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Abstract: - In the present work, the Harten and Osher TVD/ENO and the Yee TVD symmetric schemes are 

implemented, on a finite volume context and using a structured spatial discretization, to solve the 

laminar/turbulent Navier-Stokes equations in the three-dimensional space. The Harten and Osher TVD/ENO 

schemes are flux difference splitting type, whereas the Yee TVD scheme is a symmetric one, which 

incorporates TVD properties due to the appropriated definition of a limited dissipation function. All three 

schemes are second order accurate in space. Turbulence is taken into account considering two algebraic 

models, namely: the Cebeci and Smith and the Baldwin and Lomax ones. A spatially variable time step 

procedure is also implemented aiming to accelerate the convergence of the algorithms to the steady state 

solution. The gains in convergence with this procedure were demonstrated in Maciel. The schemes are applied 

to the solution of the physical problem of the low supersonic flow along a ramp. The results have demonstrated 

that the most accurate results are obtained with the Harten and Osher ENO scheme. This paper is the third part 

of this work, TURBULENT RESULTS, considering the description of the turbulence models and the solutions 

obtained with them and compared with the laminar results. 

 

Key-Words: - Harten and Osher algorithm, TVD/ENO formulations, Yee symmetric algorithm, TVD 
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1 Introduction 
In the present work, the [1] TVD/ENO and the [2] 

TVD symmetric schemes are implemented, on a 

finite volume context and using a structured spatial 

discretization, to solve the laminar/turbulent Navier-

Stokes equations in the three-dimensional space. 

The [1] TVD/ENO schemes are flux difference 

splitting type, whereas the [2] TVD scheme is a 

symmetric one, which incorporates TVD properties 

due to the appropriated definition of a limited 

dissipation function. All schemes are second order 

accurate in space and their numerical 

implementation is based on the concept of [3]’s 

modified flux function. Turbulence is taken into 

account considering two algebraic models, namely: 

the [4-5] ones. The viscous simulations are treated 

with the explicit versions of the present algorithms, 

which employ a time splitting method ([6]). The 

schemes are accelerated to the steady state solution 

using a spatially variable time step procedure, which 

has demonstrated effective gains in terms of 

convergence rate ([7-8]). The algorithms are applied 

to the solution of the physical problem of the 

supersonic flow along a ramp. The results have 

demonstrated that the most accurate results are 

obtained with the [1] ENO scheme. The inviscid and 

laminar results are presented in [9]. 

 The main contribution of the present work to the 

CFD (Computational Fluid Dynamics) community 

is the extension of the [1] TVD/ENO schemes, as 

well as the [2] TVD symmetric scheme, to three-

dimensions, following a finite volume context, and 

their implementation coupled with two different 

turbulence algebraic models to simulate viscous 

turbulent flows, which characterizes an original 

contribution in the field of high resolution structured 

numerical algorithms. Details of the numerical 

implementation of the present algorithms are 

described in [6]. 

 

 

2 Turbulence Models 

 
2.1 Turbulence model of [4] 
The problem of the turbulent simulation is in the 

calculation of the Reynolds stress. Expressions 

involving velocity fluctuations, originating from the 
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averaging process, represent six new unknowns. 

However, the number of equations remains the same 

and the system is not closed. The modelling 

function is to develop approximations to these 

correlations. To the calculation of the turbulent 

viscosity according to the [4] model, the boundary 

layer is divided in internal and external. 

 Initially, the (w) kinematic viscosity at wall and 

the (xy,w) wall shear stress are calculated. After that, 

the () boundary layer thickness, the (LM) linear 

momentum thickness and the (VtBL) boundary layer 

tangential velocity are calculated. So, the (N) 

normal distance from the wall to the studied cell is 

calculated. The N
+
 term is obtained from: 
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where w is the wall density and Re is the laminar 

Reynolds number. The van Driest damping factor is 

calculated by: 
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with A
+
 = 26,  is the fluid density and  is the 

molecular viscosity. After that, the ( dNdVt ) normal 

to the wall gradient of the tangential velocity is 

calculated and the internal turbulent viscosity is 

given by: 
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where  is the von Kárman constant, which has the 

value 0.4.
 
