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Abstract: - The present work compares the TVD schemes of Roe, of Van Leer, of Yee,Warming and Harten, of 

Harten, of Yee and Kutler and of Hughson and Beran applied to the solution of an aeronautical problem. Only 

the Van Leer scheme is a flux vector splitting one. The others are of flux difference splitting type. The Roe and 
Van Leer schemes reach second order accuracy and TVD properties by the use of a MUSCL approach, which 

employs five different types of nonlinear limiters, that assures TVD properties, being them: Van Leer limiter, 

Van Albada limiter, minmod limiter, Super Bee limiter and -limiter. The other schemes are based on the 
Harten’s ideas of the construction of a modified flux function to obtain second order accuracy and TVD 

characteristics. The implicit schemes employ an ADI (“Alternating Direction Implicit”) approximate 
factorization to solve implicitly the Euler equations, whereas in the explicit case a time splitting method is used. 

Explicit and implicit results are compared trying to emphasize the advantages and disadvantages of each 

formulation. The Euler equations in conservative form, employing a finite volume formulation and a structured 
spatial discretization, are solved in two-dimensions. The steady state physical problem of the supersonic flow 

along a compression corner is studied. A spatially variable time step procedure is employed aiming to 

accelerate the convergence of the numerical schemes to the steady state condition. This technique has proved 

an excellent behavior in terms of convergence gains, as shown in Maciel. The results have demonstrated that 
the most accurate solutions are provided by the Roe TVD scheme in its Super Bee variant. 

 

Key-Words: - Roe scheme, Van Leer scheme, Yee, Warming and Harten scheme; Harten scheme; Yee and 
Kutler scheme; Hughson and Beran scheme; Explicit and implicit formulations; TVD formulation; Euler and 

Navier-Stokes equations. 

 

1 Introduction 
High resolution upwind schemes have been 
developed since 1959, aiming to improve the 

generated solution quality, yielding more accurate 

solutions and more robust codes. The high 
resolution upwind schemes can be of flux vector 

splitting type or flux difference splitting type. In the 

former case, more robust algorithms are yielded, 
while in the latter case, more accuracy is obtained. 

Several studies were reported involving high 

resolution algorithms in the international literature, 

as for example: 
 [1] method, whose author presented a work that 

emphasized that several numerical schemes to the 

solution of the hyperbolic conservation equations 
were based on exploring the information obtained in 

the solution of a sequence of Riemann problems. It 

was verified that in the existent schemes the major 

part of these information was degraded and that only 
certain solution aspects were solved. It was 

demonstrated that the information could be 

preserved by the construction of a matrix with a 
certain “U property”. After the construction of this 

matrix, its eigenvalues could be considered as wave 

velocities of the Riemann problem and the UL-UR 

projections over the matrix’s eigenvectors would be 

the jumps which occur between intermediate stages. 
This scheme was originally first order accurate. 

 [2] method, whose author suggested an upwind 

scheme based on the flux vector splitting concept. 
This scheme considered the fact that the convective 

flux vector components could be written as flow 

Mach number polynomial functions, as main 

characteristic. Such polynomials presented the 
particularity of having the minor possible degree 

and the scheme had to satisfy seven basic properties 

to form such polynomials. This scheme was also 
originally developed in its first order accurate 

version. 

 [3] implemented a high resolution second order 
explicit method based on Harten’s ideas. The 

method had the following properties: (a) the scheme 

was developed in conservation form to ensure that 

the limit was a weak solution; (b) the scheme 
satisfied a proper entropy inequality to ensure that 

the limit solution would have only physically 

relevant discontinuities; and (c) the scheme was 
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designed such that the numerical dissipation 

produced highly accurate weak solutions. The 

method was applied to the solution of a quasi-one-

dimensional nozzle problem and to the two-
dimensional shock reflection problem, yielding 

good results. An implicit implementation was also 

investigated to one- and two-dimensional cases. 
[4] developed a class of new finite difference 

schemes, explicit and with second order of spatial 

accuracy to calculation of weak solutions of the 
hyperbolic conservation laws. These schemes highly 

non-linear were obtained by the application of a first 

order non-oscillatory scheme to an appropriated 

modified flux function. The so derived second order 
schemes reached high resolution, while preserved 

the robustness property of the original non-

oscillatory scheme. 
[5] presented a work which extended the [4] 

scheme to a generalized coordinate system, in two-

dimensions. The method called “TVD scheme” by 
the authors was tested to the physical problem of a 

moving shock impinging a cylinder. The numerical 

results were compared with the [6] scheme, 

presenting good results. 
[7] proposed an explicit, second order accurate 

in space, TVD scheme to solve the Euler equations 

in axis-symmetrical form, applied to the studies of 
the supersonic flow around a sphere and the 

hypersonic flow around a blunt body. The scheme 

was based on the modified flux function 

approximation of [4] and its extension from the two-
dimensional space to the axis-symmetrical treatment 

was developed. Results were compared to the [6] 

algorithm’s solutions. High resolution aspects, 
capability of shock capture and robustness 

properties of this TVD scheme were investigated. 

In relation to [1-2], second order spatial 
accuracy can be achieved by introducing more 

upwind points or cells in the schemes. It has been 

noted that the projection stage, whereby the solution 

is projected in each cell face (i-1/2,j; i+1/2,j) on 
piecewise constant states, is the cause of the first 

order space accuracy of the [8] schemes ([9]). 

Hence, it is sufficient to modify the first projection 
stage without modifying the Riemann solver, in 

order to generate higher spatial approximations. The 

state variables at the interfaces are thereby obtained 
from an extrapolation between neighboring cell 

averages. This method for the generation of second 

order upwind schemes based on variable 

extrapolation is often referred to in the literature as 
the MUSCL (“Monotone Upstream-centered 

Schemes for Conservation Laws”) approach. The 

use of nonlinear limiters in such procedure, with the 
intention of restricting the amplitude of the 

gradients appearing in the solution, avoiding thus 

the formation of new extrema, allows that first order 

upwind schemes be transformed in TVD (“Total 

Variation Diminishing”) high resolution schemes 
with the appropriate definition of such nonlinear 

limiters, assuring monotone preserving and total 

variation diminishing methods. 
 Traditionally, implicit numerical methods have 

been praised for their improved stability and 

condemned for their large arithmetic operation 
counts ([10]). On the one hand, the slow 

convergence rate of explicit methods become they 

so unattractive to the solution of steady state 

problems due to the large number of iterations 
required to convergence, in spite of the reduced 

number of operation counts per time step in 

comparison with their implicit counterparts. Such 
problem is resulting from the limited stability region 

which such methods are subjected (the Courant 

condition). On the other hand, implicit schemes 
guarantee a larger stability region, which allows the 

use of CFL numbers above 1.0, and fast 

convergence to steady state conditions. 

Undoubtedly, the most significant efficiency 
achievement for multidimensional implicit methods 

was the introduction of the Alternating Direction 

Implicit (ADI) algorithms by [11], [12], and [13], 
and fractional step algorithms by [14]. ADI 

approximate factorization methods consist in 

approximating the Left Hand Side (LHS) of the 

numerical scheme by the product of one-
dimensional parcels, each one associated with a 

different spatial coordinate direction, which retract 

nearly the original implicit operator. These methods 
have been largely applied in the CFD community 

and, despite the fact of the error of the approximate 

factorization, it allows the use of large time steps, 
which results in significant gains in terms of 

convergence rate in relation to explicit methods. 

