0045 

1 (degree) 168.50 
r1 (m) 7734460.1 
r2 (m) 7800160.3 

1 (degree) 0.92 
2 (degree) 0.98 
V1 (m/s) 16.72 

V2 (m/s) 16.24 

VTotal (m/s) 32.96 

t (s) 77251.1 
 
 

TABLE 10 - MANEUVERS VARYING SEMI 
MAJOR AXIS AND ECCENTRICITY FOR 

11/18/1993 – SIMULATION 9 

PARAMETER
S 

SIMULATION 9

a0 (m) 7728608.8 
e0 0.002515 

0(degree) 257.85 
a2(m) 7850000.0 

e2 0.0001 

1 (degree) 5.5 
2 (degree) 167.97 

a1(m) 7790744.3 
e1 0.0078 

1 (degree) 165.87 
r1 (m) 7734460.1 
r2 (m) 7849998.3 

1 (degree) 0.12 
2 (degree) 0.18 
V1 (m/s) 28.60 

V2 (m/s) 27.15 

VTotal (m/s) 55.75 

t (s) 77251.1 
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TABLE 11 - MANEUVERS VARYING SEMI 
MAJOR AXIS AND ECCENTRICITY FOR 

01/21/1994 – SIMULATION 10 

PARAMETERS SIMULATION 10 
a0 (m) 7725673.5 

e0 0.0058 

0(degree) 53.38 
a2(m) 7730000.0 

e2 0.0001 

1 (degree) 37.55 
2 (degree) 231.97 

a1(m) 7726015.8 
e1 0.00061 

1 (degree) -128.8 
r1 (m) 7721414.7 
r2 (m) 7730772.8 

1 (degree) 0.14 
2 (degree) 0.15 
V1 (m/s) 0.16 

V2 (m/s) 1.85 

VTotal (m/s) 2.01 

t (s) 38401.0 
 
 

TABLE 12 - MANEUVERS VARYING SEMI 
MAJOR AXIS AND ECCENTRICITY FOR 

01/21/1994 – SIMULATION 11 

PARAMETER
S 

SIMULATION 11

a0 (m) 7726538.9 
e0 0.002169 

0(degree) 7.8 
a2(m) 7800000.0 

e2 0.0001 

1 (degree) 5.2 
2 (degree) 159.97 

a1(m) 7762859.0 
e1 0.0048 

1 (degree) -138.09 
r1 (m) 7729361.4 
r2 (m) 7800206.4 

1 (degree) 0.09 
2 (degree) 0.15 
V1 (m/s) 16.79 

V2 (m/s) 17.12 

VTotal (m/s) 33.91 

t (s) 62081.0 
 
 

TABLE 13 - MANEUVERS VARYING SEMI 
MAJOR AXIS AND ECCENTRICITY FOR 

01/21/1994 – SIMULATION 12 

PARAMETER
S 

SIMULATION 12

a0 (m) 7726538.9 
e0 0.002169 

0(degree) 7.8 
a2(m) 7850000.0 

e2 0.0001 

1 (degree) 5.2 
2 (degree) 169.97 

a1(m) 7788568.9 
e1 0.0078 

1 (degree) -139.14 
r1 (m) 7729361.4 
r2 (m) 7850073.1 

1 (degree) 0.15 
2 (degree) 0.09 
V1 (m/s) 28.55 

V2 (m/s) 28.16 

VTotal (m/s) 56.71 

t (s) 62081.0 
 

All maneuvers studied varying the semi major 
axis are of the Hohmann type. It means that the 
difference between the true anomalies of the points, 
where the impulses are applied, is around 180º. The 
directions of all the impulses are nearly tangential, 
as expected. The instant to perform the maneuver, in 
each day, is shown in several tables. For example, in 
Tables 5 to 7 one notes that the optimal maneuver in 
the three cases occurs in the same instant (62081.0 
s). The mean semi-major axis of the initial orbit 
obtains its maximum value in this time and this fact 
minimizes the consumption of the orbital maneuver 
that has as goal to increase the semi major axis of 
the satellite orbit.  

The maneuvers varying the semi-major axis and 
the eccentricity are shown in Tables 8 to 13 and they 
are not of the Hohmann type. They are optimal bi-
impulsive coplanar maneuvers, but the impulses are 
not always tangential to the orbit and the angle 
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between the positions, where the impulses are 
applied, is not 180º. 
 
 

3 CONCLUSIONS 
Three algorithms were selected for a preliminary 
analysis of their capacity to perform autonomous 
orbital maneuvers. One of them is implemented and 
tested numerically in details, combined with an 
algorithm to determine the orbit of a spacecraft. 
Some adjustments in the code of this algorithm are 
performed for use in real-time and on board 
applications. Two kinds of maneuvers are executed, 
one varying the semi-major axis and the other one 
varying the semi-major axis and the eccentricity, 
simultaneously. The simulations were performed 
using the initial orbit as the one estimated by the 
Kalman filtering. The method converges to the 
optimal solution in times that are short enough to 
allow real-time and on board applications. The 
results obtained are always within the expectations 
based in related theories. This algorithm has the 
possibility of restricting the regions where the 
maneuver is applied, as well as to control the 
relation between the processing time and solution 
accuracy. These are two good reasons to 
recommend this method to be used in the proposed 
application.  
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