The intermittent function of Klebanoff is 

calculated to the external viscosity by: 
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With it, the external turbulent viscosity is calculated 

by: 

 

 KlebLMBLTe gVt  )0168.0Re( .                         (5) 

 

Finally, the turbulent viscosity is chosen from the 

internal and the external viscosities: 

),( TeTiT MIN  . 

 

2.1 Turbulence model of [5] 
To the calculation of the turbulent viscosity 

according to the [5] model, the boundary layer is 

again divided in internal and external. In the internal 

layer, 
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In the external layer, 
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with: 
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Hence, maxN  is the value of N where mixl  reached 

its maximum value and lmix is the Prandtl mixture 

length. The constant values are: 4.0 , 0168.0 , 

260 A , 6.1cpC , 3.0KlebC  and 1wkC . KlebF  is 

the intermittent function of Klebanoff given by: 
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  is the magnitude of the vorticity vector and difU  

is the difference between the maximum velocity 

value at N and the value of velocity at N = Nmax in 

the boundary layer case: 
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3 Results 
Tests were performed in a microcomputer with 

processor AMD SEMPRON (tm) 2600+, 1.83GHz, 

and 512 Mbytes of RAM. As the interest of this 

work is steady state problems, one needs to define a 

criterion which guarantees that such condition was 

reached. The criterion adopted in this work was to 

consider a reduction of 3 orders in the magnitude of 

the maximum residual in the domain, a typical 

criterion in the CFD community. The residual was 

defined in [9], as well the procedure to determine 

the maximum one in the numerical field. The 

upstream flow angle was set equal to 0.0. At the 

same time, the angle at the longitudinal plane was 

also set equal to 0.0. All pressure distributions were 

determined at the plane corresponding to k = 

KMAX/2, where “KMAX” is the maximum number 

of points in the z direction, and j = 1, corresponding 

to the configuration wall. 

 To the turbulent case studied in this work, the 

explicit version of the numerical algorithms was 
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used. It is important to remember from [9] the 

nomenclature employed to the Yee’s variants: Min1 

(minmod1), Min2 (minmod2), Min3 (minmod3), SB 

(Super Bee), and VL (Van Leer). The initial and 

boundary conditions are described in [10]. 

 

3.1 Viscous turbulent results 
In the viscous studies only simulations with the [1] 

ENO and TVD versions and [2] Min1 and Min2 

versions yielded converged results. The other 

limiters due to the [2] scheme did not produce 

steady state solutions. 

 The physical problem studied in the viscous 

turbulent simulations is the flow along a ramp. The 

xy plane configuration and the employed mesh are 

described in [9]. This problem is a supersonic flow 

hitting a ramp with 20 of inclination. It generates a 

shock and an expansion fan. The freestream Mach 

number adopted as initial condition to this 

simulation was 2.0, characterizing a low supersonic 

flow. The Reynolds number was estimated to be 

1.613x10
5
, as evaluated in [9]. 

 

3.1.1 [4] Results 
Figures 1 to 4 show the pressure contours obtained 

by the [1] ENO, [1] TVD, [2] TVD Min1 and [2] 

TVD Min2 schemes, respectively. The most severe 

pressure field was obtained by the [1] TVD scheme 

using the [4] model. As can be observed, the weaker 

shock wave formed before the ramp in the laminar 

solutions ([9]) practically did not appear in the 

solution generated by the [1] TVD scheme, 

indicating that the separated region should be very 

small in this solution if not vanished. In all 

solutions, the extension of the separation region 

detected in the turbulent solution is reduced. It 

ratifies the behaviour observed in the boundary 

layer literature that in turbulent flows, the extension 

of the separated region is smaller than the respective 

one in laminar flows. It is because of the turbulent 

effects that energize the boundary layer, does not 

allowing that any instability of the flow causes the 

breakdown of the boundary layer stability. 

 
Figure 1 : Pressure contours ([1]-ENO). 

 
Figure 2 : Pressure contours ([1]-TVD). 

