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Abstract: - In this paper, a long bubble elongates through a contraction tube followed by an expansion tube 

filled with viscoplastic fluids was studied experimentally and numerically. The effects of both tube geometry 

and fluid characteristics on the bubble profiles and fractional converge were evaluated. 

In the experimental aspect, the bubble profiles and the fractional converge were obtained by image 

processing the photos captured with a high-speed camera. In the numerical analysis aspect, the continuity 

equation and momentum equation were converted to the equations in the form of streamline and vorticity. The 

differential equations were discretized with the finite difference method. Gauss-Seidel Iteration method with 

successive over-relaxation (SOR) were applied in the computation of the viscous fluid flows. The evolution of 

the bubble contour predicted by a conservative Level Set Method was applied to this study.  

The results showed that the fractional converge of the fluid, the bubble profile and velocity changed due to 

the effects of the fluid viscosity, the gas the flow rate and the contraction/ expansion angle of the tube.  The 

bubble profile, developing along the stream line, was changed by the effects of the inertia force, surface tension 

and capillary force, etc. The bubble profiles and the flow fields generated by numerical simulation were applied 

to explain the experimental observations. Both experimental observation and numerical simulation results were 

in the same trend. A good consistency was shown between our results and the related researches. 

 

 

Key-Words: - Evolution, Level Set Method, Long Bubble, Streamline, Viscoplastic Fluids, Vorticity. 

 

1 Introduction 
There are many benefits to manufacture the plastic 

parts by gas-assisted injection molding (GAIM). 

The parts with better quality are manufactured for 

uniform pressure distribution throughout the mold 

by using the nitrogen gas. Therefore, GAIM 

technique is widely used to manufacture 

components for automobiles, home appliances, 

communication products, etc. 

A shape profile equation, as the water penetrated 

the oil in a Hele-Shaw cell, was published by 

Saffman & Taylor[1] in 1958.  The ratio λ was 

defined as the fraction of the channel was occupied 

by the bubble. In 1961, Taylor[2] analyzed the fluid 

deposition in different-sized circular tubes with 

different fluids. A correlated curve of the fractional 

coverage to the capillary number was published. In 

1980, Pitts[3] reported a theoretical shape equation 

of the bubble front for λ < 0.77. 

Yamamoto et al.[4] experimentally studied the 

effect of Capillary number (Ca) and Weiseenberg 

number (Wi) on capillary number for Newtonian 

and non- Newtonian fluids. 

In 1985, Reinelt and Saffman[5] investigated the 

fractional coverage and the flow field of viscous 

fluid by using the finite difference method with 

composite mesh for both two-dimensional and 

axisymmetric cases.  
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In 1987, Song et al.[6] studied the numerical 

simulation of the flow of upper convected Maxwell 

fluid through a planar 4:1 contraction by using type 

dependent difference approximation of the vorticity 

equation. 

In 2010, C. H. Hsu et.al.[7] investigated  the 

steady-state flow field of a long bubble penetrating 

into a region filled with a viscous fluid confined by 

two closely located parallel plates.The gradually 

moving of the stagnation point in the front of the 

bubble tip between two typical flow patterns is 

clearly presented.  In 1997, Huzyak and Koelling[8] 

studied the influence factors of the fractional 

coverage for both the Newtonian and viscoelastic 

fluids experimentally. They showed that the 

thickness of the coating film was affected by the 

fluid elasticity of and viscoelastic fluids.  

In 2003, Dimakopoulos et al.[9] studied 

numerically the transient displacement of a 

viscoplastic material from straight or suddenly 

constricted cylindrical tubes in 2003. The bubble 

shapes and contour lines of velocity, the stress 

tensor and the the pressure field was represented. In 

2004, they also studied the transient displacement of 

viscoelastic fluids by a gas in straight cylindrical 

tubes[10]. They showed that the thickness of the 

remaining film was affected by the the 

viscoelasticity of fluid. The effects of Reynolds 

number are more pronounced in the case of a 

viscoelastic than a Newtonian liquid.  

In 2007, Dimakopoulos et al.[11] studied the 

transient displacement of Newtonian and 

viscoplastic liquids by highly pressurized air in 

cylindrical tubes of finite length with an expansion 

followed by a contraction in their cross section. 