In this work, the [1-5;7] schemes are 

implemented, on a finite volume context and using 
an upwind and a structured spatial discretization, to 

solve the Euler equations, in two-dimensions, and 

are compared with themselves. All schemes are 
implemented in its second order version in space 

and are applied to the solution of the supersonic 

flow along a compression corner. Considering [1-2], 
a MUSCL approach is employed using five different 

types of nonlinear limiters, which assure second 

order and TVD properties, namely: Van Leer 

limiter, Van Albada limiter, minmod limiter, Super 

Bee limiter and -limiter. A spatially variable time 
step procedure is implemented aiming to accelerate 

the convergence of the schemes to the steady state 

condition. The effective gains in terms of 
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convergence ratio with this procedure are reported 

in [15-16]. 

The results have demonstrated that the most 

accurate solutions are provided by the [1] TVD 
scheme in its Super Bee variant. 

The motivation and justification of this work is 

to present TVD high resolution schemes, which are 
reported in the CFD literature as able to provide 

numerical solutions free of oscillations and test their 

abilities to provide good shock capturing properties. 
Furthermore, the CFD literature describes these 

schemes on a finite difference context and using a 

generalized coordinate system. Hence, this work 

represents an original contribution in the sense that 
the studied TVD schemes are described and 

implemented on a finite volume context. Moreover, 

an implicit formulation is also applied, which 
contributes to the originality of this manuscript too. 

 

 

2 Euler Equations 
The fluid movement is described by the Euler 
equations, which express the conservation of mass, 

of linear momentum and of energy to an inviscid, 

heat non-conductor and compressible mean, in the 
absence of external forces. In the integral and 

conservative forms, these equations can be 

represented by: 

   0dSnFnEQdVt
S yexeV

  ,        (1) 

 

where Q is written to a Cartesian system, V is a cell 
volume, nx and ny are the components of the normal 

unity vector to the flux face, S is the surface area 

and Ee and Fe represent the components of the 

convective flux vector. Q, Ee and Fe are represented 
by: 
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being  the fluid density; u and v the Cartesian 
components of the velocity vector in the x and y 

directions, respectively; e the total energy per unit 

volume of the fluid mean; and p the static pressure 
of the fluid mean. 

 In all problems, the Euler equations were 

dimensionless in relation to the freestream density, 

, and in relation to the freestream speed of sound, 

a. The matrix system of the Euler equations is 

closed with the state equation of a perfect gas: 
 

  )vu(5.0e)1(p 22  ,                     (3) 

 

being   the ratio of specific heats. The total 

enthalpy is determined by    peH . 

 
 

3 [1] Algorithm 
The [1] algorithm, first order accurate in space, is 

specified by the determination of the numerical flux 

vector at (i+½,j) interface. At the (i,j+½) interface, 
the implementation is straightforward. 

 Following a finite volume formalism, which is 

equivalent to a generalized system, the right and left 
cell volumes, as well the interface volume, 

necessary to coordinate change, are defined by: 

j,1iR VV  , j,iL VV   and  LRint VV5.0V  ,  (4) 

in which “R” and “L” represent right and left states, 

respectively. The cell volume is defined by: 

        jijijijijijijijijiji yxxyxxyxxV ,1,1,1,1,1,11,1,1,, 5.0

         1,1,1,,1,1,11,1,1,5.0   jijijijijijijijiji yxxyxxyxx ,                          

(5) 

where a computational cell and its flux surfaces are 

defined in Fig. 1. 

 
Figure 1: Computational cell. 

The area components at interface are defined by: 

SsS xx

'

int_   and SsS yy

'

int_  , where 
'

xs  and 
'

ys  

are defined as: Sss x

'

x   and Sss y

'

y  , being 

  5.02

y

2

x ssS  . Expressions to sx and sy, which 

represent the Sx and Sy components always adopted 
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in the positive orientation, are given in Tab. 1. The 

metric terms to this generalized coordinate system 

are defined as: 

 

intint_xx VSh  , intint_ VSh yy  , intn VSh  . 

 (6) 

Table 1: Normalized values of sx and sy. 

 

Surface sx sy 

i,j-1/2  
j,ij,1i yy     j,ij,1i xx   

i+1/2,j  
j,1i1j,1i yy     

1j,1ij,1i xx    

i,j+1/2  
1j,1i1j,i yy     

1j,i1j,1i xx    

i-1/2,j  
j,i1j,i yy    

j,i1j,i xx    

 The properties calculated at the flux interface are 
obtained either by arithmetical average or by [1] 

average. In this work, the arithmetical average was 

used: 

 LR  5.0int ,  LR uuu  5.0int ; 

 LR vvv  5.0int   and   LR HHH  5.0int .   (7) 

    2

int

2

intintint 5.01 vuHa  ,                  (8) 

where aint is the speed of sound at the flux interface. 

The eigenvalues of the Euler equations, in the  
direction, are given by: 

 yintxintcont hvhuU  , nintcont1 haU  ; 

 cont32 U   and  nintcont4 haU  .   (9) 

 The jumps of the conserved variables, necessary 

to the construction of the [4] dissipation function, 
are given by: 

 LR eeVe  int ,  LRV  int ; 

      LR uuVu  int   and        LR vvVv  int . 

(10) 

 The  vectors at the (i+½,j) interface are 
calculated by the following expressions: 

 bbaa  5.01
, aa2

, cc3
   and   

 bbaa  5.04
.                                             (11) 

with: 

        vvuuvu5.0ea1aa intint
2
int

2
int

2
int  ;                                    

(12) 

      vhvhuhuhabb yyxx  '

int

'

int

''

int1 ;

                                            (13) 

     uhvhuhvhcc yxýx  '

int

'

int

''
;   (14) 

nxx hhh '
  and  nyy hhh '

.                          (15) 

 

The [1] dissipation function uses the right-

eigenvector matrix of the normal to the flux face 

Jacobian matrix in generalized coordinates: 
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 The entropy condition is implemented of the 

following way: 

 

 
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22

, non-linear 

fields, and ll   , linear fields,                       (17) 

 

with “l” assuming values of 1 and 4 to non-linear 

fields and 2 and 3 to linear fields; and 
l

  assuming 

a value of 0.2, as recommended by [1]. The [1] 

dissipation function is finally constructed by the 
following matrix-vector product: 

                                               

      jijijiRoe RD ,2/1,2/1,2/1 
  .           (18) 

 

The convective numerical flux vector to the (i+½,j) 
interface is described by: 
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)(

int
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,2/1 5.0 l

Roey

l

x
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ji DVhFhEF  , with: 

 )()()(
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L

l

R

l EEE   and  )()()(

int 5.0 l

L

l

R

l FFF  .  (19) 

 

 The explicit time integration follows the time 
splitting method, first order accurate, which divides 

the integration in two steps, each one associated 

with a specific spatial direction. In the initial step, it 

is possible to write for the  direction: 
                                     

 n

ji

n

jijijiji FFVtQ ,2/1,2/1,,

*

,   ; 

*

,,

*

, ji

n

jiji QQQ  ;                                       (20) 

 

and at the end step,  direction: 

 *

2/1,

*

2/1,,,

1

, 

  jijijiji

n

ji FFVtQ ; 

1

,

*

,

1

,

  n

jiji

n

ji QQQ .                                     (21) 

 

4 [2] Algorithm 

The approximation to the integral equation (1) to a 

rectangular finite volume yields an ordinary 

differential equation system with respect to time: 
                                                                   

jijiji RdtdQV ,,,  ,                                    (22) 

 

with Ri,j representing the neat flux (residual) of the 

conservation of mass, of linear momentum and of 
energy in the Vi,j volume. The residual is calculated 

as: 

 

 2/1,2/1,,2/1,2/1,   jijijijiji RRRRR ,    (23) 

 

where 
c

jiji RR ,2/1,2/1   , in which “c” is related to 

the flow convective contribution. The discrete 
convective flux calculated by the AUSM scheme 

(“Advection Upstream Splitting Method”) can be 

interpreted as a sum involving the arithmetical 

average between the right (R) and the left (L) states 
of the (i+½,j) cell face, related to cells (i,j) and 

