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Abstract: - In the present work, the Steger and Warming, the Van Leer, the Liou and Steffen Jr. and the 

Radespiel and Kroll schemes are implemented, on a finite volume context and using a structured spatial 

discretization, to solve the Euler and the Navier-Stokes equations in three-dimensions. A MUSCL (“Monotone 

Upstream-centered Schemes for Conservation Laws”) approach is implemented in these schemes aiming to 

obtain second order spatial accuracy and TVD (“Total Variation Diminishing”) high resolution properties. An 

implicit formulation is employed to the Euler equations, whereas the Navier-Stokes equations use an explicit 

formulation. The algebraic turbulence models of Cebeci and Smith and of Baldwin and Lomax are 

implemented. The problems of the supersonic flow along a compression corner (inviscid case), and of the 

supersonic flow along a ramp (viscous case) are solved. The results have demonstrated that the most severe and 

most accurate results are obtained with the Liou and Steffen Jr. TVD scheme. The turbulent results are 

presented in the second part of this work. 

 

Key-Words: - Steger and Warming algorithm, Van Leer algorithm, Liou and Steffen Jr. algorithm, Radespiel 

and Kroll algorithm, TVD high resolution schemes, Turbulence models, Euler and Navier-Stokes equations, 

Three-Dimensions. 

 

1 Introduction 
Conventional non-upwind algorithms have been 

used extensively to solve a wide variety of problems 

([1-2]). Conventional algorithms are somewhat 

unreliable in the sense that for every different 

problem (and sometimes, every different case in the 

same class of problems) artificial dissipation terms 

must be specially tuned and judicially chosen for 

convergence. Also, complex problems with shocks 

and steep compression and expansion gradients may 

defy solution altogether. 
 Upwind schemes are in general more robust but 

are also more involved in their derivation and 

application. Some upwind schemes that have been 

applied to the Euler equations are: [3-7]. Some 

comments about these methods are reported below: 
 [3] presented a work that emphasized that several 

numerical schemes to the solution of the hyperbolic 

conservation equations were based on exploring the 

information obtained in the solution of a sequence 

of Riemann problems. It was verified that in the 

existent schemes the major part of these information 

was degraded and that only certain solution aspects 

were solved. It was demonstrated that the 

information could be preserved by the construction 

of a matrix with a certain “U property”. After the 

construction of this matrix, its eigenvalues could be 

considered as wave velocities of the Riemann 

problem and the UL-UR projections over the matrix’s 

eigenvectors would be the jumps which occur 

between intermediate stages. 
 [4] developed a method that used the remarkable 

property that the nonlinear flux vectors of the 

inviscid gasdynamic equations in conservation law 

form were homogeneous functions of degree one of 

the vector of conserved variables. This property 

readily permitted the splitting of the flux vectors 

into sub-vectors by similarity transformations so 

that each sub-vector had associated with it a 

specified eigenvalue spectrum. As a consequence of 

flux vector splitting, new explicit and implicit 

dissipative finite-difference schemes were 

developed for first-order hyperbolic systems of 

equations. 
 [5] suggested an upwind scheme based on the 

flux vector splitting concept. This scheme 

considered the fact that the convective flux vector 

components could be written as flow Mach number 

polynomial functions, as main characteristic. Such 

polynomials presented the particularity of having 

the minor possible degree and the scheme had to 

satisfy seven basic properties to form such 

polynomials. This scheme was presented to the 
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Euler equations in Cartesian coordinates and three-

dimensions. 
 [6] proposed a new flux vector splitting scheme. 

They declared that their scheme was simple and its 

accuracy was equivalent and, in some cases, better 

than the [3] scheme accuracy in the solutions of the 

Euler and the Navier-Stokes equations. The scheme 

was robust and converged solutions were obtained 

so fast as the [3] scheme. The authors proposed the 

approximated definition of an advection Mach 

number at the cell face, using its neighbor cell 

values via associated characteristic velocities. This 

interface Mach number was so used to determine the 

upwind extrapolation of the convective quantities. 
 [7] emphasized that the [6] scheme had its merits 

of low computational complexity and low numerical 

diffusion as compared to other methods. They also 

mentioned that the original method had several 

deficiencies. The method yielded local pressure 

oscillations in the shock wave proximities, adverse 

mesh and flow alignment problems. In [7], a hybrid 

flux vector splitting scheme, which alternated 

between the [6] scheme and the [5] scheme, in the 

shock wave regions, is proposed, assuring that 

resolution of strength shocks was clear and sharply 

defined. 
Second order spatial accuracy can be achieved 

by introducing more upwind points or cells in the 

schemes. It has been noted that the projection stage, 

whereby the solution is projected in each cell face 

(i-½,i+½) on piecewise constant states, is the cause 

of the first order space accuracy of the Godunov 

schemes ([8]). Hence, it is sufficient to modify the 

first projection stage without modifying the 

Riemann solver, in order to generate higher spatial 

approximations. The state variables at the interfaces 

are thereby obtained from an extrapolation between 

neighboring cell averages. This method for the 

generation of second order upwind schemes based 

on variable extrapolation is often referred to in the 

literature as the MUSCL (“Monotone Upstream-

centered Schemes for Conservation Laws”) 

approach. The use of nonlinear limiters in such 

procedure, with the intention of restricting the 

amplitude of the gradients appearing in the solution, 

avoiding thus the formation of new extrema, allows 

that first order upwind schemes be transformed in 

TVD high resolution schemes with the appropriate 

definition of such nonlinear limiters, assuring 

monotone preserving and total variation diminishing 

methods. 

Traditionally, implicit numerical methods have 

been praised for their improved stability and 

condemned for their large arithmetic operation 

counts ([9]). On the one hand, the slow convergence 

rate of explicit methods become they so unattractive 

to the solution of steady state problems due to the 

large number of iterations required to convergence, 

in spite of the reduced number of operation counts 

per time step in comparison with their implicit 

counterparts. Such problem is resulting from the 

limited stability region which such methods are 

subjected (the Courant condition). On the other 

hand, implicit schemes guarantee a larger stability 

region, which allows the use of CFL numbers above 

1.0, and fast convergence to steady state conditions. 

Undoubtedly, the most significant efficiency 

achievement for multidimensional implicit methods 

was the introduction of the Alternating Direction 

Implicit (ADI) algorithms by [10-12], and fractional 

step algorithms by [13]. ADI approximate 

factorization methods consist in approximating the 

Left Hand Side (LHS) of the numerical scheme by 

the product of one-dimensional parcels, each one 

associated with a different spatial coordinate 

direction, which retract nearly the original implicit 

operator. These methods have been largely applied 

in the CFD community and, despite the fact of the 

error of the approximate factorization, it allows the 

use of large time steps, which results in significant 

gains in terms of convergence rate in relation to 

explicit methods. 

There is a practical necessity in the aeronautical 

industry and in other fields of the capability of 

calculating separated turbulent compressible flows. 

With the available numerical methods, researches 

seem able to analyze several separated flows, three-

dimensional in general, if an appropriated 

turbulence model is employed. Simple methods as 

the algebraic turbulence models of [14-15] supply 

satisfactory results with low computational cost and 

allow that the main features of the turbulent flow be 

detected. 