They found that the distribution of the remaining 

material is affected significantly by the geometry of 

the tube because the bubble is forced in a very short 

distance to suddenly expand and then squeeze 

through the contraction. In 2011, C. H. Hsu et.al.[16] 

investigated  a long bubble-driven fluid flow in a 

circular tube by an optical method. The results 

showed a good verification of the theoretically 

derived contour equation. The deduced penetration 

speed indicated that the speed is increasing 

downstream caused by the decreasing fluid slug in 

the tube. The experimental results showed the 

theoretical bubble profile could be introduced to the 

simulation study to reduce the calculating time. 

Dzan  et.al.[17] applied the digitizing technique of 

3D design and experienced the length 9 meters 

motor skiff and develops precedent of self-reliantly 

the manufacture motor skiff, also provides 

fiberglass reinforced plastic of straggling parameter 

and the improvement direction the vessel 3D design 

manufacture. 

This study analyzed gas penetration through 

viscoelastic fluids in a contraction/expansion tube. 

The study parameters in this study are the 

characteristics of fluid, the flow rate of the injected 

gas and the contraction/expansion angle. First, the 

evolution behaviors through viscoelastic fluids of a 

long bubble in a contraction/expansion tube are 

recorded by a high speed camera.  The profile and 

speed of the bubble fronts are comapred each other 

for some different combination of these three 

parameters. 

To explain the experimental observations, a 

numerical method is also applied to simulate the 

stable development of long bubbles penetration 

through viscoelastic fluids in a 

contraction/expansion tube. By comparing the 

results of this study and previous researchers, some 

more reasonable explanations on these complex 

phenomena can be discussed. 

 

2 Problem Formulation 
The behavior of a long bubble through the 

viscoplastic fluids in a contraction/expansion tube 

was studied experimentally and numerically in this 

study.  We observe and record the bubble evolution 

process in a contraction/expansion tube filled with 

the viscoplastic fluids experimentally.  

We also simulate the flow field and the 

promotion process of a long bubble in a 

contraction/expansion tube numerically by the finite 

difference method coupled with the level set method. 

And then we discuss effects of both tube geometry 

and fluid characteristics on the bubble profiles and 

fractional converge according to the results of 

numerical simulation and those of the experimental 

observations. 

Casico caxera Ex-F1
Liquid supply

Liquid reservoir

Liquid reservoirHalogen spotlight

Viewing cell

Ball valuesCheck values

MFC(1000ml/min)

S

 Fig. 1 A schematic diagram of the experimental 

system. 
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Fig. 2 Schematic of experimental tube. 

 

2.1 Experimental Setup 
Fig. 1 shows the experimental setup for the gas 

penetration. It is designed accoreding the 

experimental architecture shown by Huzyak et al.[8] 

in 1997. Some appropriate amendments was applied 

to make it easy to operate and more suitable to 

observe and record bubble contours. In this study, 

the volume rate of injected gas was controlled by 

using a mass flow controller (MFC).  

The images of the bubble are captured by a high-

speed camera (CASIO EX-F1) with 6 Mega 

pixel/60 frames per second. The light source is a 

coaxial light source (LA180-Me). The pressure at 

the entrance is 10 kg/cm
2
. Nitrogen with 99.99% 

purity is selected as the injection gas. The volume 

rate of injection gas was controlled by using a MFC. 

The gas was injected at two volume rates 600ml/min 

and 200ml/min.  

Fig. 2 shows the experimental tube, which is 

made of high-hardness heat-resistant glass. The 

dimensions of the tube are L=1000mm, L1=200mm, 

L2 =400mm, d2=8mm, d1=4mm. The inclined 

angle θ are 15∘, 45∘, 75∘and 90∘, respectively. 

The tube was covered by a viewing box dimensions 

50mm× 50mm× 1000mm. The viewing cell is filled 

with glycerin to reduce the experimental errors 

caused by light refraction. A ruler was fixed to the 

frame for convenience of calculation of the velocity 

of the bubble.  

 

2.1.1 Test Fluid  

In this study, the viscoelastic fluid carboxymethyl 

(CMC) with 0.5wt% concentration is used. The 

definition of Carreau–Yasuda viscosity model[12] is 

shown as Eq. (1).  

ana /)1(

0 ))(1)(( 


                (1) 

where    is the measured viscosity,  ̇ is the applied 

shear rate,    is the viscosity limit when   ̇  → 0, 

   is the viscosity at infinite shear rate, which was 

set as the solvent viscosity. The parameter   has 

units of time, n and a are dimensionless parameters. 