 

 
Figure 3 : Pressure contours ([2]-Min1). 

 

 
Figure 4 : Pressure contours ([2]-Min2). 

 

 
Figure 5 : Mach number contours ([1]-ENO). 

 

 Figures 5 to 8 exhibit the Mach number contours 

obtained by the schemes of [1] ENO, of [1] TVD, of 
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[2] TVD Min1 and of [2] TVD Min2, respectively. 

The most intense Mach number fields are obtained 

by the [2] TVD Min1 and Min2 variants using the 

[4] model in relation to the ones due to [1]. Again 

the weaker shock wave is practically not perceived 

in the [1] TVD solution. 

 

 
Figure 6 : Mach number contours ([1]-TVD). 

 

 
Figure 7 : Mach number contours ([2]-Min1). 

 

 
Figure 8 : Mach number contours ([2]-Min2). 

 

 Figures 9 to 12 present the velocity vector fields 

and the streamlines obtained by each scheme close 

to the ramp wall. It is possible to observe that all 

schemes detect the separation region with the 

formation of a circulation bubble. However, the [1] 

TVD scheme detects the minimum extension of 

separated flow, indicating that this scheme respect 

the main features of the turbulence model of [4], 

predicting less severe regions of separation and of 

loss of energy and pressure. 

 
Figure 9 : Velocity field and streamlines ([1]-ENO). 

 
Figure 10 : Velocity field and streamlines ([1]-TVD). 

 
Figure 11 : Velocity field and streamlines ([2]-Min1). 

 

 As observed in [9], one way to quantitatively 

verify if the solutions generated by each scheme are 

satisfactory consists in determining the shock angle 

of the oblique shock wave, , measured in relation 

to the initial direction of the flow field. The 

viscosity affects the shock angle due to the smearing 

of the shock wave close to the ramp corner. The 

shock wave is diffused at this region causing a 

variation in the determination of the shock angle. 
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[11] (pages 352 and 353) presents a diagram with 

values of the shock angle, , to oblique shock 

waves. The value of this angle is determined as 

function of the freestream Mach number and of the 

deflection angle of the flow after the shock wave, . 

To the ramp problem,  = 20º (ramp inclination 

angle) and the freestream Mach number is 2.0, 

resulting from this diagram a value to  equals to 

53.0º. 

 
Figure 12 : Velocity field and streamlines ([2]-Min2). 

 

Using a transfer in Figures 1 to 4, considering the xy 

plane, it is possible to obtain the values of  to each 

scheme, as well the respective errors, shown in Tab. 

1. As can be observed, the best scheme was the [1] 

ENO scheme. 

 

Table 1 : Shock angle and respective percentage 

errors ([4]). 

 

Algorithm () Error (%) 

[1] ENO 52.20 1.51 

[1] TVD 54.50 2.83 

[2] TVD Min1 53.90 1.70 

[2] TVD Min2 54.00 1.89 

 

3.1.2 [5] Results 
Figures 13 to 16 exhibit the pressure contours 

obtained by the [1] ENO, the [1] TVD, the [2] TVD 

Min1 and the [2] TVD Min2, respectively. The most 

severe pressure field is obtained with the [2] TVD 

Min2 using the [5] model. Again, the weaker shock 

wave is perceptible in all solutions, indicating that 

the [5] model is not able to suppress the boundary 

layer detachment or to reduce the boundary layer 

separation as the [4] does. 

 Figures 17 to 20 show the Mach number 

contours obtained by the schemes of [1] ENO, of [1] 

TVD, of [2] TVD Min1 and of [2] TVD Min2, 

respectively. The most intense Mach number field is 

obtained by the [2] TVD Min1 scheme. The weaker 

shock wave due to the raise in the boundary layer 

thickness is again perceptible. 

 

 
Figure 13 : Pressure contours ([1]-ENO). 

 

 
Figure 14 : Pressure contours ([1]-TVD). 

 

 
Figure 15 : Pressure contours ([2]-Min1). 

 

 
Figure 16 : Pressure contours ([2]-Min2). 
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Figure 17 : Mach number contours ([1]-ENO). 