[16] performed a comparison between the [17] 

and [18] schemes implemented coupled with the 

[14-15] models to accomplish turbulent flow 

simulations in three-dimensions. The Navier-Stokes 

equations in conservative and integral forms were 

solved, employing a finite volume formulation and a 

structured spatial discretization. The [17] scheme is 

a predictor/corrector method which performs 

coupled time and space discretizations, whereas the 

[18] algorithm is a symmetrical scheme and its time 

discretization is performed by a Runge-Kutta 

method. Both schemes are second order accurate in 

space and time and require artificial dissipation to 

guarantee stability. The steady state problem of the 

supersonic turbulent flow along a ramp was studied. 

The results have demonstrated that both turbulence 

models predicted appropriately the boundary layer 
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separation region formed at the compression corner, 

reducing, however, its extension in relation to the 

laminar solution, as expected. 

In the present work, the [4-7] schemes are 

implemented, on a finite volume context and using a 

structured spatial discretization, to solve the Euler 

and the laminar/turbulent Navier-Stokes equations 

in the three-dimensional space. All schemes are flux 

vector splitting ones and in their original 

implementations are first order accurate. A MUSCL 

approach is implemented in these schemes aiming to 

obtain second order spatial accuracy. The Van Leer, 

the Van Albada and the Minmod nonlinear limiters 

are employed to guarantee such accuracy and TVD 

high resolution properties. These flux vector 

splitting schemes employ approximate factorizations 

in ADI form to solve implicitly the Euler equations. 

To solve the laminar/turbulent Navier-Stokes 

equations, an explicit formulation based on a 

dimensional splitting procedure is employed. All 

schemes are first order accurate in time in their 

implicit and explicit versions. Turbulence is taken 

into account considering two algebraic models, 

namely: [14-15]. The algorithms are accelerated to 

the steady state solution using a spatially variable 

time step, which has demonstrated effective gains in 

terms of convergence rate ([19-20]). All four 

schemes are applied to the solution of the physical 

problems of the supersonic flow along a 

compression corner, in the inviscid case, and of the 

supersonic flow along a ramp, in the laminar and 

turbulent cases. The results have demonstrated that 

the most severe and most accurate results are 

obtained with the [6] TVD high resolution scheme. 

The turbulent results are presented in the second 

part of this study (Part II). 

The main contribution of this work to the CFD 

(Computational Fluid Dynamics) community is the 

extension of the TVD high resolution algorithms of 

[4-7] to the three-dimensional space, following a 

finite volume formulation, and their implementation 

coupled with two different algebraic turbulence 

models to simulate viscous turbulent flows, which 

characterizes an original contribution in the field of 

high resolution structured numerical algorithms. The 

implicit implementation in three-dimensions of 

these algorithms is also a meaningful contribution. 

 

 

2 Navier-Stokes Equations 
As the Euler equations can be obtained from the 

Navier-Stokes ones by disregarding the viscous 

vectors, only the formulation to the latter will be 

presented. The Navier-Stokes equations in integral 

conservative form, employing a finite volume 

formulation and using a structured spatial 

discretization, to three-dimensional simulations, can 

be written as: 

                   01  V dVPVtQ


,                    (1) 

where V is the cell volume, which corresponds to an 

hexahedron in the three-dimensional space; Q is the 

vector of conserved variables; and 

     kGGjFFiEEP veveve


  represents 

the complete flux vector in Cartesian coordinates, 

with the subscript “e” related to the inviscid 

contributions or the Euler contributions and “v” is 

related to the viscous contributions. These 

components of the complete flux vector, as well the 

vector of conserved variables, are described below: 
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In these equations, the components of the viscous 

stress tensor are defined as: 

     zwyvxuxu TMTMxx  322 ; (5) 

                       xvyuTMxy  ;                   (6) 

                       xwzuTMxz  ;                   (7) 

       zwyvxuyv TMTMyy  322 ;  (8) 

                         ywzvTMyz  ;                   (9) 

     zwyvxuzw TMTMzz  322 . (10) 
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 The components of the conductive heat flux 

vector are defined as follows: 

               xeddq iTTMx  PrPr ;       (11) 

              yeddq iTTMy  PrPr ;        (12) 

              zeddq iTTMz  PrPr .        (13) 

The quantities that appear above are described as 

follows:  is the fluid density, u, v and w are the 

Cartesian components of the flow velocity vector in 

the x, y and z directions, respectively; e is the total 

energy per unit volume of the fluid; p is the fluid 

static pressure; ei is the fluid internal energy, 

defined as: 

                   2225.0 wvueei  ;                 (14) 

the ’s represent the components of the viscous 

stress tensor; Prd is the laminar Prandtl number, 

which assumed a value of 0.72 in the present 

simulations; PrdT is the turbulent Prandtl number, 

which assumed a value of 0.9; the q’s represent the 

components of the conductive heat flux; M is the 

fluid molecular viscosity; T is the fluid turbulent 

viscosity;  is the ratio of specific heats at constant 

pressure and volume, respectively, which assumed a 

value 1.4 to the atmospheric air; and Re is the 

Reynolds number of the viscous simulation, defined 

by: 

                              MREF lu Re ,                    (15) 

where uREF is a characteristic flow velocity and l is a 

configuration characteristic length. The molecular 

viscosity is estimated by the empiric Sutherland 

formula: 

                           TSbTM  121 ,                  (16) 

where T is the absolute temperature (K), b = 

1.458x10
-6

 Kg/(m.s.K
1/2

) and S = 110.4 K, to the 

atmospheric air in the standard atmospheric 

conditions ([21]). 

 The Navier-Stokes equations were dimensionless 

in relation to the freestream density, , the 

freestream speed of sound, a, and the freestream 

molecular viscosity, , for the compression corner 

and ramp problems. To allow the solution of the 

matrix system of five equations to five unknowns 

described by Eq. (1), it is employed the state 

equation of perfect gases, in its two versions, 

presented below: 

           )(5.0)1( 222 wvuep   or RTp  ,    (17) 

with R being the specific gas constant, which to 

atmospheric air assumes the value 287 J/(Kg.K). 

The total enthalpy is determined by: 

                                    peH .                      (18) 

 

The geometrical characteristics of the present 

implementation, namely: cell definition, cell 

volume, flux areas and unit normal vectors to each 

flux area, are defined in [22-23]. 

 

 

3 [4] Algorithm 
 

3.1 Theory for the One-Dimensional Case 
If the homogeneous Euler equations are put in 

characteristic form 

                       0 xWtW ,                    (19) 

where W is the vector of characteristic variables 

(defined in [8]) and  is the diagonal matrix of 

eigenvalues, the upwind scheme: 
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where u is a scalar property,  aaa ˆˆ5.0ˆ   and 

 aaa ˆˆ5.0ˆ  , can be applied to each of the three 

characteristic variables separately, with the 

definitions 

        lll  5.0    and    lll  5.0     (21) 

for each of the eigenvalues of  
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This defines two diagonal matrices 

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where 
+
 has only positive eigenvalues, 

-
 only 

negative eigenvalues, and such that 

                 and    ;             (24) 

           or    lll    and     lll .        (25) 

 The quasi-linear coupled equations are obtained 

from the characteristic form by the transformation 

matrix P (defined in [8]), with the Jacobian A 

satisfying 

   1 PPA , resulting in 0 xQAtQ .  (26) 

Hence an upwind formulation can be obtained with 

the Jacobians 

            1  PPA    and   1  PPA ,         (27)   

 with:   AAA  and   AAA .                 (28) 

 The fluxes associated with these split Jacobians 

are obtained from the remarkable property of 

homogeneity of the flux vector f(Q). f(Q) is a 

homogeneous function of degree one of Q. Hence, f 

= AQ and the following flux splitting can be 

defined: 

                 QAf      and   QAf   ,             (29) 

 with:   fff .                                          (30) 

 

This flux vector splitting, based on Eq. (21), has 

been introduced by [4]. The split fluxes f  and f  

are also homogeneous functions of degree one in Q. 