The rheological properties tensions of test fluids 

were measured by a cone-plate type rheometer 

(Gemini HR nano) at 25°C, which is the same 

temperature condition for the gas penetration 

experiments. The parameters of Carreau–Yasuda 

viscosity model for 0.5 wt% CMC solution are 

  =0.232 Pas,   =0.0183 Pas,  =0.0002 s, 

  =0.1908,   =0.1404,  ̇=0.1/3000.  

The surface tension of test fluids with respect to 

Nitrogen was measured with a Du Nouy (DST30) 

and the density ρ was measured with a density tester 

(DA-130N) at 25°C. The density of 0.5 wt% CMC 

solution is ρ= 945.07 kg/cm
3
 and the surface tension 

 =0.0733 mN/m.  

 

2.1.2 Experimental method  

The experimental procedure of this experiment are 

summarized as following: The experimental system 

shown in Fig. 1 are properly mounted on the optical 

platform. The gas is injected into tube filled with 

viscolelastic fluids as opening the valve of the inlet 

side. In order to make bubbles progress stably in the 

tube, the volume rate of the injection gas was 

controlled by MFC in this experiment. The profile 

of the bubble is captured by a high-speed camera.  

The photographs captured by the camera are 

processed by an image post-processor written in  

Matlab. By using the Level Set Method, the post-

processor can apply the binarization and 

skeletonization treatments to the bubble 

photographs to eliminate the errors caused by 

shadows. The bubble profile information is obtained 

plotted shown as Fig. 5.  

 

2.2 Numerical method 
In this study, we simulate a long bubble elongates 

through a circular tube contraction tube followed by 

an expansion tube which is filled with viscoplastic 

fluids numerically. 

In the beginning, the tube is filled with 

viscoplastic fluids. The gas is injected into the tube 

from the entrance located on the left end of the tube. 

A long bubble is formed as the gas steadily expels 

the viscous fluid.  

 

2.2.1 Model Representation  

The model schematic drawing of the contraction 

tube followed by an expansion tube is shown in 

Fig.3.  

 

 
Fig. 3 Schematic of geometric model. 
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  ̅̅ ̅̅  is the symmetrical axis of the circular tube. 

The origin of the cylindrical coordinate system is 

located at O, which is the point center of the 

entrance cross section.   and   are axis along the 

radial direction and axis along the axial direction, 

respectively.  

Assume that the angles of the sudden contraction 

segment   ̅̅ ̅̅  and the sudden expansion segment   ̅̅̅̅̅ 
are  . Both the radii of entrance and exit are R 

which is a constant. The narrowest radius of this 

contraction tube followed by an expansion tube is 

0.5R. The geometry of the flow channel can be 

defined by the following mathematical equations： 

 

 

,

tan ,

( ) 0.5 ,

0.5 tan ,

,

A B

B B C

C M

M M P

P D

R z z z

R z z z z z

r z R z z z

R z z z z z

R z z z





 


   


  


   

  

    (2)
 

where   is the constant inclined angle between 

  ̅̅ ̅̅  (or    ̅̅̅̅̅ ) with the symmetry axis.   ̂  is the 

bubble front profile, i.e. the interface of the gas and 

fluid. Az , Bz , Cz , Dz , Mz and Pz are the locations 

at A, B, C, D, M and P in Fig. 3, respectively.  

The fundamental assumptions of the flow are as 

follows:  

1. Incompressible laminar flow, second-grade 

viscoelastic fluid with finite velocity,  

2. Density and other physical properties constant, 

3. Fully-developed flow distribution at the 

entrance,  

4. Neumann flow condition (
 

  
  ) at the exit, 

5. Neglect the weight and buoyancy effects, 

6. Axisymmetric problem, 

7. No-slip condition on the tube wall. 

8. The evolution of the interface is expressed in 

the conservation form of the level set function 

  0
d

u
dt


  

  
(3) 

Where  ⃗  (     ) is the velocity vector. The 

function ( , , )r z t  is defined as ( , , )r z t = 0 for the 

gas phase, ( , , )r z t = 1 for the liquid phase, and 

( , , )r z t = 0.5 for the interface between liquid and 

gas. 