(i+1,j), respectively, multiplied by the interface 

Mach number, and a scalar dissipative term, as 
shown in [17]. Hence, 
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where  T
jiyxji SSS

,2/1,2/1    defines the normal 

area vector to the (i+½,j) surface. The “a” quantity 

represents the speed of sound. Mi+½,j defines the 
advective Mach number in the (i+½,j) face of the 

cell (i,j), which is calculated according to [17] as: 
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  RLji MMM ,2/1 ,                                (25) 

 

where the M
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 separated Mach numbers are defined 
by [2] as: 
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ML and MR represent the Mach numbers associated 
to the left and right states, respectively. The 

advection Mach number is defined as: 

                                                          

   SavSuSM yx  .                                (27) 

 
 The pressure at the (i+½,j) face of the (i,j) cell is 

calculated from a similar way: 

                                                           


  RLji ppp ,2/1 ,                                     (28) 

 

with p
+/-

 representing the pressure separation 
defined according to [2]: 

 

    
















;1,0

;1,2125.0

;1,
2

Mif

MifMMp

Mifp

p  and 

    
















.1,

;1,2125.0

;1,0
2

Mifp

MifMMp

Mif

p      (29) 
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 The definition of the  dissipation term 

determines the particular formulation to the 
convective fluxes. The following choice 

corresponds to the [2] scheme, according to [18]: 

                                                                  
VL

jiji ,2/1,2/1   ,                                       (30) 

 
where: 

 

                              

 

 
























.01,15.0

;10,15.0

;1,

,2/1

2

,2/1

,2/1

2

,2/1

,2/1,2/1

,2/1

jiLji

jiRji

jiji

VL

ji

MifMM

MifMM

MifM



                    (31) 

 

The explicit time integration follows the method 

presented in the [1] scheme [Eqs. (20) and (21)]. 

This version of the [2] algorithm is first order 
accurate in space. 

 

5 [3] Algorithm 

The [3] algorithm, second order accurate in space, 

follows the Eqs. (4)-(16). The next step consist in 
determine the entropy function. Two options to the 

l entropy function, responsible to guarantee that 
only relevant physical solutions are to be 

considered, are implemented aiming an entropy 

satisfying algorithm: 

 lll Zt      and   25.02  ll Z ;     (32) 

Or: 

 
 









flffl

fll

l
ZifZ

ZifZ

,5.0

,
22

,  (33) 

where “l” varies from 1 to 4 (two-dimensional 

space) and f assuming values between 0.1 and 0.5, 
being 0.2 the value recommended by [3]. In the 
present studies, Eq. (32) was used to perform the 

numerical experiments. 

 The g~  function at the (i+½,j) interface is 

defined by: 

   l

ll

l Zg  25.0~ .                            (34) 

 The g numerical flux function, which is a limited 

function to avoid the formation of new extremes in 

the solution and is responsible to the second order 

accuracy of the scheme, is given by: 

  l
l

j,2/1i
l

j,2/1il
l

j,i signalg~,g~MIN;0.0MAXsignalg   ,                                

(35) 

where signall is equal to 1.0 if 
l

jig ,2/1
~

   0.0 and -

1.0 otherwise. 

 The  term, responsible to the artificial 
compression, which enhances the resolution of the 

scheme at discontinuities, is defined as follows: 

 
















0.0if,0.0

0.0if,

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1il

j,i ;             

(36) 

The   parameter at the (i+½,j) interface, which 
introduces the artificial compression term in the 

algorithm, is given by the following expression: 

 ),(0.1 ,1,

l

ji

l

jill MAX  ,                (37) 

in which l assumes the following values: 1 = 0.25 

(non-linear field), 2 = 3 = 1.0 (linear field) and 4 

= 0.25 (non-linear field). The numerical 

characteristic speed, l , at the (i+½,j) interface, 

which is responsible to transport the numerical 

information associated to the g numerical flux 
function, is defined by: 

 
 







 

0.0,0.0

0.0,,,1

l

lll

ji

l

ji

l
if

ifgg
.  (38) 

 The entropy function is redefined considering l  

and l : llllZ  , and l  is recalculated 

according to Eq. (32) or to Eq. (33). Finally, the [3] 
dissipation function, to second order of spatial 

accuracy, is constructed by the following matrix-

vector product: 

       
jijijijijijiYWH tggRD

,2/1,,1,,2/1,2/1 
 .   (39) 

 The convective numerical flux vector to the 
(i+½,j) interface is described by: 

   )(

int

)(

int

)(

int

)(

,2/1 5.0 l

YWHy

l

x

ll

ji DVhFhEF  ,  (40) 

with: 
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 )()()(

int 5.0 l

L

l

R

l EEE   and  )()()(

int 5.0 l

L

l

R

l FFF  . 

(41) 

The explicit time integration follows the method 

presented in the [1] scheme [Eqs. (20) and (21)]. A 

first order method was implemented as the explicit 
time integration is used, because only steady state 

solutions are aimed and, with it, time accurate 

solutions are not intended. 
 

 

6 [4] Algorithm 
The [4] algorithm, second order accurate in space, 

follows the Eqs. (4) to (16). The next step is the 
definition of the entropy condition, which is defined 

by Eq. (17). 

 The g~  function at the (i+½,j) interface is 

defined according to Eq. (34) and the g numerical 

flux function is given by Eq. (35). The numerical 

characteristic speed l  at the (i+½,j) interface is 

defined according to Eq. (38). 

 The entropy function is redefined considering 

l : lllZ  , and l  is recalculated according 

to Eq. (17). Finally, the [4] dissipation function, to 

second order spatial accuracy, is constructed by the 

following matrix-vector product: 

      
jijijijijijiHarten tggRD

,2/1,,1,,2/1,2/1 
 .

                                 (42) 
 

Equations (40) and (41) are used to conclude the 

numerical flux vector of the [4] scheme and the 
explicit time integration is performed by the time 

splitting method defined by Eqs. (20-21). 

 
 

7 [5] Algorithm 
The [5] algorithm, second order accurate in space, 

follows Eqs. (4) to (16). The next step consists in 

determining the  function. This function is defined 

in terms of the differences of the gradients of the 
characteristic variables to take into account 

discontinuities effects and is responsible to artificial 

compression: 
 

 

 
























0.0,0.0

0.0,

,2/1,2/1

,2/1,2/1

,2/1,2/1

,2/1,2/1

,

l

ji

l

ji

l

ji

l

jil

ji

l

ji

l

ji

l

ji

l

ji

if

if
. 

(43) 

The  function at the (i+½,j) interface is defined as 

follows: 

   l

ji

l

jill MAX ,1, ,181  ,       (44) 

The g numerical flux function is determined by: 

  l
l

j,2/1i
l

j,2/1il
l

j,i signal,MIN;0,0MAXsignalg   ,                                

(45) 

where signall assumes value 1.0 if 
l

ji ,2/1   0.0 and 

-1.0 otherwise. The numerical characteristic speed 

l  at the (i+½,j) interface is calculated by the 

following expression: 

 







 

0.0,0.0

0.0,,,1

l

lll

ji

l

jil

l
if

ifgg
.  (46) 

The l entropy function at the (i+½,j) interface is 
defined by: 

   25.0
2
 lll ,                                (47) 

with l defined according to Eq. (17). Finally, the 
[5] dissipation function, to second order spatial 

accuracy, is constructed by the following matrix-
vector product: 

       
j,2/1ij,ij,1ij,ij,2/1ij,2/1iKutler/Yee tggRD


 . 

(48) 

 

8 [7] Algorithm 
The [7] algorithm, second order accurate in space, 
follows Eqs. (4) to (16). The next step consists in 

determining the g numerical flux function. To non-

linear fields (l = 1 and 4), it is possible to write: 

 

 
0.0

0.0if,0.0

if,
g

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1il

j,2/1i
l

j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,2/1i

l
j,i 



























.        