 

3.2 Arbitrary Meshes 

 In practical computations one deal mostly with 

arbitrary meshes, considering either in a finite 

volume approach or in a curvilinear coordinate 

system. 

 In both cases, the upwind characterization is 

based on the signs of the eigenvalues of the matrix 

                zyx
n CnBnAnnAK 


)( ,            (31) 

where A, B and C are the Jacobian matrices written 

to the Cartesian system. 

 The fluxes will be decomposed by their 

components 

                zyx
n GnFnEnnFF 



~~ )(              (32) 

and separated into positive and negative parts 

according to the sign of the eigenvalues of K
(n)

 as 

described above, considering the normal direction as 

a local coordinate direction. 

 For a general eigenvalue splitting, as Eq. (21), 

the normal flux projection, Eq. (32), is decomposed 

by a [4] flux splitting as 
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where the eigenvalues of the matrix K are defined as 

nvnv 


1 , anv 


2    and   anv 


3 , 

(34) 

with v


 being the flow velocity vector, and  sign 

indicates the positive or negative parts respectively. 

The parameter  is defined as 

                          32112 .            (35) 

 

3.3 RHS Definition 
The numerical scheme of [4] implemented in this 

work is based on a finite volume formulation, where 

the fluxes at interface are calculated as 

                kjikjikjikji SFFF ,2/1,,,,1,,2/1,

~~~



  ;          (36) 

               kjikjikjikji SFFF ,,2/1,,,,1,,2/1

~~~



  ;           (37) 

                kjikjikjikji SFFF ,2/1,,,,1,,2/1,

~~~



  ;          (38) 

              kjikjikjikji SFFF ,,2/1,,,,1,,2/1

~~~



  ;           (39) 

              2/1,,,,1,,2/1,,

~~~



  kjikjikjikji SFFF ;            (40) 

              2/1,,,,1,,2/1,,

~~~



  kjikjikjikji SFFF ,           (41) 
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where S is the flux area calculated at each interface 

according to the procedure described in [22-23]. 

 The Right-Hand-Side (RHS) of the [4] scheme, 

necessaries to the resolution of the implicit scheme, 

is defined by: 

    
n

kji
n

kji
n

kjikjikji
n

kji FFFVtSWRHS ,2/1,,,2/1,2/1,,,,,,,

~~~
)(  

                     n
kji

n
kji

n
kji FFF 2/1,,2/1,,,,2/1

~~~
  .       (42) 

The terms in brackets in the RHS are a sum of 

normal fluxes because the correct signal of these 

fluxes is considered in Eqs. (36) to (41) by the 

signal of the normal unity vector components. 

 To perform the time integration in the explicit 

case, necessaries to the viscous simulations, the 

following algorithm is applied: 

                    n
kji

n
kji

n
kji SWRHSQQ ,,,,

)1(
,, )(              (43) 

 The viscous vectors at the flux interface are 

obtained by arithmetical average between the 

primitive variables at the left and at the right states 

of the flux interface, as also arithmetical average of 

the primitive variable gradients also considering the 

left and the right states of the flux interface. The 

gradients of the primitive variables present in the 

viscous flux vectors are calculated employing the 

Green Theorem which considers that the gradient of 

a primitive variable is constant in the volume and 

that the volume integral which defines this gradient 

is replaced by a surface integral ([24]); For instance, 

to xu  : 

         

     










V

xkjikji
kjiV

x

V

kji
Suu

V
udS

V
Sdnu

V
dV

x

u

Vx

u
,2/1,,1,,,

,,

5.0
1111 

                  

      
  kjikjikji xkjikjixkjikjixkjikji SuuSuuSuu

,,2/1,2/1,,,2/1 ,,1,,,1,,,,,1,, 5.05.05.0  

    
2/1,,2/1,, 1,,,,1,,,, 5.05.0

  
kjikji xkjikjixkjikji SuuSuu .   (44) 

 

This version of the flux vector splitting algorithm of 

[4] is first order accurate in space. The second order 

version, with TVD properties, will be introduced in 

this scheme in Section 7. 

 

 

 

 

 

4 [5] Algorithm 
The approximation to the integral Equation (1) to a 

hexahedron finite volume yields an ordinary 

differential equation system with respect to time: 

                       kjikjikji RdtdQV ,,,,,,  ,                (45) 

with Ri,j,k representing the neat flux (residual) of the 

conservation of mass, of linear momentum and of 

energy in the Vi,j,k volume. The residual is calculated 

as: 

 2/1,,2/1,,,2/1,,2/1,,,2/1,,2/1,,   kjikjikjikjikjikjikji RRRRRRR , (46) 

where c
kjikji RR ,,2/1,,2/1   , in which “c” is related to 

the flow convective contribution. 

 The discrete convective flux calculated by the 

AUSM scheme (“Advection Upstream Splitting 

Method”) can be interpreted as a sum involving the 

arithmetical average between the right (R) and the 

left (L) states of the (i+½,j,k) cell face, related to 

cells (i,j,k) and (i+1,j,k), respectively, multiplied by 

the interface Mach number, and a scalar dissipative 

term, as shown in [6]. Hence, 

 

,
2

1

2

1
,,2/1,,2/1,,2/1,,2/1
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



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

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

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
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
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







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






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

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
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

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
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




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


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



































 

LR

kji

RL

kjikjikji

aH

aw

av

au

a

aH

aw

av

au

a

aH

aw

av

au

a

aH

aw

av

au

a

MSR  

            

kji

z

y

x

pS

pS

pS

,,2/1
0

0
























 ,                                        (47) 

where  T
kjizyxkji SSSS

,,2/1,,2/1    defines the 

normal area vector to the (i+½,j,k) surface. The “a” 

quantity represents the speed of sound, calculated as 

 pa . Mi+½,j,k defines the advective Mach 

number at the (i+½,j,k) face of the cell (i,j,k), which 

is calculated according to [6] as: 

                          
  RLkji MMM ,,2/1 ,                (48) 
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where the M
+/-

 separated Mach numbers are defined 

by [5] as: 

                ;1

;1,0

,125.0

;1,
2



















Mif

MifM

MifM

M             (49) 

             ;1

.1,

,125.0

;1,0
2



















MifM

MifM

Mif

M          (50) 

ML and MR represent the Mach numbers associated 

to the left and right states, respectively. The 

advection Mach number is defined as: 

                    SawSvSuSM zyx  .               (51) 

 The pressure at the (i+½,j,k) face of the (i,j,k) 

cell is calculated from a similar way: 