 

2.2.2 Governing equations  

The Rivlin-Ericksen model[13] for a homogeneous, 

non-Newtonian, second-grade viscoelastic fluid is 

used in the present flow. The model equation is 

expressed as follows: 
2

1 2 2p       1 1T I A A A    
(4)

 
 

Where T  is stress tensor, p  is the pressure,   is 

the dynamic viscosity,   and     the first and 

second normal stress coefficients related to the 

material modulus. The symbol I is denoted as an 

identity matrix, and the kinematic tensors 
1

A  and 

2A  are defined as 

( )

( )

T

Td

dt

    



    


1

2 1 1 1

A V V

A A A V V A
   

(5) 

Where V is the flow velocity vector and d/dt is 

the material time derivative, b is the conservative 

body force. Substituted Eq. (4) into the momentum 

equations 

d

dt
  V T b

    
(6) 

The definitions of Eq.(7) assumed by Rajagopal 

and Fosdick[14] are used to simplify the equations. 

  2 21 22

1

2 1

4 2
P p

 
  


     1V V A V

   
(7) 

0  ，
1 0  ， 1 2 0      (8) 

Where P  represent the total force effects. The 

dimensionless variables are defined as 

* *,  
r z

r z
R R

         

* *

0 0

,  r z
r z

u u
u u

U U
        (9) 

* *

0

,  
t p

t p
R

U R


         

*Re
UR


         

* *

2
0 0

,  
U U R

R

 
        

* 1

2
E

R




         

where  R is the radius of the circular tube, U0 is 

the average velocity at the entrance,   is the fluid 

density,   is the fluid viscosity,   is the surface 

tension between the liquid and the gas,  Re* is 

Reynolds number,  and E* is the elastic number of 

the viscoelastic fluid. 

The stream function ( ) and vorticity ( ) are 

defined as 
1 1

,   r zu u
r z r r

  
  

      
(10) 

2 2

2 2

1 1
V

r r z r r

  


   
     

      

(11) 
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Substitute dimensionless variables into equations 

(6) and (11). The dimensionless stream-vorticity 

equations are obtained after some manipulations. 

2 2

2

* 2 * 2 * * * * *
* *

* * * * * * ** *

* *
* * * *

0* *

1 1
1 Re Re

1 Re Re 0

t z r r r r zr z

E S
z r

      

 

       
     

       

 
    

 

(12) 

2 2

2 * 2 * *
* *

* ** *

1
0r

r rr z

  


  
   

     
(13) 

where   
  is the source terms with heigh derivatives. 

 

2.2.3 Numerical scheme   

A uniform grid system with grid points (     )  
(             ) is applied to the discretized 

system in this study. The accuracy of stream 

function ( ) and vorticity ( ) of the grid system 

with 193×17, 385×33, 769×65 and 1153×97 grid 

points are compared each other. After repeated 

testing, the most appropriate grid resolution is 769×

65 grid points. 

The finite difference formulas are obtained from 

the terms discretized by FDM with SOR method 

mentioned above. The differential terms of the 

stream function and the vorticity function are 

discretized by a second order central difference 

method. The velocity of grids is calculated from the 

stream function by a forward difference method. 

The discretized system could be shown as: 

 

   
1 1 1* * * * * * *

, i+1,j i,j+1 i-1,j i,j-1 , ,a +b +c +d f g 1
e

K K K K K K K

i j i j i j

 
       

  
     (14) 
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1 1 1
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K

j
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2 *

1 1 1
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r 2

K

j
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 
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K
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22 2
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e
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j

r
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*

*

2*

1
f Re

K

j
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
 


 

 
* *

022 2

2 2 1
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j

ES

r

 
 

  
   
 

 

 

 

1 1 1 1* * * * * *

, 1 1, 1 , 1 1 1, 1 , 1 ,

1

*

,

a +b +c +d +
e

           1

K K K K K K

K

i j i j i j i j i j i jj

i j

r


     

 

   

   
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1 1 1 12 2 2 2

1 2 2

1 1 1 1 1 1
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z r 2 r z r 2 r

1 1
e

z r

j j
r r

     
     

 
   

where   is the over-relaxation factor. k is the 

iterative index. i and j are the indices along z-

direction and r-direction respectively. z and r are the 

grid sizes along z-direction and r-direction 

respectively.  And  
j

r  is the j-th grid in r-direction. 