(49) 

To linear fields (l = 2 and 3), it is possible to write: 

  l
l

j,2/1i
l

j,2/1il
l

j,i signal,MIN;0.0MAXsignalg   ,                                

(50) 
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where signall is equals to 1.0 if 
l

ji ,2/1   0.0 and -

1.0 otherwise. After that, Equations (17) is 

employed and the l term at the (i+½,j) interface is 

defined: 

 25.0 lll Z .                                 (51) 

The l  numerical characteristic speed at the (i+½,j) 

interface is defined by: 

 







 

0.0,0.0

0.0,,,1

l

lll

ji

l

jil

l
if

ifgg
.   (52) 

 The entropy function is redefined considering the 

l  term: lllZ   and l  is recalculated 

according to Eq. (18). Finally, the [7] dissipation 

function, to second order accuracy in space, is 

constructed by the following matrix-vector product: 

       
j,2/1ij,ij,1ij,ij,2/1ij,2/1iBeran/Hughson tggRD


 .                                 

(53) 
 

 Equations (40) and (41) are used to conclude the 

numerical flux vector of [7] scheme and the explicit 

time integration is performed by the time splitting 
method defined by Eqs. (20) and (21). 

 

 

9 MUSCL Procedure 
Second order spatial accuracy can be achieved by 

introducing more upwind points or cells in the 

schemes. It has been noted that the projection stage, 

whereby the solution is projected in each cell face 
(i-1/2,j; i+1/2,j) on piecewise constant states, is the 

cause of the first order space accuracy of the [8] 

schemes ([9]). Hence, it is sufficient to modify the 
first projection stage without modifying the 

Riemann solver, in order to generate higher spatial 

approximations. The state variables at the interfaces 
are thereby obtained from an extrapolation between 

neighboring cell averages. This method for the 

generation of second order upwind schemes based 

on variable extrapolation is often referred to in the 
literature as the MUSCL (“Monotone Upstream-

centered Schemes for Conservation Laws”) 

approach. The use of nonlinear limiters in such 
procedure, with the intention of restricting the 

amplitude of the gradients appearing in the solution, 

avoiding thus the formation of new extrema, allows 

that first order upwind schemes be transformed in 
TVD high resolution schemes with the appropriate 

definition of such nonlinear limiters, assuring 

monotone preserving and total variation diminishing 

methods. Details of the present implementation of 

the MUSCL procedure, as well the incorporation of 
TVD properties to the schemes, are found in [9]. 

The expressions to calculate de fluxes following a 

MUSCL procedure and the nonlinear flux limiter 
definitions employed in this work, which 

incorporates TVD properties, are defined as follows. 

 The conserved variables at the interface (i+½,j) 
can be considered as resulting from a combination 

of backward and forward extrapolations. To a linear 

one-sided extrapolation at the interface between the 

averaged values at the two upstream cells (i,j) and 
(i-1,j), one has: 

                                            

 
jijiji

L

ji QQQQ ,1,,,2/1
2

 


, cell (i,j);         (55) 

 
jijiji

R

ji QQQQ ,1,2,1,2/1
2

 


, cell (i+1,j),    (56) 

 

leading to a second order fully one-sided scheme. If 
the first order scheme is defined by the numerical 

flux 

                                                               

 jijiji QQFF ,1,,2/1 ,                                    (57) 

 
the second order space accurate numerical flux is 

obtained from 

 

  R

ji

L

jiji QQFF ,2/1,2/1

)2(

,2/1 ,   .                         (58) 

 

Higher order flux vector splitting or flux difference 
splitting methods, such as those studied in this work, 

are obtained from: 

                                                     

   R

ji

L

jiji QFQFF ,2/1,2/1

)2(

,2/1 







  .            (59) 

 
All second order upwind schemes necessarily 

involve at least five mesh points or cells. To reach 

high order solutions without oscillations around 
discontinuities, nonlinear limiters are employed, 

replacing the term  in Eqs. (55) and (56) by these 
limiters at the left and at the right states of the flux 

interface. To define such limiters, it is necessary to 

calculate the ratio of consecutive variations of the 
conserved variables. These ratios are defined as 

follows: 

 

    
jijijijiji QQQQr ,1,,,1,2/1 



     and 

    jijijijiji QQQQr ,,11,2,2/1  



 ,         (60) 
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where the nonlinear limiters at the left and at the 

right states of the flux interface are defined by 

 

 ji

L r ,2/1  and  

 ji

R r ,2/11 . In this 

work, five options of nonlinear limiters were 

considered to the numerical experiments. These 

limiters are defined as follows: 
 

 
l

ll

l

VL

l
r

rr
r






1
)( , [19] limiter;                    (61) 

 
2

2

1
)(

l

ll
l

VA

l
r

rr
r




 , Van Albada limiter;        (62) 

     llll

MIN

l signalrMINMAXsignalr ,,0 , 

minmod limiter;                                                   (63) 

       2,,1,2,0 lll

SB

l rMINrMINMAXr  , 

“Super Bee” limiter, due to [20];                         (64) 

        ,,1,,0 lll

L

l rMINrMINMAXr  
, 

-limiter,                                                              (65) 
 

with “l” varying from 1 to 4 (two-dimensional 

space), signall being equal to 1.0 if rl  0.0 and -1.0 
otherwise, rl is the ratio of consecutive variations of 

the lth conserved variable and  is a parameter 

assuming values between 1.0 and 2.0, being 1.5 the 
value assumed in this work. With the 

implementation of the numerical flux vectors of [1-

2] following this MUSCL procedure, second order 
spatial accuracy and TVD properties are 

incorporated in the algorithms. 

 
 

10  Implicit Formulations 
All implicit schemes studied in this work used an 

ADI formulation to solve the algebraic nonlinear 

system of equations. Initially, the nonlinear system 
of equations is linearized considering the implicit 

operator evaluated at the time “n” and, posteriorly, 

the five-diagonal system of linear algebraic 
equations is factored in two three-diagonal systems 

of linear algebraic equations, each one associated 

with a particular spatial direction. Thomas algorithm 

is employed to solve these two three-diagonal 
systems. The implicit schemes studied in this work 

were only applicable to the solution of the Euler 

equations, which implies that only the convective 
contributions were considered in the RHS (“Right 

Hand Side”) operator. 

 

10.1  [1] TVD implicit scheme 
The ADI form of the [1] TVD scheme is defined by 

the following two step algorithm: 

   n
jiRoejijijijiji RHSQKtKtI

,)(

*

,,2/1,,2/1,  









 , 

to the  direction;                                                 (66) 

  *

,

1

,2/1,,2/1,, ji

n

jijijijiji QQJtJtI  









 , 

to the  direction;                                                 (67) 
1

,,

1

,

  n

ji

n

ji

n

ji QQQ ,                                          (68) 

 

where: 

 

   n jiji

n

jiji RRK ,2/1

1

,2/1,2/1,2/1 







  ; 

   n jiji

n

jiji RRJ 2/1,

1

2/1,2/1,2/1, 







  ;                (69) 

  n
ji

l

ji diag
,2/1,2/1 



   ; 

  n
ji

l

ji diag
2/1,2/1, 



   ;                           (70) 

    lll

  


5.0 ,    lll

  


5.0 , 

     jiji ,1, 

  ,     jiji ,,1  



 ;       (71) 

     1,, 

  jiji ,     jiji ,1,  



 .       (72) 

 

In Equation (70), diag[] is a diagonal matrix; in 
Eqs. (70) and (71), “l” assumes values from 1 to 4 

and ’s are the eigenvalues of the Euler equations, 
described by Eq. (9). The matrix R

-1
 is defined as: 

 

   

 

 
   







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
































'

int

'

int

int

2
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2
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2
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int
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int
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2
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2
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2

int
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int

'
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int

2
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2
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2
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1
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1

2

1

2

1
1

1

2

1

2

1

yx

yx

yx

hvhu
a

vu

a

uhvh

vu

a

hvhu
a

vu

a

R







 





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, (73) 

 

 The interface properties are defined either by 

arithmetical average or by [1] average. In this 

work, the arithmetical average was used. The 

RHS(Roe) operator required in Eq. (66) is defined 

as: 
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    nRoe
ji

Roe
ji

Roe
ji

Roe
jijiji

n

jiRoe FFFFVtRHS )(
2/1,

)(
2/1,

)(
,2/1

)(
,2/1,,,   ,                       

(74) 

 

with 
)(

,2/1

Roe

jiF   calculated according to Eq. (19). This 

implementation is first order accurate in time due to 

the definition of  and of , as reported in [21], but 
is second order accurate in space due to the RHS 

solution at the steady state, when a MUSCL 
procedure is employed. 