                      
  RLkji ppp ,,2/1 ,                        (52) 

with p
+/-

 representing the pressure separation 

defined according to [5]: 

 

              
















;1,0

1,2125.0

;1,
2

Mif

MifMMp

Mifp

p ;         (53) 

              
















.1,

1,2125.0

;1,0
2

Mifp

MifMMp

Mif

p ;          (54) 

 The definition of the  dissipation term 

determines the particular formulation to the 

convective fluxes. The following choice 

corresponds to the [5] scheme, according to[7]: 

 

 
























.01,15.0

;10,15.0

;1,

,,2/1
2

,,2/1

,,2/1
2

,,2/1

,,2/1,,2/1

,,2/1,,2/1

kjiLkji

kjiRkji

kjikji

VL
kjikji

MifMM

MifMM

MifM

      (55) 

The right-hand-side of the [5] scheme, necessaries 

to the implicit resolution of this algorithm, is 

defined as: 

 n
kji

n
kji

n
kjikjikji

n
kji RRRVtVLRHS ,2/1,,,2/1,,2/1,,,,,,)(  

  
                   n

kji
n

kji
n

kji RRR 2/1,,2/1,,,2/1,   .    (56) 

The terms in brackets at the RHS are a sum of 

differences of normal fluxes because the correct 

signal of these fluxes is not completely considered 

in Eq. (47), requiring that the correct signal should 

be considered explicitly. 

 To the viscous simulations, it is necessary to 

implement the explicit version. In this case, the time 

integration is accomplished by a dimensional 

splitting method, first order accurate, which divides 

the temporal integration in three steps, each one 

associated with a different spatial direction (in each 

direction is solved an one-dimensional problem by 

applying an one-dimensional operator). Considering 

the initial step associated with the  direction, one 

has: 

       n
kji

n
kjikjikjikji FFVtQ ,,2/1,,2/1,,,,

*
,,   ; 

                       *
,,,,

*
,, kji

n
kjikji QQQ  ;                   (57) 

In the intermediate step, considering the  direction, 

one has: 

       *
,2/1,

*
,2/1,,,,,

**
,, kjikjikjikjikji FFVtQ   ; 

                       **
,,

*
,,

**
,, kjikjikji QQQ  ;                   (58) 

And, in the final step, considering the  direction, 

one has: 

         **
2/1,,

**
2/1,,,,,,

1
,, 
  kjikjikjikji

n
kji FFVtQ ; 

                          1
,,

**
,,

1
,,

  n
kjikji

n
kji QQQ ,                (59) 

where F , *F  and **F  incorporate the convective 

and the diffusive contributions. In other words, the 

viscous vectors at the flux interface are subtracted 

from the respective convective contributions. They 

are obtained from the same procedure described in 

section 3. 

 This version of the [5] scheme is first order 

accurate in space. The second order version, with 

TVD properties, will be introduced in this scheme in 

Section 7. 
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5 [6] Algorithm 
The [6] scheme is described by the Eqs. (45) to (54). 

The next step is the determination of the  

dissipative term. The following choice corresponds 

to the [6] scheme, according to [7]: 

             kji
LS

kjikji M ,,2/1,,2/1,,2/1   .            (60) 

The right-hand-side of the [6] scheme, necessaries 

to the implicit resolution of this algorithm, is 

defined as: 

 n
kji

n
kji

n
kjikjikji

n
kji RRRVtLSRHS ,2/1,,,2/1,,2/1,,,,,,)(  

  
                    n

kji
n

kji
n

kji RRR 2/1,,2/1,,,2/1,   .   (61) 

The terms in brackets at the RHS are a sum of 

differences of normal fluxes because the correct 

signal of these fluxes is not completely considered 

in Eq. (47), requiring that the correct signal should 

be considered explicitly. 

 The explicit version of this algorithm to perform 

the viscous simulations is described by Eqs. (57) to 

(59). The viscous vectors at the flux interface are 

subtracted from the respective convective 

contributions, Eq. (47), and are obtained from the 

same procedure described in section 3. 

 This version of the [6] scheme is first order 

accurate in space. The second order version, with 

TVD properties, will be introduced in this scheme in 

Section 7. 

 

 

6 [7] Algorithm 
The [7] scheme is described by the Eqs. (45) to (54). 

The next step is the determination of the  

dissipative term. A hybrid scheme is proposed by 

[7], which combines the [5] scheme and the [6] 

(AUSM) scheme. Hence, 

                    LS
ji

VL
jiji ,2/1,2/1,2/1 1   ,       (62) 

with: 

 

 


























;01,1
2

1

;10,1
2

1

;1,

,,2/1
2

,,2/1

,,2/1
2

,,2/1

,,2/1,,2/1

,,2/1

kjiLkji

kjiRkji

kjikji

VL
kji

MifMM

MifMM

MifM

 

 (63) 

 























 ~
,~

2

~

~
,

,,2/1

22
.,2/1

,,2/1.,2/1

,,2/1

kji

kji

kjikji
LS

kji

Mif
M

MifM

, 

(64) 

where 
~

 is a small parameter, 0 < 
~
 0.5, and  is 

a constant, 0    1. In this work, the values used 

to 
~

 and  were: 0.2 and 0.5, respectively. The 

right-hand-side of the [7] scheme, necessaries to the 

implicit resolution of this algorithm, is defined as: 

 n
kji

n
kji

n
kjikjikji

n
kji RRRVtRKRHS ,2/1,,,2/1,,2/1,,,,,,)(    

                      n
kji

n
kji

n
kji RRR 2/1,,2/1,,,2/1,       (65) 

The terms in brackets at the RHS are a sum of 

differences of normal fluxes because the correct 

signal of these fluxes is not completely considered 

in Eq. (47), requiring that the correct signal should 

be considered explicitly. 

 The explicit version of this algorithm to perform 

the viscous simulations is described by Eqs. (57) to 

(59). The viscous vectors at the flux interface are 

subtracted from the respective convective 

contributions, Eq. (47), and are obtained from the 

same procedure described in section 3. 

 This version of the [7] scheme is first order 

accurate in space. The second order version, with 

TVD properties, will be introduced in this scheme in 

Section 7. 

 

 

7 Second Order Accuracy / MUSCL 

Approach 
Second order spatial accuracy can be achieved by 

introducing more upwind points or cells in the 

schemes. It has been noted that the projection stage, 

whereby the solution is projected in each cell face 

(i-1/2,j,k; i+1/2,j,k) on piecewise constant states, is 

the cause of the first order space accuracy of the 

Godunov schemes ([8]). Hence, it is sufficient to 

modify the first projection stage without modifying 

the Riemann solver, in order to generate higher 

spatial approximations. The state variables at the 

interfaces are thereby obtained from an 

extrapolation between neighboring cell averages. 

This method for the generation of second order 

upwind schemes based on variable extrapolation is 

often referred to in the literature as the MUSCL 

(“Monotone Upstream-centered Schemes for 
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Conservation Laws”) approach. The use of 

nonlinear limiters in such procedure, with the 

intention of restricting the amplitude of the 

gradients appearing in the solution, avoiding thus 

the formation of new extrema, allows that first order 

upwind schemes be transformed in TVD high 

resolution schemes with the appropriate definition 

of such nonlinear limiters, assuring monotone 

preserving and total variation diminishing methods. 