The boundary conditions on the surface shown in 

Fig. 3 are listed as follows: 

(a) The surface   ̅̅ ̅̅ ,   ̅̅̅̅̅ and    ̅̅ ̅̅  

 * *

i,N i,N-1*

2

2 -

r
j

r

 
 


    

(16)
 

(b) The surface    ̅̅̅̅   
* * * *

i,j i-1,j i,j i,j-1*

2 2

- -

r
j

z r

   
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 
   

(17) 

(c) The surface    ̅̅ ̅̅  
* * * *

i,j i+1,j i,j i,j-1*

2 2

- -

r
j

z r

   
  

 
   

(18) 

(d) The surface    ̅̅ ̅̅  
* * * *

M,j M-4,j M-3,j M-1,j2 2     
 

* * * *

M,j M-4,j M-3,j M-1,j2 2     
   

(19)  

Equations (14) and (15) could be solved 

numerically. The value of the over-relaxation factor 

  is 1.5 for Re*=0. The value of α is adjusted from 

0.5 to 0.025 as Re increases from 10 to 400. The 

values of ω and ψ are calculated iteratively with an 

over-relaxation factor α until the converge criterion 

shown as below 
* *

*

k+1 k

i,j i,j -6

k

i,j

  10
 






    

(20) 

 

2.2.4 Interface tracking scheme 

The discretized equation of Eq. (3) with a uniform 

grid (     ) can be written as 
1

, ,

1 1 1 1
, , , ,

2 2 2 2

1 1
k k

i j i j

i j i j i j i j
F F G G

t z r
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   

    
       

       
(21)

  

where t  is the time step, and
,

k

i j  and 1

,

k

i j   are 

values of  ,i jz r at the k-th and (k+1)-th time step, 

respectively. 
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The flux on the grid  ,i jz r  is represented as 

1
,

2

1 , 1,
,

2

0.5( )
i j

i j i j z
i j

F u 




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,

2
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2
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


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(22)

 
Where 

1
,

2
i j

zu


 and 
1

,
2

i j
zu


are the velocity componts 

on the grid  ,i jz r . 

The normal vector 
,i jn , curvature 

,i j  and 

surface tension 
,sai j

F  on the interface [18] can be 

denoted by 

,

( )

( )
i j

H

H













n

     

(23)

 

,

( )

( )
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H

H










 
         

(24)

 

,sa , ,i j i j i j F n

      

(25)

 where   ( ) is the smooth Heaviside function. 

0,

1 1
( ) 1 sin ,

2

1,

H

 

 
  

  

 

 


   
      

  
    

(26) 

The parameter   stands as an effective interface 

width. The values of   run smoothly from zero to 

one on the neighboring interface. The values of   

may fill up with either 0 or 1 except the neighboring 

interface, which is treated as a narrow-band in finite 

terms to assure the high efficiency performance.  

An adaptive strategy is applied to determine the 

values of time step t  in order to avoid the value of 

,i j  being less than 0 or greater than 1. The values 

of 1
,

2
i j

t F


  , 1
,

2
i j

t F


  , 1
,

2
i j

t G


  , and 1
,

2
i j

t G


   are 

controlled under the range between 0.2 and 0.4. The 

values of   
are calculated iteratively till the 

converge criterion in Eq. (27) is reached for some 

specified tolerance  . 

k+1 k  t    

 

(27) 

  

3 Results and discussions 
In this study, the behavior of a long bubble 

through the viscoplastic fluids in a 

contraction/expansion tube was studied 

experimentally and numerically.  The experimental 

and numerical results of this study are described 

below: 
 

3.1 Experimental Results 

In this study, the pressure of inlet nitrogen was 

10kg/cm
2
. Two different nitrogen flow rates 

controlled by MFC are set as 600ml/min and 

200ml/min. 
 

 

3.1.1 Bubble Profiles  

Fig. 4 shows the bubble profile evolution 

photographs in θ = 45∘sudden contraction tube 

filled with viscoplastic fluid as the gas was injected 

with the flow rate Q = 200ml/min.   

 

(a) 

(b) 

(c) 

(d) 

(e) 
Fig. 4 Bubble profile evolution photographs in θ = 

45∘sudden contraction tube filled with viscoplastic 

fluid as Q = 200ml/min. 
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Fig. 5 Overlapping bubble evolution contours.  

 

In order to get a clear observation on the 

evolution process, the photographs shown in Fig. 4 

are processed by an image post-processor written in 

the Matlab. The overlapping bubble evolution 

contours shown in Fig. 5 reveals that: The bubble 

front becomes sharper as it approaches the 

contraction neck. A well-developed profile appears 

again after it fully entering the narrower tube. This 

result is well agreed with the result of 

Dimakopoulos [9] in 2003. 

Dimakopoulos explained this phenomenon that 

the axial velocity in the liquid is higher the narrower 

tube and a “elongational” flow field occurs in the 

entrance of the contraction neck.  The capillary 

forces are rather weak, so that the bubble can 

penetrate in the narrower tube along with the liquid. 