 

10.2  [2] TVD implicit scheme 
The ADI form of the [2] TVD scheme is defined by 

the following two step algorithm: 

                    

   n
jiVLjijijijiji RHSQAtAtI

,)(

*

,,2/1,,2/1,  


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



 , 

to the  direction;                                                 (75) 

  *

,

1

,2/1,,2/1,, ji

n

jijijijiji QQBtBtI  









 , 

to the  direction;                                                 (76) 
1

,,

1

,

  n

ji

n

ji

n

ji QQQ ,                                          (77) 

 

where the matrices A

 and B


 are defined as: 

 

   n jiji

n

jiji TTA ,2/1

1

,2/1,2/1,2/1 







  ; 

   n jiji

n

jiji TTB 2/1,

1

2/1,2/1,2/1, 







  ;                (78) 

  n
ji

l

ji diag
,2/1,2/1 



   ; 

  n
ji

l

ji diag
2/1,2/1, 



   ;                           (79) 

 
with the similarity transformation matrices defined 

by: 
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  intint 2a  ,  intint21 a  ;        (81) 
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The properties defined at interface are calculated by 

arithmetical average. The RHS(VL) operator required 
in Eq. (75) is defined as: 
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(84) 
 

with the numerical flux vector 
)(

,2/1

VL

jiR   calculated 

according to Eq. (24). 
 

10.3  [3-5; 7] TVD implicit schemes 
In schemes [3-5; 7] studied in this work, a backward 

Euler method is applied followed by an ADI 

approximate factorization to solve a resulting three-
diagonal system in each direction. The ADI form to 

these four schemes is defined by the following two-

steps algorithm: 
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where: 
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
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      j1iji ,, 



  ,     jij1i ,,  



 ; 

      1jiji 



  ,, ,     ji1ji ,,  



 .             (92) 

In Equation (88), the R matrix is defined by Eq. 

(16); in Eqs. (89-91), “l” varies from 1 to 4 (two-

dimensional case); 
'

xh  and 
'

yh  are defined by Eq. 

(15); and 
l

jig ,  is defined by: 
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l
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         l
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l
j,2/1ilsignal                                  (93) 

where signall is equal to 1.0 if 
l

ji ,2/1   0.0 and -

1.0 otherwise;    lll

l Q  5.0 ; and Q, the 

entropy function, is determined by: 

 
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flffl
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,
22

,                                                             

(94) 

with f assuming values between 0.1 and 0.5, being 
0.2 the value recommended by [21]. 

 The 
n

jiRHS ,  operator is determined by the [3-5; 

7] schemes as: 

   nScheme
2/1j,i

Scheme
2/1j,i

Scheme
j,2/1i

Scheme
j,2/1ij,i

n
j,i FFFFVtRHS   ,                                   

(95) 

where the superscript “Scheme” of the numerical 

flux vectors is related to the scheme under analysis, 
being: Scheme = YWH to the [3] algorithm; Scheme 

= H to the [4] algorithm; Scheme = YK to the [5] 

algorithm; and Scheme = HB to the [7] algorithm. 

 This implementation is second order accurate in 

space and first order accurate in time, appropriated 

to steady state problems, conform definition of  

and  (details in [21]). 

Schemes [3,5; 7] studied in this work present 
steady state solutions which depend of the time step; 

hence, in the implicit use of these algorithms a high 

CFL number does not can be considered, because 
the solution could be destroyed. Schemes with the 

“RHS” defined as function of the time step have this 

problem - time step dependent solutions. 
 

 

11  Spatially Variable Time Step 

The basic idea of this procedure consists in keeping 

constant the CFL number in all calculation domain, 
allowing, hence, the use of appropriated time steps 

to each specific mesh region during the convergence 

process. Hence, according to the definition of the 
CFL number, it is possible to write: 

  jijiji csCFLt ,,,  ,                               (96) 

 

where CFL is the “Courant-Friedrichs-Lewy” 

number to provide numerical stability to the 

scheme;    jiji avuc ,

5.022

,   is the maximum 

characteristic speed of information propagation in 

the calculation domain; and   jis ,  is a 

characteristic length of information transport. On a 

finite volume context,   jis ,  is chosen as the minor 

value found between the minor centroid distance, 

involving the (i,j) cell and a neighbor, and the minor 
cell side length. 

 

 

12  Initial and Boundary Conditions 

12.1  Initial condition 
To the physical problems studied in this work, 

freestream flow values are adopted for all properties 

as initial condition, in the whole calculation domain 
([22-23]). Therefore, the vector of conserved 

variables is defined as: 

T

ji MMMQ











 

2

, 5.0
)1(

1
sincos1 ,                                               

(97) 
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being M the freestream flow Mach number and  

the flow attack angle. 

 

12.2  Boundary conditions 
The boundary conditions are basically of three 

types: solid wall, entrance and exit. These 
conditions are implemented in special cells named 

ghost cells. 
(a) Wall condition: This condition imposes the flow 
tangency at the solid wall. This condition is satisfied 

considering the wall tangent velocity component of 

the ghost volume as equals to the respective velocity 

component of its real neighbor cell. At the same 
way, the wall normal velocity component of the 

ghost cell is equaled in value, but with opposite 

signal, to the respective velocity component of the 
real neighbor cell. 

The pressure gradient normal to the wall is 

assumed be equal to zero, following an inviscid 
formulation. The same hypothesis is applied to the 

temperature gradient normal to the wall, considering 

adiabatic wall. The ghost volume density and 

pressure are extrapolated from the respective values 
of the real neighbor volume (zero order 

extrapolation), with these two conditions. The total 

energy is obtained by the state equation of a perfect 
gas. 

(b) Entrance condition: 

(b.1) Subsonic flow: Three properties are specified 

and one is extrapolated, based on analysis of 
information propagation along characteristic 

directions in the calculation domain ([23]). In other 

words, three characteristic directions of information 
propagation point inward the computational domain 

and should be specified. Only the characteristic 

direction associated to the “(qn-a)” velocity cannot 
be specified and should be determined by interior 

information of the calculation domain. The pressure 

was the extrapolated variable from the real neighbor 

volume, to the studied problems. Density and 
velocity components had their values determined by 

the freestream flow properties. The total energy per 

unity fluid volume is determined by the state 
equation of a perfect gas. 

(b.2) Supersonic flow: All variables are fixed with 

their freestream flow values. 
(c) Exit condition: 

(c.1) Subsonic flow: Three characteristic directions 

of information propagation point outward the 

computational domain and should be extrapolated 
from interior information ([23]). The characteristic 

direction associated to the “(qn-a)” velocity should 

be specified because it penetrates the calculation 
domain. In this case, the ghost volume’s pressure is 

specified by its freestream value. Density and 

velocity components are extrapolated and the total 

energy is obtained by the state equation of a perfect 

gas. 
(c.2) Supersonic flow: All variables are extrapolated 

from the interior domain due to the fact that all four 

characteristic directions of information propagation 
of the Euler equations point outward the calculation 

domain and, with it, nothing can be fixed. 