Details of the present implementation of the 

MUSCL procedure, as well the incorporation of 

TVD properties to the schemes, are found in [8]. 

The expressions to calculate de fluxes following a 

MUSCL procedure and the nonlinear flux limiter 

definitions employed in this work, which 

incorporates TVD properties, are defined as follows. 

 The conserved variables at the interface 

(i+½,j,k) can be considered as resulting from a 

combination of backward and forward 

extrapolations. To a linear one-sided extrapolation 

at the interface between the averaged values at the 

two upstream cells (i,j,k) and (i-1,j,k), one has: 

 kjikjikji
L

kji QQQQ ,,1,,,,,,2/1
2

 


 , cell (i,j);  (66) 

 kjikjikji
R

kji QQQQ ,,1,,2,,1,,2/1
2

 


 , cell (i+1,j,k), 

 (67) 

leading to a second order fully one-sided scheme. If 

the first order scheme is defined by the numerical 

flux 

                      kjikjikji QQFF ,,1,,,,2/1 ,                 (68) 

the second order space accurate numerical flux is 

obtained from 

                  R
kji

L
kjikji QQFF ,,2/1,,2/1

)2(
,,2/1 ,   .         (69) 

Higher order flux vector splitting or flux difference 

splitting methods, such as those studied in this work, 

are obtained from: 

             R
kji

L
kjikji QFQFF ,,2/1,,2/1

)2(
,,2/1 





  .     (70) 

All second order upwind schemes necessarily 

involve at least five mesh points or cells. To reach 

high order solutions without oscillations around 

discontinuities, nonlinear limiters are employed, 

replacing the term  in Eqs. (66) and (67) by these 

limiters at the left and at the right states of the flux 

interface. To define such limiters, it is necessary to 

calculate the ratio of consecutive variations of the 

conserved variables. These ratios are defined as 

follows: 

             kjikjikjikjikji QQQQr ,,1,,,,,,1,,2/1 

  ;      (71) 

           kjikjikjikjikji QQQQr ,,,,1,1,,2,,2/1  

 ,    (72) 

where the nonlinear limiters at the left and at the 

right states of the flux interface are defined by 

 
 kji

L r ,,2/1  and  
 kji

R r ,,2/11 . In this 

work, five options of nonlinear limiters were 

considered to the numerical experiments. These 

limiters are defined as follows: 

               
l

ll
l

VL
l

r

rr
r






1
)( , [25] limiter;             (73) 

         
2

2

1
)(

l

ll
l

VA
l

r

rr
r




 , Van Albada limiter;       (74) 

            llll
MIN
l signalrMINMAXsignalr ,,0 , 

named minmod limiter;                                        (75) 

                2,,1,2,0 lll
SB
l rMINrMINMAXr  , 

named “Super Bee” limiter, due to [26];             (74) 

      


,,1,,0 lll
L

l rMINrMINMAXr ,   -limiter, 

(75) 

 

with “l” varying from 1 to 5 (three-dimensional 

space), signall being equal to 1.0 if rl  0.0 and -1.0 

otherwise, rl is the ratio of consecutive variations of 

the lth conserved variable and  is a parameter 

assuming values between 1.0 and 2.0, being 1.5 the 

value assumed in this work. With the 

implementation of the numerical flux vectors 

following this MUSCL procedure, second order 

spatial accuracy and TVD properties are 

incorporated in the algorithms. 

 

 

8  Implicit Formulation 

All implicit schemes implemented in this work used 

backward Euler in time and ADI approximate 

factorization to solve a three-diagonal system in 

each direction. 

 The ADI approximate factorization form to the 

implicit schemes of [4-7] is presented in three 
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stages, each one associated with a different 

coordinate direction: 

  kjikjikjikjikjikji RHSQAtAtI ,,
*

,,,,2/1,,,,2/1,,  









 ;  (76) 

  *
,,

**
,,,2/1,,,,2/1,,, kjikjikjikjikjikji QQBtBtI  









 ;  (77) 

  **
,,

1
,,2/1,,,,2/1,,,, kji

n
kjikjikjikjikji QQCtCtI  









 , (78) 

where: RHSi,j,k is defined by Eq. (42) or (56) or (61) 

or (65) depending if the [4] or the [5] or the [6] or 

the [7] scheme is being solved, respectively; the 

difference operators are defined as: 

        kjikji ,,,,1  

 ,       kjikji ,,1,, 


  ;  (79) 

                                kjikji ,,,1,  

 ;               (80) 

        kjikji ,1,,, 

  ,       kjikji ,,1,,  


 ;  (81) 

                                 1,,,, 

  kjikji .              (82) 

and the update of the conserved variable vector is 

proceeded as follows: 

                          1
,,,,

1
,,

  n
kji

n
kji

n
kji QQQ .                (83) 

This system of 5x5 block three-diagonal linear 

equations is solved using LU decomposition and the 

Thomas algorithm applied to systems of block 

matrices. 

 The splitting matrices A
+
, A

-
, B

+
, B

-
, C

+
 and C

-
 

are defined as: 

  1





  TTA , 1





  TTA , 1





  TTB ; (84) 

 1





  TTB , 1





  TTC , 1





  TTC ,  (85) 

 

where the similar transformation matrix T and its 

inverse are specified in [23]. The diagonal matrices 

of eigenvalues are given, for instance, by: 
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1

;          (87) 

with the eigenvalues of the Euler equations in the , 

 and  directions, normal to the respective cell 

faces, evaluated by: 

    zyxn hwhvhuv intintint  , nv1 , nv2 ;  (88) 

       nv3 , nn hav int4  , nn hav int5  ,    (89) 

where the metric terms defined in [23], and the 

eigenvalue splitting defined according to [4], using 

Eq. (21). This implicit formulation to the Left-

Hand-Side (LHS) of [4-7] schemes is first order 

accurate in time and space. As the steady state 

condition is the desirable solution, the spatial 

solution accuracy is determined by the RHS 

accuracy, which is second order with the MUSCL 

implementation in all schemes, since the LHS tends 

to zero in the steady condition. 

 

 

9  Turbulence Models 

 

9.1 Turbulence Model of [14] 
The problem of the turbulent simulation is in the 

calculation of the Reynolds stress. Expressions 

involving velocity fluctuations, originating from the 

averaging process, represent six new unknowns. 

However, the number of equations keeps the same 

and the system is not closed. The modeling function 

is to develop approximations to these correlations. 

To the calculation of the turbulent viscosity 

according to the [14] model, the boundary layer is 

divided in internal and external. 

 Initially, the (w) kinematic viscosity at wall 

and the (xy,w) shear stress at wall are calculated. 

After that, the () boundary layer thickness, the 

(LM) linear momentum thickness and the (VtBL) 

boundary layer tangential velocity are calculated. 

So, the (N) normal distance from the wall to the 

studied cell is calculated. The N
+
 term is obtained 

from: 

                   
wwwxy NN 

,Re ,              (90) 

where w is the wall density. The van Driest 

damping factor is calculated by: 
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)(

1
 


AN wweD ,                 (91) 

with 26A  and w  is the wall molecular 

viscosity. After that, the ( dNdVt ) normal to the 

wall gradient of the tangential velocity is calculated 

and the internal turbulent viscosity is given by: 

                     
dNdVtNDTi

2)(Re  ,               (92) 

where  is the von Kárman constant, which has the 

value 0.4.
 