However, after entering the tube, it increases its 

width and its front becomes again nearly parabolic. 

 

   
(a) θ=90˚，Q=200ml/min 

 

   
(b) θ=90˚，Q=600ml/min 

 

   
(c) θ=15˚，Q=200ml/min 

 

   
(d) θ=15˚，Q=600ml/min 

Fig. 6 Bubble profile evolution photographs in 

sudden contraction tubes filled with CMC 0.5% 

fluid.. 

 

The bubble profile evolution photographs in the

θ =90 ˚ sudden contraction tube filled with 

CMC0.5% fluid are shown in Fig. 6 (a) and (b). The 

gas flow rates are 200ml/min and 600ml/min, 

respectively. The bubbles front contours shown in 

Fig 6(b) have an apparent "necking". The bubble 

front elongates longer and becomes sharper when it 

entering the contraction region by increasing the 

flow rate of the injected gas.  

The bubble profile evolution photographs in the

θ=15˚ sudden contraction tube are shown in Fig. 6 

(c) and (d). The gas flow rates are 200ml/min and 

600ml/min, respectively.  The bubble profiles in the

θ=15 ˚ sudden contraction tube are more smooth 

than those  in theθ=90˚ sudden contraction tube. 

Dimakopoulos[15] explained that the inertia 

forces have a greater impact on the shape of the 

bubble and the width of the rigid region ahead of 

bubble tip than the yield stress of the material in a 

straight geometry.  

The bubble contour expanses when the bubble 

entering the constriction tube, because the effect of 

capillary forces in the tube. 

 

   
(a) θ=90˚，Q=200ml/min 

 

   
(b) θ=90˚，Q=600ml/min 

 

   
(c) θ=15˚，Q=200ml/min 

 

   
(d) θ=15˚，Q=600ml/min 

Fig. 7 Bubble profile evolution photographs in 

sudden expansion tubes filled with CMC 0.5% fluid. 
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The bubble profile evolution photographs in the

θ=90˚ sudden expansion tube filled with CMC0.5% 

fluid are shown in Fig. 7(a) and (b).  The gas flow 

rates are 200ml/min and 600ml/min, respectively.  

The bubble profile is close to an ellipse with 

stable and symmetrical shape as the flow rate of 

injection gas Q=200ml/min. However, the shape of 

the bubble profile gets longer and sharper with some 

unstable and asymmetric behaviour as the flow rate 

of injection gas Q=600ml/min. A more speedy, 

narrow and sharp bubble contour is formed in the 

tube by increasing the injected gas flow rate. Due to 

the changes of fluid viscoelasticity and expansion 

angle, the transmission differences of the velocity 

field and pressure field may leads to the instability 

of the flow field. 

Fig. 7(c) and (d) show the bubble profile 

evolution photographs in the θ =15 ˚  sudden 

expansion tube filled with CMC0.5% fluid. Similar 

to Fig. 7 (a), the bubble profile is close to an ellipse 

with stable and symmetrical shape as the flow rate 

of injection gas Q=200ml/min. The bubble profile 

gets longer and sharper with a stable and 

symmetrical shape by increasing the flow rate of 

injection gas till Q=600ml/min. 

In 1980, Pitts showed that when the bubble 

velocity increases, the ratio of bubble diameter to 

the tube diameter will decrease monotonously to 0.5. 

However, Kamisli et al. considered the impact of 

bubble velocity as well as surface tension on the 

shape of the bubbles in 2006.  

Dimakopoulos explained in 2007 that due to the 

development of ‘lip’ or ‘corner’ vortices and small 

Reynolds numbers on the expanding side of the tube, 

the bubble extended distortions on the free surface 

near the expansion corner.   

As the bubble front passing through the 

expansion corner, it is affected by the inertia force 

and the surface tension. As the inertia force caused 

by the velocity of injected gas is more significant, 

the bubble profile elongates along the flow line, 

resulting in the development of the slender bubble 

profile. In other hands, as the surface tension caused 

by the interface of the gas and the viscoelastic fluid 

is more significant, it expanses radially to form an 

ellipse-like profile.  

 

3.1.2 Velocity of Bubble Front 

The velocity of bubble front penetrating through 

CMC0.5% fluid inθ=15∘, 45∘and 90∘ sudden 

contraction/expansion tubes are shown in Fig. 8.  