 
 

13  Results 
Tests were performed in a personal computer 

(notebook) with Pentium dual core processor of 

2.20GHz of clock and 2.0Gbytes of RAM memory. 
Converged results occurred to 4 orders of reduction 

in the value of the maximum residual. The 

maximum residual is defined as the maximum value 
obtained from the discretized conservation 

equations. The value used to  was 1.4. To all 
problems, the attack angle was adopted equal to 

0.0. 
 In the present results, the following 

nomenclature is used to represent the studied 

schemes: 
 

 R81 – Represent [1] solutions; 

 VL82 – Represent [2] solutions 
 YWH82 – Represent [3] solutions; 

 H83 - Represent [4] solutions; 

 YK85 - Represent [5] solutions; 
 HB91 - Represent [7] solutions. 

 

The reference to the limiters is also abbreviated: 

Van Leer limiter (VL), Van Albada limiter (VA), 
minmod limiter (Min), Super Bee limiter (SB) and 

-limiter (BL). 
 To the compression corner physical problem, an 

algebraic mesh with 60x40 points was used, which 

is composed of 2,301 rectangular cells and of 2,400 
nodes, on a finite volume context. The compression 

corner configuration is described in Fig. 2. 

 

Figure 2 : Compression corner configuration. 
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The compression corner mesh employed in this 

work is presented in Fig. 3. The initial condition to 

the compression corner problem adopts a freetream 

Mach number of 3.0, which represents a moderate 
supersonic flow. 

 
Figure 3 : Compression corner mesh. 

 

13.1  Corner results – Explicit case 

 
Figure 4 : Pressure contours (R81-VL). 

 
Figure 5 : Pressure contours (R81-VA). 

 

 Figures 4 to 17 show the pressure field obtained 

by the R81, in its five variants; the VL82, in its five 

variants; the YWH82; the H83; the YK85; and the 

HB91 schemes, respectively. The pressure field 
generated by the R81 scheme in its SB variant is the 

most severe in relation to the other schemes. 

 
Figure 6 : Pressure contours (R81-Min). 

 
Figure 7 : Pressure contours (R81-SB). 

 
Figure 8 : Pressure contours (R81-BL). 
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Figure 9 : Pressure contours (VL82-VL). 

 
Figure 10 : Pressure contours (VL82-VA). 

 
Figure 11 : Pressure contours (VL82-Min). 

 

 Figures 18 to 31 exhibit the Mach number field 

generated by the R81, in its five variants; the VL82, 
in its five variants; YWH82; the H83; the YK85; 

and the HB91 schemes, respectively. The Mach 

number contours generated by the VL82 scheme in 

its SB variant are the most intense field in relation to 

the other schemes. 

 
Figure 12 : Pressure contours (VL82-SB). 

 
Figure 13 : Pressure contours (VL82-BL). 

 
Figure 14 : Pressure contours (YWH82). 

 

 Figure 32 shows the wall pressure distributions 

obtained by all variants of the R81 TVD scheme. 
They are compared with the oblique shock wave 
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theory results. As can be observed, some solutions 

present overshoot at the compression corner, mainly 

the R81 TVD scheme using the SB limiter. 

 
Figure 15 : Pressure contours (H83). 

 
Figure 16 : Pressure contours (YK85). 

 
Figure 17 : Pressure contours (HB91). 

 
Figure 33 exhibits the wall pressure distribution 

obtained by the R81 TVD scheme using VL, VA 

and Min limiters. As noted, no overshoot or 

undershoot are observed in the solutions, presenting 

these ones a smooth behaviour. It is also possible to 

observe that the shock discontinuity is captured 
within four cells, which is also a typical number of 

cells encountered in high resolution schemes to 

capture accurately shock waves. So the accuracy of 
the R81 TVD scheme with these three limiters is in 

accordance with typical results of current high 

resolution schemes. 

 
Figure 18 : Mach number contours (R81-VL). 

 
Figure 19 : Mach number contours (R81-VA). 

 
Figure 20 : Mach number contours (R81-Min). 
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Figure 21 : Mach number contours (R81-SB). 

 
Figure 22 : Mach number contours (R81-BL). 

 
Figure 23 : Mach number contours (VL82-VL). 

 
Figure 34 shows the wall pressure distributions 

obtained by the R81 TVD scheme using the SB and 

the BL limiters. The SB limiter yields a pronounced 

overshoot, but the shock is also captured in four 
cells, as is the case with the BL limiter. By the 

results, the best solutions were obtained with VL, 

VA and Min limiters because detect sharp and 

smooth pressure distributions at the corner wall. 

 
Figure 24 : Mach number contours (VL82-VA). 

 
Figure 25 : Mach number contours (VL82-Min). 

 
Figure 26 : Mach number contours (VL82-SB). 

 

 One way to quantitatively verify if the solutions 
generated by the R81 TVD scheme are satisfactory 
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consists in determining the shock angle of the 

oblique shock wave, , measured in relation to the 
initial direction of the flow field. [24] (pages 352 

and 353) presents a diagram with values of the 

shock angle, , to oblique shock waves. The value 
of this angle is determined as function of the 

freestream Mach number and of the deflection angle 

of the flow after the shock wave, . To the 

compression corner problem,  = 10º (ramp 

inclination angle) and the freestream Mach number 

is 3.0, resulting from this diagram a value to  
equals to 27.5º. Using a transfer in Figures 4 to 8, it 

is possible to obtain the values of  to the R81 TVD 
scheme in its variants, as well the respective errors, 

shown in Tab. 2. As can be observed, the R81 TVD 

scheme using the SB limiter has yielded the best 
result in terms of R81 variants. 

Table 2 : Shock angle and percentage errors 

(R81/Explicit case). 
 

Algorithm  () Error (%) 

R81 – VL 27.0 1.82 

R81 – VA 27.0 1.82 
R81 – Min 27.0 1.82 

R81 – SB 27.4 0.36 

R81 – BL 26.9 2.18 

 
Figure 27 : Mach number contours (VL82-BL). 

 

 Figure 35 shows the wall pressure distributions 

obtained by all variants of the VL82 TVD scheme. 

They are compared with the oblique shock wave 
theory results. As can be observed, some solutions 

present oscillations at the compression corner, 

mainly the VL82 TVD scheme using the SB limiter, 
but they are in less frequency than in the solutions 

of the variants of the R81 TVD scheme. Figure 36 

exhibits the wall pressure distributions obtained by 
the VL82 TVD scheme using VL, VA and Min 

limiters. As noted, no overshoot or undershoot are 

observed in the solutions, presenting these ones a 

smooth behaviour. 

 
Figure 28 : Mach number contours (YWH82). 

 
Figure 29 : Mach number contours (H83). 

 
Figure 30 : Mach number contours (YK85). 

 

It is also possible to observe that the shock 
discontinuity is captured within four cells, which is 
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a typical number of cells encountered in high 

resolution schemes to capture accurately shock 

waves. So the accuracy of the VL82 TVD scheme 

with these three limiters is in accordance with 
typical results of current high resolution schemes. 

 
Figure 31 : Mach number contours (HB91). 

 
Figure 32 : Wall pressure distributions (R81). 

 
Figure 33 : Wall pressure distributions (R81-1). 

 
 

 
Figure 34 : Wall pressure distributions (R81-2). 

 
Figure 35 : Wall pressure distributions (VL82). 

 
Figure 36 : Wall pressure distributions (VL82-1). 