The intermittent function of Klebanoff is 

calculated to the external viscosity by: 

                       
   16

5.51)(


 NNgKleb .            (93) 

With it, the external turbulent viscosity is calculated 

by: 

                  KlebLMBLTe gVt  )0168.0Re( .         (94) 

 

Finally, the turbulent viscosity is chosen from the 

internal and the external viscosities: 

),( TeTiT MIN  . 

 

9.2 Turbulence Model of [15] 

To the calculation of the turbulent viscosity 

according to the [15] model, the boundary layer is 

again divided in internal and external. In the internal 

layer, 

     
 2

mixTi l   and  




 

 01
AN

mix eNl .     (95) 

In the external layer, 

        
)/;( max KlebKlebwakecpTe CNNFFC ,        (96) 

with: 

     
 max

2
maxmaxmax /; FUNCFNMINF difwkwake  ;      (97) 

                 
 





  mix

N
lMAXF 1max .                 (98) 

Hence, maxN  is the value of N where mixl  reached 

its maximum value and lmix is the Prandtl mixture 

length. The constant values are: 4.0 , 0168.0 , 

260 A , 6.1cpC , 3.0KlebC  and 1wkC . KlebF  is 

the intermittent function of Klebanoff given by: 

           
   16

max5.51)(


 NNCNF KlebKleb ,         (99) 

  is the magnitude of the vorticity vector and difU  

is the maximum velocity value in the boundary layer 

case. To free shear layers, 

max

222

max

222

NN
dif wvuwvuU









 






  .   (100) 

 

 

10  Spatially Variable Time Step 

The idea of a spatially variable time step consists in 

keeping constant a CFL number in the calculation 

domain and to guarantee time steps appropriated to 

each mesh region during the convergence process. 

The spatially variable time step can be defined by: 

 

                       
 

 
kji

kji

kji
aq

sCFL
t

,,

,,

,,



 ,                   (101) 

where CFL is the Courant-Friedrichs-Lewis number 

to method stability;   kjis ,,  is a characteristic 

length of information transport; and  
kji

aq
,,

  is 

the maximum characteristic speed of information 

transport, where a is the speed of sound. The 

characteristic length of information transport, 

  kjis ,, , can be determined by: 

                     
kjiMINMINkji ClMINs

,,,, ,  ,        (102)  

 

where lMIN is the minimum side length which forms 

a computational cell and CMIN is the minimum 

distance of baricenters among the computational cell 

and its neighbors. The maximum characteristic 

speed of information transport is defined by 

 
kji

aq
,,

 , with 222 wvuq  . 

 

 

11  Initial and Boundary Conditions 

 

11.1 Initial Conditions 
The initial condition adopted for the problems is the 

freestream flow in all calculation domain ([18, 27]). 

The vector of conserved variables is expressed as 

follows: 

 
t

M
MMMQ




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
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
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 
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2

, 

                                                                           (103) 

where M represents the freestream Mach number,  

is the flow incidence angle upstream the 
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configuration under study and  is the angle in the 

configuration longitudinal plane. 

 

11.2 Boundary Conditions 
The different types of implemented boundary 

conditions are described as follows. They are 

implemented in special cells named “ghost cells”, as 

referred in the Computational Fluid Dynamics 

(CFD) community. 
 

a)  Wall condition - The Euler case requires the 

flux tangency condition. On the context of finite 

volumes, this imposition is done considering that the 

tangent flow velocity component to the wall of the 

ghost cell be equal to the tangent flow velocity 

component to the wall of the neighbor real cell. At 

the same time, the normal flow velocity component 

to the wall of the ghost cell should be equal to the 

negative of the normal flow velocity component to 

the wall of the neighbor real cell. [28] suggests that 

these procedures lead to the following expressions 

to the velocity components u, v and w of the ghost 

cells: 

realzxrealyxrealxxg wnnvnnunnu )2()2()21(  ; (104) 

realzyrealyyrealxyg wnnvnnunnv )2()21()2(  ; (105)             

realzzrealyzrealxzg wnnvnnunnw )21()2()2(  . (106) 

In the viscous case, however, the velocity 

components of the ghost cells are set equal to 

corresponding values of the velocity components of 

the real neighbor, with opposite signal. In other 

words: 

      realg uu  , realg vv     and   realg ww  .    (107) 

 The fluid pressure gradient in the direction 

normal to the wall is equal to zero for the inviscid 

case and also equaled to zero in the viscous case due 

to the boundary layer theory. The temperature 

gradient is equal to zero along the whole wall, 

according to the condition of adiabatic wall, for both 

cases (viscous and non-viscous). With these two 

conditions, a zero order extrapolation is performed 

to the fluid pressure and to the temperature. It is 

possible to conclude that the fluid density will also 

be obtained by zero order extrapolation. The energy 

conserved variable is obtained from the state 

equation to a perfect gas, Eq. (17). 

b) Entrance Condition: 

b.1) Entrance with subsonic flow – Considering 

the one-dimensional characteristic relation concept 

in the normal direction of flow penetration, the 

entrance with subsonic flow presents four 

characteristic velocities of information propagation 

which have direction and orientation pointing 

inward the calculation domain, which implies that 

the variables associated with these waves cannot be 

extrapolated ([27]). It is necessary to specify four 

conditions to these four information. [18] indicate as 

appropriated quantities to be specified the 

freestream density and the freestream Cartesian 

velocity components u, v and w. Just the last 

characteristics, “(qn-a)”, which transports 

information from inside to outside of the calculation 

domain, cannot be specified and will have to be 

determined by interior information of the calculation 

domain. In this work, a zero order extrapolation to 

the pressure is performed, being the total energy 

defined by the state equation of a perfect gas. 

b.2) Entrance with supersonic flow - All 

variables are specified at the entrance boundary, 

adopting freestream values. 

c) Exit Condition: 

c.1) Exit with subsonic flow - Four 

characteristics which govern the Euler equations 

proceed from the internal region of the calculation 

domain. So, the density and the Cartesian velocity 

components are extrapolated from the interior 

domain ([27]). One condition should be specified to 

the boundary. In this case, the pressure is fixed in 

the calculation domain exit, keeping its respective 

value of freestream flow. Total energy is specified 

by the equation of state to a perfect gas. 

c.2) Exit with supersonic flow - The five 

characteristics which govern the Euler equations 

proceed from the internal region of the calculation 

domain. It is not possible to specify variable values 

at the exit. The zero order extrapolation is applied to 

density, Cartesian velocity components and 

pressure. Total energy is specified by the equation 

of state to a perfect gas. 

 

 

12  Results 
Tests were performed in a microcomputer with 

processor AMD SEMPRON (tm) 2600+, 1.83GHz, 

and 512 Mbytes of RAM memory. As the interest of 

this work is steady state problems, one needs to 

define a criterion which guarantees that such 

condition was reached. The criterion adopted in this 

work was to consider a reduction of 3 orders in the 
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magnitude of the maximum residual in the domain, 

a typical criterion in the CFD community. The 

residual to each cell was defined as the numerical 

value obtained from the discretized conservation 

equations. As there are five conservation equations 

to each cell, the maximum value obtained from 

these equations is defined as the residual of this cell. 