A common trend of the velocity development in the 

sudden contraction/expansion tubes is described as 

below: The bubble front accelerates from the 

contraction neck (z=20 cm) to the position of 

highest velocity (z=45 cm). Subsequently, the 

bubble is decelerated till a velocity which is slightly 

larger than the exit velocity as the bubble front 

reaches the sudden expansion corner (z=60 cm). 

For different incident gas flow rates (Q), the 

bubble front velocities under Q = 600 mL / min is 

significantly higher than those under Q = 200 mL / 

min. Fig. 8 also shows that the bubble front velocity 

inreases by increasing the sudden contraction / 

expansion angle (θ) under the same incident gas 

flow rate.  
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Fig. 8 Velocity of Bubble Front in sudden 

contraction/expansion tubes filled with CMC0.5% 

fluid. 

 

3.1.3 Fractional converge 
In this paper, the fractional converge (m) of the 

liquid is estimated by 
  
    

 

  
 . Where Rb is the radius 

of bubble and Ro is the radius of inner tube. The 

radius of bubble Rb is measured at 1.5Ro 

downstream away from the bubble tip according to 

the result suggested by Cox showed in 1962. 

The fractional converges inθ=15˚, 45˚ and 90˚ 
sudden contraction/expansion tubes filled with 

CMC0.5% fluid are shown in Fig. 9. A common 

trend for incident gas flow rate Q=600 ml/min is 

described as below: (1) In the interval 10 cm<z<20 

cm, as the bubble front approaching the contraction 

neck, the fractional converge (m) increases rapidly. 

(2) In the interval 20 cm<z<50 cm, as the bubble 

front fully entering the contraction tube, m also 

increses.  (3) In the interval 50 cm<z<60 cm, as the 

bubble front approaching the, m deceases rapidly. (4) 

In the interval 60 cm<z<90 cm, as the bubble front 
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entering fully the expansion tube, m almost keeps a 

constant value. 

Fig.6(b) shows a slender bubble profile which is 

away from the tube wall farther at the contraction 

neck inθ=90∘sudden contraction/expansion tubes 

for Q=600 ml/min. Therefore, the fractional 

converge of the fluid in the wall is larger.  

The fractional converge of fluid changes 

depending on the effect of the viscosity of the fluid, 

the incident gas flow rate and the contraction / 

expansion angle. 

The fractional converge of fluid increases as the 

sudden contraction/expansion angle or the injection 

gas flow rate increases. 
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Fig. 9 Fractional converges inθ=15˚, 45˚ and 90˚ 

sudden contraction/expansion tubes filled with 

CMC0.5% fluid. 

 

Dimakopoulos et al.[15] in 2007 described that 

the distribution of the remaining film on the inner 

tube wall is non-uniform and only partly follows the 

tube geometry: it is thinner in the expanding section 

of the tube, thicker in the contracting one. And they 

declared that the remaining film thickness depends 

on liquid inertia and yield stress. 

The fractional converge of fluid changes 

depending on the effect of the viscosity of the fluid, 

the incident gas flow rate and the contraction / 

expansion angle.  

Under a constant incident gas flow rate, the 

bubble front velocity increases by increasing the 

contraction/expansion angle.  This will lead to the 

decreasing diameter of the bubbles as well as the 

increasing fractional converges of fluid.  

The bubble front velocity increases by increasing 

the incident gas flow. This will also lead to the 

decreasing diameter of the bubbles as well as the 

increasing fractional converges of fluid. 

 

3.2 Numerical method 
The bubble profiles and the flow fields generated by 

numerical simulation were applied to explain the 

experimental observations.  

 

3.2.1 Flow Field  

Fig. 10 shows the flow fields of sudden 

contraction/expansion tube by numerical simulation. 

Due to the assumption of axial symmetry, the 

stream function is plotted above the z-axis. The 

vortiity is plotted under the z-axis. 

 

 
(a) θ=45˚，Re*=1，FN=0.0005 

 
(b) θ=90˚，Re*=1，FN=0.0005 

 
(c) θ=45˚，Re*=100，FN=0.0007 

 
(d) θ=90˚，Re*=100，FN=0.0007 

Fig. 10 Flow fields of sudden contraction/expansion 

tube by numerical simulation. 

 

In the θ=45∘contraction/expansion tube, for 

Reynold number Re*=1 and surface tension factor 

FN=0.0005, the recirculation zone is not obvious yet 

as shown in Fig. 10 (a).  However, the outset of the 

recirculation zone is shown in Fig. 10 (b) in the θ

=90 ∘ contraction/expansion tube. The maximum 

vorticity values in the in theθ=45∘  and 90∘

contraction/expansion tubes  are 26.0712 and -

29.6263, respectively. 