 

Figure 37 shows the wall pressure distributions 

obtained by the VL82 TVD scheme using the SB 
and the BL limiters. The SB limiter yields 

oscillations along the shock plateau, but the shock is 

also captured in four cells, as is the case with the BL 

limiter. By the results, the best solutions were 
obtained with VL, VA and Min limiters because 
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detect sharp and smooth pressure distributions at the 

corner wall. 

 
Figure 37 : Wall pressure distributions (VL82-2). 

 

 Analysing the oblique shock wave angle, using a 
transfer in Figures 9 to 13, it is possible to obtain the 

values of  to each variant of the VL82 TVD 
scheme, as well the respective errors, shown in Tab. 

3. The VL82 TVD scheme using the VL, the VA 
and the Min limiters have yielded the best results. 

Table 3 : Shock angle and percentage errors 

(VL82/Explicit case). 

 

Algorithm  () Error (%) 

VL82 – VL 27.2 1.09 

VL82 – VA 27.2 1.09 
VL82 – Min 27.2 1.09 

VL82 – SB 27.0 1.82 

VL82 – BL 27.0 1.82 

 

 Figure 38 shows the pressure distributions along 
the compression corner wall obtained by the 

YWH82, the H83, the YK85 and the HB91 

schemes. They are compared with the exact solution 
from oblique shock wave theory. It is possible to 

note that the solutions generated by the H83, the 

YK85 and the HB91 schemes are smoother than that 
generated by the YWH82 scheme, but all solutions 

present a small pressure peak at the shock region. In 

the solutions generated by the H83 and the YK85 

schemes, the shock presents a small peak in relation 
to the theory, but the shock is sharp defined. The 

HB91 scheme presents the smallest value to the 

pressure peak at the ramp beginning, the shock 
position, characterizing this scheme as the best of 

the four Harten’s based algorithms under study. All 

Harten’s based schemes under-predict the value of 
the pressure at the ramp (at the plateau region) in 

relation to the theoretical solution. 

 
Figure 38 : Pressure distributions at wall. 

 
The width of the constant pressure region after the 

shock (the plateau) at the ramp is better represented 

by the YK85 scheme. The shock profile is captured 
by the schemes using three points, which represents 

good solutions to high resolution algorithms. 

Analysing the oblique shock wave angle, using a 
transfer in Figures 14 to 17, it is possible to obtain 

the values of  to each Harten’s based TVD scheme, 
as well the respective errors, shown in Tab. 4. The 

results highlight the HB91 scheme as the most 

accurate of the studied Harten’s based TVD 
algorithms. 

 

Table 4 : Shock angle and percentage errors to each 

scheme (Harten’s based schemes/Explicit case). 
 

Algorithm β (º) Error (%) 

YWH82 28.0 1.82 

H83 27.8 1.09 

YK85 28.0 1.82 
HB91 27.6 0.36 

 

Comparing the overall results, the best scheme was 

the R81 TVD scheme in its SB variant, presenting a 
reasonable wall pressure distribution and a very 

accurate value to the shock angle of the oblique 

shock wave. 
 

13.2  Corner results – Implicit case 

To the implicit case, it was chosen again the 
compression corner problem due to the accurate 

shock angle value which can be obtained, as also the 

wall pressure distribution. Moreover, it allows the 
visualization of the increasing in the shock wave 

thickness originated from each scheme due to the 

use of large time steps for algorithms presenting 
steady-state-time-dependent solutions. 
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Figure 39 : Pressure contours (R81-VL). 

 
Figure 40 : Pressure contours (R81-VA). 

 
Figure 41 : Pressure contours (R81-Min). 

 

Figures 39 to 51 exhibit the pressure contours 

obtained by the R81, in its five variants; the VL82, 

in its five variants; the H83; the YK85; and the 
HB91 schemes. The YWH82 scheme did not 

present converged results. As can be observed, the 

most severe pressure field is due to R81 in its SB 
variant. Also noted is the increasing in the shock 

wave thickness to the Harten’s based scheme 

solutions. It occurs because the dissipation function 

of these schemes is time step dependent. So, in the 

steady state condition, the solution depends of the 

time step employed. 

 
Figure 42 : Pressure contours (R81-SB). 

 
Figure 43 : Pressure contours (R81-BL). 

 
Figure 44 : Pressure contours (VL82-VL). 

 

 Figures 52 to 64 show the Mach number 
contours generated by the R81, in its five variants; 
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the VL82, in its five variants; the H83; the YK85; 

and the HB91 schemes. The increasing in the shock 

wave thickness observed in Figs. 49 to 51 is also 

clear as compared with their explicit counterparts. 

 
Figure 45 : Pressure contours (VL82-VA). 

 
Figure 46 : Pressure contours (VL82-Min). 

 
Figure 47 : Pressure contours (VL82-SB). 

 

 Figure 65 shows the wall pressure distributions 

obtained by all variants of the R81 TVD scheme. 

They are compared with the oblique shock wave 

theory results. As can be seen, some solutions 
present overshoot at the compression corner, mainly 

the R81 TVD scheme using the SB limiter, as 

occurred in the explicit case. 

 
Figure 48 : Pressure contours (VL82-BL). 

 
Figure 49 : Pressure contours (H83). 

 
Figure 50 : Pressure contours (YK85). 
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Figure 66 exhibits the wall pressure distributions 

obtained by the R81 TVD scheme using VL, VA 

and Min limiters. As noted, no overshoot is 

observed in the solutions, presenting these ones a 
smooth behaviour. It is also possible to observe that 

the shock discontinuity is captured in three cells, 

better than the explicit solutions, which is a good 
number of cells to capture accurately a shock 

discontinuity by a high resolution scheme. Thus, the 

accuracy of the R81 TVD scheme with these three 
limiters to the implicit case is better than the explicit 

one and is in accordance with typical results of 

current high resolution schemes. 

 
Figure 51 : Pressure contours (HB91). 

 
Figure 52 : Mach number contours (R81-VL). 

 

Figure 67 shows the wall pressure distributions 

obtained by the R81 TVD scheme using SB and BL 
limiters. The SB and BL limiters yield a pronounced 

overshoot, but the shock is also captured in three 

cells. As in the explicit case, these two limiters 
present problems of oscillations due to the shock, 

something that should be avoided by the use of 

adequate region of TVD properties. By the results, 

the best solutions were obtained with VL, VA and 

Min limiters because detect sharp and smooth 

pressure distributions at the corner wall. 

 
Figure 53 : Mach number contours (R81-VA). 

 
Figure 54 : Mach number contours (R81-Min). 

 
Figure 55 : Mach number contours (R81-SB). 
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Figure 56 : Mach number contours (R81-BL). 

 
Figure 57 : Mach number contours (VL82-VL). 

 
Figure 58 : Mach number contours (VL82-VA). 

 

 Analysing the oblique shock wave angle, using a 

transfer in Figures 39 to 43, it is possible to obtain 

the values of  to each variant of the R81 TVD 
scheme, in the implicit case, as also the respective 

errors, shown in Tab. 5. The R81 TVD scheme 

using the SB limiter has yielded the best result. The 

values obtained to  by the implicit solutions were 
better than by the explicit ones, as well the 

percentage errors. 

 
Table 5 : Shock angle and percentage errors 

(R81/Implicit case). 

 

Algorithm  () Error (%) 

R81 – VL 27.2 1.09 

R81 – VA 27.6 0.36 

R81 – Min 27.7 0.73 
R81 – SB 27.5 0.00 

R81 – BL 27.2 1.09 

 
Figure 59 : Mach number contours (VL82-Min). 

 
Figure 60 : Mach number contours (VL82-SB). 

 

 Figure 68 shows the wall pressure distributions 
obtained by all variants of the VL82 TVD scheme. 