 

 
Figure 18 : Mach number contours ([1]-TVD). 

 

 
Figure 19 : Mach number contours ([2]-Min1). 

 

 
Figure 20 : Mach number contours ([2]-Min2). 

 

 Figures 21 to 24 present the velocity vector fields 

and the streamlines obtained by each scheme close 

to the ramp wall. It is possible to observe that all 

schemes detect the separation region with the 

formation of a circulation bubble. However, all 

schemes detect regions of separated flow bigger 

than the respective ones obtained with the [4] 

model. Apparently, the [5] model agrees with the 

laminar behaviour, while the [4] model predicts less 

severe regions of turbulence with all algorithms. 

 
Figure 21 : Velocity field and streamlines ([1]-ENO). 

 
Figure 22 : Velocity field and streamlines ([1]-TVD). 

 
Figure 23 : Velocity field and streamlines ([2]-Min1). 

 

 Again, it is possible to determine by each scheme 

the shock angle of the oblique shock wave, , 

measured in relation to the initial direction of the 

flow field. Using a transfer in Figures 13 to 16, 

considering the xy plane, it is possible to obtain the 

values of  to each scheme, as well the respective 

errors, shown in Tab. 2. As can be observed, the [1] 

ENO and TVD schemes are better than the [2] TVD 

symmetric variants, because of the limiters that are 
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used in the former scheme, better designed to 

compressible flows. 

 
Figure 24 : Velocity field and streamlines ([2]-Min2). 

 

Table 2 : Shock angle and respective percentage 

errors ([5]). 

 

Algorithm () Error (%) 

[1] ENO 52.00 1.89 

[1] TVD 54.00 1.89 

[2] TVD Min1 51.40 3.02 

[2] TVD Min2 55.00 3.77 

 

3.2 Comparisons among wall pressure 

distributions, detachment and reattachment 

points of the boundary layer, oblique shock 

angles and simulation data 
Figure 25 shows the laminar wall pressure 

distributions ([9]) obtained by the [1] ENO, the [1] 

TVD, the [2] TVD Min1 and the [2] TVD Min2 

schemes. These wall pressure distributions are 

compared with the inviscid solution, which is the 

true solution according to the boundary layer theory.  

 
Figure 25 : Wall pressure distributions (Laminar). 

 

As can be observed, the [1] ENO scheme presents 

the largest region of flow separation and is the most 

smeared in relation to the other schemes. The 

closest distribution in relation to the inviscid case is 

obtained from the [1] TVD scheme. In Figure 26, 

the wall pressure distributions obtained by the 

schemes using the [4] model present small regions 

of separation and values of maximum pressure 

closer to the inviscid solution, being the solution 

generated by the [1] TVD scheme again the closest 

to the solution predicted by the boundary layer 

theory. 

 
Figure 26. Wall pressure distributions ([4]). 

 

 Figure 27 shows the wall pressure distributions 

generated by the all four schemes using the [5] 

model. Again, a bigger region of separated flow is 

perceptible in all solutions, with bigger extension in 

the solution generated by the [1] ENO scheme. The 

better pressure distribution, in accordance with the 

boundary layer theory, is due to [2] TVD Min2 

scheme. 

 
Figure 27. Wall pressure distributions ([5]). 

 

 Figure 28 shows all wall pressure distributions 

obtained by the [1] ENO scheme, in all cases, 

laminar and turbulent. As can be observed, the best 

distribution occurred as the [4] model was 

employed. Figure 29 exhibits the wall pressure 

distributions generated by the [1] TVD scheme to 

the three cases, laminar and the two turbulence 

models, compared with the theory of boundary layer 
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and the best solution was again obtained by the [4] 

model. Figure 30 presents the wall pressure 

distribution obtained by the [2] TVD Min1 scheme 

to the three studied cases. The [4] model and the 

laminar solutions were closer to the theoretical 

result. Finally, Figure 31 presents better pressure 

distributions generated by the [2] TVD Min2 

scheme in the laminar case and using the [4] model. 