It is conspicuous that the occurrence of 

recirculation zone at the corner of the sudden 

expansion tube by increasing Reynold number from 

Re*=1 till Re*=100. The maximum vorticity values 

in the in theθ=45∘ and 90∘contraction/expansion 

tubes  are -60.8587 and -82.0854, respectively.   
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The developments of ‘lip’ or ‘corner’ vortices on 

the corner are reported by Dimakopoulos repoted in 

2007. The occurrence of recirculation zone and the 

developments of ‘corner’ vortices may cause the  

instability phenomenon  shown in Fig.7(b).   

 

3.2.2 Bubble evolution contours 

Fig. 11 shows the contours of bubble penetrating 

through the viscoplastic fluids in the 

contraction/expansion tubes by numerical method.  

Fig. 11 (a) and (b) show the bubble front 

contours in the contraction/expansion tubes with θ

=45∘and 90∘as Re*=1，E*=0.0005，FN=0.0005 

at time steps (t*): 1000, 1200, 1400, 1600, 1800, 

2000, 2200, 2400, 2900, 3400, 3900, 4400 and 4900.  

As the bubble front approaching the shrinking 

neck, the bubble front deforms into a sharper shape. 

The bubble reassumes its well-developed profile 

after fully entering the narrower tube. As the bubble 

front runing through the expansion throat, it 

increases its width and the bubble front becomes 

nearly parabolic shown as in Fig. 11 (a) and (b). 

These results are agreed with the result of 

Dimakopoulos et al.[9] in 2003. 

However, the bubble front in the θ= 90∘ tube 

expanses more outward than that in theθ=45∘tube, 

as the bubble front entering the expansion tube.  

After entering the tube, it increases its width and its 

front becomes again nearly parabolic, although a 

local minimum in thickness remains in the 

contraction region. 

Fig. 11(c) and (d) show the bubble front contours 

in the contraction/expansion tubes with θ=45∘and 

90∘as Re*=100，E*=0.0005，FN=0.0005 at time 

steps (t*): 200, 240, 280, 320, 360, 400, 440, 480, 

580, 680, 780, 880 and 1000. 

 

 
(a) θ=45˚，Re*=1，FN=0.0005 

 
(b) θ=90˚，Re*=1，FN=0.0005 

 
(c) θ=45˚，Re*=100，FN=0.0005 

 
(d) θ=90˚，Re*=100，FN=0.0005 

 
(e) θ=90˚，Re*=100，FN=0.0007 

Fig. 11 Bubble evolution profiles in 

contraction/expansion tubes by numerical method. 

 

The effects of surface tension and inertia force 

on the shape of bubbles can be verified by 

comparing the differences of Fig. 11(d) and (e). The 

bubble contour changes from the fingers shape into 

an oval shape in the θ=90∘sudden expansion tube, 

by increasing the factor of surface tension (FN). The 

only difference factor between 11(d) and (e) is the 

surface tension factor (FN). Therefore, the surface 

tension can be considered as the impact factor. 

If the surface tension affects the interface of gas 

and fluid more significant, the bubble will expands 

radially, and then the bubble contour is closer to the 

oval. In the other hand, if the inertia force is more 

significant, a slender bubble profile is formed. This 

result is consistent with the results of the 

experimental observations very well. 

 

4 Conclusion 
This paper studies the behavior of a long bubble 

through the viscoplastic fluids filled in a 

contraction/expansion tube was studied 

experimentally and numerically.  
As the bubble front approaching the shrinking 

neck, the bubble front deforms into a sharper shape. 

And then the bubble reassumes its well-developed 

profile after fully entering the narrower tube. As the 

bubble front penetrating through the expansion 

corner, it increases its width and the bubble front 

becomes nearly parabolic.  

The bubble front velocity increases by increasing 

the contraction/expansion angle under a constant 

incident gas flow rate. Moreover, the bubble front 

velocity increases by increasing the incident gas 

flow. It also leads to the results including the 
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decreasing diameter of the bubbles as well as the 

increasing fractional converges of fluid. 

Therefore, the bubble front shape, bubble front 

velocity and fractional converge of fluid changes 

depending on the effects of the viscosity of the fluid, 

the incident gas flow rate and the contraction / 

expansion angle.  
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