Thus, this residual is compared with the residual of 

the others cells, calculated of the same way, to 

define the maximum residual in the domain. The 

configuration upstream and the configuration 

longitudinal plane angles were set equal to 0.0. All 

pressure distributions were determined at the plane 

corresponding to k = KMAX/2, where “KMAX” is 

the maximum number of points in the z direction, 

and j = 1, corresponding to the configuration wall. 

 To the inviscid case, the implicit formulation was 

employed to generate the numerical results, whereas 

to the viscous laminar and turbulent cases, the 

explicit version of the numerical algorithms was 

used. 

 

12.1 Inviscid Results 
A freestream Mach number of 3.0, characterizing a 

supersonic flow regime, was adopted as initial 

condition to the compression corner problem. The 

flow reaches the compression corner, generating an 

oblique shock wave along the corner. 

 
Figure 1. Corner configuration in the xy plane. 

 
Figure 2. Corner mesh in three-dimensions. 

 

 The compression corner configuration at the xy 

plane is described in Fig. 1. The corner inclination 

angle is 10
o
. An algebraic mesh of 70 points in the  

direction, 50 points in the  direction and 10 points 

in the  direction was generated, which corresponds 

in finite volumes to 30,429 hexahedrons and 35,000 

nodes. Its spanwise length is 0.50m. Figure 2 

exhibits such mesh. 

 Figures 3 to 8 exhibit the pressure contours 

obtained by the scheme of [4] in its three variants, 

corresponding to the three limiters employed in this 

study: VL (Van Leer), VA (Van Albada) and Min 

(minmod). 

 
Figure 3. Pressure contours ([4]-VL). 

 
Figure 4. Pressure contours ([4]-VL). 

 
Figure 5. Pressure contours ([4]-VA). 
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Figures 3 and 4 show the pressure contours obtained 

by the [4] TVD scheme, using the VL limiter, in 

three-dimensions and at the xy plane (k = 1), 

respectively. Figures 5 and 6 present the pressure 

contours obtained by the [4] TVD scheme, using 

VA limiter, in three-dimensions and at the xy plane 

(k = 1), respectively. 

 
Figure 6. Pressure contours ([4]-VA). 

 
Figure 7. Pressure contours ([4]-Min). 

 
Figure 8. Pressure contours ([4]-Min). 

 

Finally, Figures 7 and 8 exhibit the pressure 

contours obtained by the [4] TVD scheme, using 

Min limiter, in three-dimensions and at the xy plane 

(k = 1), respectively. As can be observed, the most 

intense pressure field was obtained by the [4] TVD 

scheme using VA limiter. 

 Figure 9 shows the wall pressure distributions 

obtained by the three variants of the [4] TVD 

scheme. They are compared with the oblique shock 

wave theory. As can be observed, all solutions 

present good pressure distributions, capturing the 

shock discontinuity in three cells, which is an 

excellent result in terms of high resolution schemes. 

The best wall pressure distribution involving the [4] 

TVD variants is due to the Min limiter. 

 

Figure 9. Wall pressure distributions ([4]). 
 

 One way to quantitatively verify if the solutions 

generated by each variant of the [4] TVD scheme 

are satisfactory consists in determining the shock 

angle of the oblique shock wave, , measured in 

relation to the initial direction of the flow field. [29] 

(pages 352 and 353) presents a diagram with values 

of the shock angle, , to oblique shock waves. 

 

Table 1. Shock angle of the oblique shock wave at 

the compression corner and percentage 

error ([4]). 

 

Scheme  () Error (%) 

[4]-VL 27.6 0.36 

[4]-VA 27.9 1.45 

[4]-Min 27.7 0.73 

 

The value of this angle is determined as function of 

the freestream Mach number and of the deflection 

angle of the flow after the shock wave, . To the 

compression corner problem,  = 10º (ramp 
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inclination angle) and the freestream Mach number 

is 3.0, resulting from this diagram a value to  

equals to 27.5º. Using a transfer in Figures 4, 6 and 

8, it is possible to obtain the values of  to each 

variant of the [4] TVD scheme, as well the 

respective errors, shown in Tab. 1. As can be 

observed, the best variant was the [4] TVD scheme 

using VL limiter, with a percentage error of 0.36%. 

 Figures 10 to 15 exhibit the pressure contours 

obtained by the scheme of [5] in its three variants: 

VL, VA and Min. Figures 10 and 11 show the 

pressure contours obtained by the [5] TVD scheme, 

using the VL limiter, in three-dimensions and at the 

xy plane, respectively. Figures 12 and 13 present the 

pressure contours obtained by the [5] TVD scheme, 

using VA limiter, in three-dimensions and at the xy 

plane, respectively. Finally, Figures 14 and 15 

exhibit the pressure contours obtained by the [5] 

TVD scheme, using Min limiter, in three-

dimensions and at the xy plane, respectively. As can 

be observed, the most intense pressure field was 

obtained by the [5] TVD scheme using VL limiter. 

 
Figure 10. Pressure contours ([5]-VL). 

 
Figure 11. Pressure contours ([5]-VL). 

 Figure 16 shows the wall pressure distributions 

obtained by the three variants of the [5] TVD 

scheme. They are compared with the oblique shock 

wave theory. As can be observed, all solutions 

present good pressure distributions, capturing the 

shock discontinuity in four cells, which is a 

reasonable result in terms of high resolution 

schemes. The best wall pressure distribution 

involving the [5] TVD variants is due to the Min 

limiter. 

 
Figure 12. Pressure contours ([5]-VA). 

 
Figure 13 : Pressure contours ([5]-VA). 

 
Figure 14. Pressure contours ([5]-Min). 
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Figure 15. Pressure contours ([5]-Min). 

 

Figure 16. Wall pressure distributions ([5]). 

 Using a transfer in Figures 11, 13 and 15, it is 

possible to obtain the values of the shock angle of 

the oblique shock wave, , to each variant of the [5] 

TVD scheme, as well the respective errors, shown in 

Tab. 2. As can be observed, the best variant was the 

[5] TVD scheme using VA limiter, with a 

percentage error of 0.00%. 

 

Table 2. Shock angle of the oblique shock wave at 

the compression corner and percentage 

error ([5]). 

 

Scheme  () Error (%) 

[5]-VL 27.8 1.09 

[5]-VA 27.5 0.00 

[5]-Min 27.6 0.36 

 

 Figures 17 to 22 exhibit the pressure contours 

obtained by the scheme of [6] in its three variants: 

VL, VA and Min. Figures 17 and 18 show the 

pressure contours obtained by the [6] TVD scheme, 

using the VL limiter, in three-dimensions and at the 

xy plane, respectively. Figures 19 and 20 present the 

pressure contours obtained by the [6] TVD scheme, 

using VA limiter, in three-dimensions and at the xy 

plane, respectively. Finally, Figures 21 and 22 

exhibit the pressure contours obtained by the [6] 

TVD scheme, using Min limiter, in three-

dimensions and at the xy plane, respectively. As can 

be observed, the most intense pressure field was 

obtained by the [6] TVD scheme using VA limiter. 

 
Figure 17. Pressure contours ([6]-VL). 

 
Figure 18. Pressure contours ([6]-VL). 