 
Figure 28 : Wall pressure distributions ([1]-ENO). 

 
Figure 29 : Wall pressure distributions ([1]-TVD). 

 
Figure 30 : Wall pressure distributions ([2]-Min1). 

 

 Table 3 presents the points of detachment and 

reattachment involving the laminar and turbulent 

cases to the four algorithms tested in these viscous 

simulations. 

 
Figure 31 : Wall pressure distributions ([2]-Min2). 

 

 Analysing this table, it is possible to highlight 

that the [2] TVD Min2 scheme presents the 

minimum region of separated flow in comparison 

with the other schemes in all three possible cases 

studied in this work. As the behaviour expected for 

the turbulence model is to reduce the extension of 

the separation region due to better equilibrium 

characteristics inherent to turbulent boundary layers, 

the [2] TVD Min2 scheme reaches such goal 

satisfactorily in theoretical terms. 

 
Table 3 : Boundary layer detachment and 

reattachment points. 

 
Laminar [1] ENO [1] TVD [2] Min1 [2] Min2 

Det.(1) (m) 0.05 0.08 0.09 0.10 

Reat.(2)(m) 0.25 0.20 0.20 0.20 

[4] [1] ENO [1] TVD [2] Min1 [2] Min2 

Det. (m) 0.10 0.12 0.12 0.12 

Reat. (m) 0.20 0.18 0.18 0.18 

[5] [1] ENO [1] TVD [2] Min1 [2] Min2 

Det. (m) 0.08 0.09 0.09 0.10 

Reat. (m) 0.22 0.20 0.20 0.20 
(1)

: Detachment; 
(2)

: Reattachment. 

 

Table 4 : Shock angle obtained in the laminar and 

turbulent cases. 
 

Laminar [1] ENO [1] TVD [2] Min1 [2] Min2 

 () 48.00 54.20 53.00 52.80 

Error (%) 9.43 2.26 0.00 0.38 

[4] [1] ENO [1] TVD [2] Min1 [2] Min2 

 () 52.20 54.50 53.90 54.00 

Error (%) 1.51 2.83 1.70 1.89 

[5] [1] ENO [1] TVD [2] Min1 [2] Min2 

 () 52.00 54.00 51.40 55.00 

Error (%) 1.89 1.89 3.02 3.77 

 

 Aiming a global comparison involving the shock 

angle of the oblique shock waves estimated by the 
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schemes in these viscous simulations, Tab. 4 

exhibits the values of these angles and respective 

errors. As can be observed, the [1] ENO scheme 

presents more accurate values of the angle of  the  

oblique shock wave in two of the three studied cases 

(in both turbulent cases). The global error was less 

than 4.0% to all schemes, except to the [1] ENO 

scheme in the laminar case. 

 Table 5 shows the computational data of the 

numerical simulations in the viscous laminar and 

turbulent cases in the ramp problem. All four 

schemes to the viscous laminar and turbulent cases 

used an explicit formulation to the simulations. As 

observed, the fastest scheme is due to [1] TVD 

algorithm in all cases. 

 
Table 5 : Computational data of the explicit 

algorithms to the ramp viscous cases. 

 
Laminar [4] [5] 

Scheme CFL Iter.(1) CFL Iter. CFL Iter. 

[1] ENO 0.9 3,515 0.9 3,141 0.9 4,160 

[1] TVD 0.9 1,755 0.9 955 0.9 2,094 

[2] TVD 

– Min1 

0.5 3,374 0.5 4,632 0.5 4,342 

[2] TVD 

– Min2 

0.5 3,026 0.5 4,657 0.5 3,438 

(1)
: Iterations. 

 

 Table 6 exhibits the computational costs of the 

numerical algorithms obtained in the viscous 

laminar and turbulent cases. The cheapest algorithm 

in the laminar case is due to [2] TVD Min2, while 

the most expensive is due to [1] ENO. In the 

turbulent case, using the [4] model, the cheapest 

algorithm is due to [2] TVD Min1, while the most 

expensive is again due to [1] ENO. Finally, using 

the [5] model, the cheapest algorithm is the [2] TVD 

Min2 scheme, while the most expensive is again the 

[1] ENO scheme. As conclusion, in general the [2] 

TVD Min2 scheme yields the cheapest one in terms 

of viscous laminar and turbulent simulations. 