They are compared with the oblique shock wave 

theory results. As noted, some solutions present 

oscillations at the compression corner, mainly the 
VL82 TVD scheme using the SB limiter, but they 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-3429 204 Issue 3, Volume 7, July 2012



are in less amount than in the solutions of the R81’s 

variants. 

 
Figure 61 : Mach number contours (VL82-BL). 

 
Figure 62 : Mach number contours (H83). 

 
Figure 63 : Mach number contours (YK85). 

 

Figure 69 exhibits the wall pressure distributions 

obtained by the VL82 TVD scheme using VL, VA 
and Min limiters. As observed, no overshoots or 

undershoots are noted in these solutions, presenting 

these ones a smooth behaviour. It is also possible to 

observe that the shock discontinuity is captured in 

five cells, a high number of cells to high resolution 
schemes capture accurately shock waves. Hence, the 

accuracy of the VL82 TVD scheme with these three 

limiters, in the implicit case, is not in agreement 
with typical results of current high resolution 

schemes. 

 
Figure 64 : Mach number contours (HB91). 

 
Figure 65 : Wall pressure distributions (R81). 

 
Figure 66 : Wall pressure distributions (R81-1). 
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Figure 67 : Wall pressure distributions (R81-2). 

 
Figure 68 : Wall pressure distributions (VL82). 

 
Figure 69 : Wall pressure distributions (VL82-1). 

 
Figure 70 shows the wall pressure distributions 

obtained by the VL82 TVD scheme using SB and 

BL limiters. The SB limiter yields oscillations along 
the shock plateau, but the shock discontinuity is also 

captured within five cells, as is the case with the BL 

limiter. By the results, the best solutions were 

obtained with VL, VA and Min limiters because 

detect sharp and smooth pressure distributions at the 

corner wall, although require a high number of cells 

to capture the shock discontinuity. 

 
Figure 70 : Wall pressure distributions (VL82-2). 

 
 Analysing the oblique shock wave angle, using a 

transfer in Figures 44 to 48, it is possible to obtain 

the values of  to each variant of the VL82 TVD 
scheme, to the implicit case, as well the respective 

errors, shown in Tab. 6. The VL82 TVD scheme 
using the SB limiter has yielded the best result in 

relation to its variants. 

 

Table 6 : Shock angle and percentage errors 
(VL82/Implicit case). 

 

Algorithm  () Error (%) 

VL82 – VL 27.8 1.09 

VL82 – VA 27.0 1.82 

VL82 – Min 27.2 1.09 

VL82 – SB 27.6 0.36 
VL82 – BL 26.9 2.18 

 
Figure 71 : Wall pressure distributions. 
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Figure 71 exhibits the wall pressure distributions 

obtained by the H83, by the YK85 and by the HB91 

schemes. They are compared with the oblique shock 

wave theory. As can be noted, none pressure peak is 
observed in the solutions. Moreover, the pressure 

distributions are free of oscillations and extremes. 

However, the shock discontinuity is captured using 
five cells, which is excessive to a high resolution 

scheme. 

The shock angle of the oblique shock wave 
generated by the H83, by the YK85 and by the 

HB91 is again evaluated. Using a transfer in Figures 

49 to 51, it is possible to determine the shock angle 

as also the percentage error obtained in this 
measurement. As can be seen in Table 7, the best 

estimation to this parameter is again predicted by 

the HB91 scheme, as treating of the Harten’s based 
TVD algorithms. The major percentage errors found 

in the solutions, in comparison with their explicit 

counterparts, are due to the smearing that the 
excessive dissipation provides in the implicit case. 

 

Table 7 : Shock angle and percentage errors to each 

scheme (Harten’s based schemes/Implicit case). 
 

Algorithm β (º) Error (%) 

H83 28.3 2.91 

YK85 28.4 3.27 

HB91 27.3 0.72 

 

13.3 Explicit versus implicit comparisons 

Figure 72 exhibits the best wall pressure 
distributions obtained by each scheme in its explicit 

version. As the R81 and VL82 have three 

distributions with approximately the same 

behaviour, it was chosen one of them to represent 
the scheme solution. The choice was the solution 

obtained with the Min nonlinear limiter because it is 

the most conservative among them. So, Figure 72 
presents the best curves of each algorithm. All 

presented solutions in the explicit results capture the 

shock discontinuity in four cells, as previously 

emphasized. The best wall pressure distribution in 
this comparison was obtained by both the R81 and 

the VL82 TVD schemes using Min limiter. The 

other solutions present small peaks at the pressure 
distributions and were disregarding. Figure 73 

exhibits the best wall pressure distributions obtained 

by each scheme in its implicit version. The solutions 
of the R81 TVD scheme capture the shock 

discontinuity in three cells, which is an 

improvement in relation to the explicit solutions. 

Moreover, the implicit distributions determine 
solutions more sharp defined than the explicit ones. 

 
Figure 72 : Best wall pressure distributions 

(Explicit case). 

 
Figure 73 : Best wall pressure distributions 

(Implicit case. 

 
In other words, the discontinuity profiles generated 

by the implicit solutions are better vertically defined 
at the discontinuity (closer to the theoretical solution 

discontinuity) than the explicit profiles, assuring a 

better definition at the transition. The solutions of 
the VL82 TVD scheme capture the shock 

discontinuity in five cells, which is a weak 

behaviour to a high resolution scheme. The best 

wall pressure distribution in this comparison was 
obtained by the R81 TVD scheme using Min 

limiter. 

 Table 8 presents the best values to the shock 

angle obtained by all schemes in their explicit 

case. As can be observed, the best result is 

obtained with the R81 TVD scheme in its SB 

variant and with HB91 TVD scheme. Table 9 

presents the best values to the shock angle of 

the oblique shock wave obtained by all schemes 

in their implicit case. Again the R81 TVD 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-3429 207 Issue 3, Volume 7, July 2012



scheme in its SB variant presents the best value 

to this parameter. 

 
Table 8 : Shock angle and percentage errors to each 

scheme (Explicit case). 
 

Algorithm β (º) Error (%) 

R81 – SB 27.4 0.36 

VL82-Min 27.2 1.09 

YWH82 28.0 1.82 
H83 27.8 1.09 

YK85 28.0 1.82 

HB91 27.6 0.36 

 
Table 9 : Shock angle and percentage errors to each 

scheme (Implicit case). 

 

Algorithm β (º) Error (%) 

R81 – SB 27.5 0.00 
VL82 – SB 27.6 0.36 

H83 28.3 2.91 

YK85 28.4 3.27 

HB91 27.3 0.72 

 

 

14  Conclusions 
In this work, the [1-5; 7] schemes are implemented, 

on a finite volume context and using an upwind and 
a structured spatial discretization, to solve the Euler 

equations, in two-dimensions, and are compared 

with themselves. All schemes are implemented in 
their second order accurate versions in space and are 

applied to the solution of the supersonic flow along 

a compression corner configuration. The theories 

involving the extension of the first order versions of 
the numerical schemes of [1] and [2] to second 

order spatial accuracy, incorporating hence TVD 

properties through a MUSCL approach, and the 
implicit numerical implementation of all second 

order schemes under study are detailed. First order 

time integrations like ADI approximate factorization 

are programmed. A spatially variable time step 
procedure is implemented aiming to accelerate the 

convergence of the schemes to the steady state 

condition. The effective gains in terms of 
convergence ratio with this procedure are reported 

in [15-16]. 

The results have demonstrated that the most 
accurate solutions are provided by the [1] scheme in 

its SB variant. This algorithm has provided the best 

solutions in the compression corner problem, both in 

the explicit and implicit cases, due to the best 
estimative of the shock angle. 

 The present author strongly recommends the use 

of the [1] scheme in its SB variant to the final phase 

of the aerospace vehicle projects, where more 

refined results are needed at a low computational 
cost. To the initial phase, where start results are 

expected without a great refinement, the [7] scheme 

is suggested to. 
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