 

Table 6. Computational cost of the numerical 

algorithms (laminar and turbulent cases). 

 

Computational Cost
(1)

 

Scheme Laminar [4] [5] 
[1] ENO 0.0000779 0.0001612 0.0000915 
[1] TVD 0.0000744 0.0001548 0.0000885 

[2] TVD Min1 0.0000694 0.0001523 0.0000843 
[2] TVD Min2 0.0000692 0.0001524 0.0000841 

(1): Measured in seconds/per cell/per iterations. 

 

 

4 Conclusions 
In the present work, the [1] TVD/ENO and the [2] 

TVD symmetric schemes are implemented, on a 

finite volume context and using a structured spatial 

discretization, to solve the laminar/turbulent Navier-

Stokes equations in the three-dimensional space. 

The [1] TVD/ENO schemes are flux difference 

splitting type, whereas the [2] TVD scheme is a 

symmetric one, which incorporates TVD properties 

due to the appropriated definition of a limited 

dissipation function. All schemes are second order 

accurate in space and their numerical 

implementation is based on the concept of [3]’s 

modified flux function. Turbulence is taking into 

account considering two algebraic models, namely: 

the [4-5] ones. The viscous simulations are treated 

with the explicit versions of the present algorithms, 

which employ a time splitting method ([6]). The 

schemes are accelerated to the steady state solution 

using a spatially variable time step procedure, which 

has demonstrated effective gains in terms of 

convergence rate ([7-8]). The algorithms are applied 

to the solution of the physical problem of the low 

supersonic flow along a ramp. 

 The results have demonstrated that the most 

accurate results are obtained with the [1] ENO 

scheme. In the inviscid case ([9]), it is possible to 

highlight that the [2] TVD VL scheme yields the 

best pressure distribution along the nozzle lower 

wall. In the compression corner, the [1] ENO and 

TVD schemes present better pressure distributions 

than those generated by the [2] TVD schemes. The 

[2] TVD Min1, Min2, Min3 and VL variants present 

oscillations in the pressure distributions. The shock 

angle of the oblique shock wave that is formed at 

the compression corner is best estimated by the [1] 

ENO and [2] TVD VL algorithms. The most 

expensive tested implicit scheme was due to [1] 

ENO scheme, while the cheapest was the [2] TVD 

Min2 scheme. The former is approximately 

172.91% more expensive than the latter. 

 In the ramp viscous case, the laminar results ([9]) 

present the [2] TVD Min1 scheme as yielding the 

best value to the shock angle at the ramp. In the 

turbulent case, present paper, the [4] model presents 

the [1] ENO scheme as yielding the best estimation, 

while in the [5] model, the [1] ENO and TVD 

schemes produce the best values to the shock angle. 

In the laminar case, the [1] ENO scheme presents 

the biggest separation region with the formation of a 

circulation bubble. The best pressure distribution, 

closest with the inviscid solution - true solution 

considering the boundary layer theory -, was 

obtained by the [1] TVD scheme. Employing the [4] 

model, all tested algorithms present the minimum 
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separation region, with this model energizing the 

boundary layer sufficiently to guarantee the 

minimum circulation region. Again, the [1] TVD 

scheme presents the pressure distribution at the wall 

closest with inviscid solution. With the [5] model, 

the best pressure distribution is obtained by the [2] 

TVD Min2 algorithm - in relation to the inviscid 

solution). The minimum region of separation was 

obtained by the [2] TVD Min2 scheme in all three 

cases (laminar and the two turbulent cases). 

Considering the values estimated by the shock angle 

of the oblique shock wave, the [1] ENO algorithm 

presents the best values to this parameter in two of 

the three cases – in the two turbulent cases. As 

general conclusion in terms of viscous simulations, 

all algorithms present the best solution considering 

wall pressure distribution as using the [4] model. 
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