 
Figure 19. Pressure contours (LS-VA). 
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 Figure 23 shows the wall pressure distributions 

obtained by the three variants of the [6] TVD 

scheme. They are compared with the oblique shock 

wave theory. As can be observed, all solutions 

present good pressure distributions, capturing the 

shock discontinuity in four cells, which is a 

reasonable result in terms of high resolution 

schemes. The best wall pressure distribution 

involving the [6] TVD variants is due to the Min 

limiter. 

 
Figure 20. Pressure contours ([6]-VA). 

 
Figure 21. Pressure contours ([6]-Min). 

 
Figure 22. Pressure contours ([6]-Min). 

 Using a transfer in Figures 18, 20 and 22, it is 

possible to obtain the values of the shock angle of 

the oblique shock wave, , to each variant of the [6] 

TVD scheme, as well the respective errors, shown in 

Tab. 3. As can be observed, the [6] TVD scheme 

using all three limiters yield the correct value, with a 

percentage error of 0.00%. 

 

Figure 23. Wall pressure distributions ([6]). 

Table 3. Shock angle of the oblique shock wave at 

the compression corner and percentage 

error ([6]). 

 

Scheme  () Error (%) 

[6]-VL 27.5 0.00 

[6]-VA 27.5 0.00 

[6]-Min 27.5 0.00 

 Figures 24 to 29 exhibit the pressure contours 

obtained by the scheme of [7] in its three variants: 

VL, VA and Min. Figures 24 and 25 show the 

pressure contours obtained by the [7] TVD scheme, 

using the VL limiter, in three-dimensions and at the 

xy plane, respectively. Figures 26 and 27 present the 

pressure contours obtained by the [7] TVD scheme, 

using VA limiter, in three-dimensions and at the xy 

plane, respectively. Finally, Figures 28 and 29 

exhibit the pressure contours obtained by the [7] 

TVD scheme, using Min limiter, in three-

dimensions and at the xy plane, respectively. As can 

be observed, the most intense pressure field was 

obtained by the [7] TVD scheme using VL limiter.

 Figure 30 shows the wall pressure distributions 

obtained by the three variants of the [7] TVD 

scheme. They are compared with the oblique shock 

wave theory results. As can be observed, all 

solutions present good pressure distributions, 
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capturing the shock discontinuity in four cells, 

which is a reasonable result in terms of high 

resolution schemes. The best wall pressure 

distribution involving the [7] TVD variants is due to 

VA limiter. 

 
Figure 24. Pressure contours ([7]-VL). 

 
Figure 25. Pressure contours ([7]-VL). 

 
Figure 26. Pressure contours ([7]-VA). 

 

 Using a transfer in Figures 25, 27 and 29, it is 

possible to obtain the values of the shock angle of 

the oblique shock wave, , to each variant of the [7] 

TVD scheme, as well the respective errors, shown in 

Tab. 4. As can be observed, the best variant was the 

[7] TVD scheme using Min limiter, with a 

percentage error of 0.00%. 

 
Figure 27. Pressure contours ([7]-VA). 

 
Figure 28. Pressure contours ([7]-Min). 

 
Figure 29. Pressure contours (RK-Min). 

 As global conclusion, the most severe pressure 

field was obtained by the [6] scheme using VA 

limiter. The best wall pressure distributions obtained 

by each scheme is shown in Fig. 31. The best wall 

pressure distribution among the distributions 

presented is due to [6] using Min limiter. 
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Figure 30. Wall pressure distributions ([7]). 

Table 4. Shock angle of the oblique shock wave at 

the compression corner and percentage 

error ([7]). 

 

Scheme  () Error (%) 

[7]-VL 27.7 0.73 

[7]-VA 27.8 1.09 

[7]-Min 27.5 0.00 

Figure 31. Best wall pressure distributions. 

 Table 5 presents the best values of the shock 

angle of the oblique shock wave obtained by each 

scheme. Except the [4] TVD scheme, all other 

schemes always present a variant with the correct 

value of the shock angle. As the [6] TVD scheme 

has presented the best wall pressure distribution 

using Min limiter and as it also presents the correct 

value of the shock angle of the oblique shock wave 

with this variant (the other two limiters too), the best 

scheme in this inviscid simulation is due to the [6] 

scheme using Min limiter. 

 

Table 5. Best shock angles of the oblique shock 

wave at the compression corner 

and percentage error. 

 

Scheme  () Error (%) 

[4]-VL 27.6 0.36 

[5]-VA 27.5 0.00 

[6]-Min 27.5 0.00 

[7]-Min 27.5 0.00 

 

12.2 Viscous Results 
The physical problem studied in the viscous laminar 

and turbulent simulations is the flow along a ramp. 

This problem is a supersonic flow hitting a ramp 

with 20 of inclination. It generates a shock and an 

expansion fan. The freestream Mach number 

adopted as initial condition to this simulation was 

3.0, characterizing a moderate supersonic flow. The 

Reynolds number was estimated to be 2.419x10
5
 at 

a flight altitude of 20,000m and l = 0.0437m, based 

on the work of [21]. To this Mach number and 

Reynolds number, a separated flow is formed at the 

ramp wall, with the formation of a circulation 

bubble. This behavior is observed in all solutions of 

all schemes. 

 

 
Figure 32. Ramp configuration in the xy plane. 

 

 The ramp configuration at the xy plane is 

described in Fig. 32. The compression corner has 

20 of inclination. Its spanwise length is 0.25m. The 

mesh used in the simulations has 31,860 

hexahedrons and 36,600 nodes to a structured 

discretization of the calculation domain. This mesh 

is equivalent, in finite differences, of being 
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composed of 61 points in the  direction, 60 points 

in the  direction and 10 points in the  direction. 

An exponential stretching of 10% in the  direction 

was employed. Figure 33 shows such mesh. 

 
Figure 33. Ramp mesh in three-dimensions. 

 

12.2.1 Laminar Case 

Figures 34 to 39 exhibit the pressure contours and 

the streamlines of the velocity vector field generated 

by the [4] TVD scheme in its three variants, namely: 

VL, VA and Min. Figures 34 and 35 show the 

pressure contours and the streamlines, respectively, 

obtained by the [4] TVD scheme using VL limiter; 

Figures 36 and 37 show the pressure contours and 

the streamlines, respectively, obtained by the [4] 

TVD scheme using VA limiter; and Figures 38 and 

39 show the pressure contours and the streamlines, 

respectively, obtained by the [4] TVD scheme using 

Min limiter. All solutions highlight the circulation 

bubble that is formed close to the ramp wall. The [4] 

TVD scheme using VA limiter yields the most 

severe pressure field, which characterizes the most 

conservative solution, involving the variants of this 

scheme. Good symmetry and homogeneity 

properties at the k planes are observed in all 

solutions. The shock wave is well captured. The 

circulation bubble is also well captured by all three 

limiters. 

 
Figure 34. Pressure contours ([4]-VL). 

 
Figure 35. Streamlines and circulation bubble ([4]-VL). 

 
Figure 36. Pressure contours ([4]-VA). 

 
Figure 37. Streamlines and circulation bubble ([4]-VA). 

 

 Figure 40 exhibits the wall pressure distribution 

obtained by the three variants of the [4] TVD 

scheme. They are compared with the oblique shock 

wave and the expansion wave Prandtl-Meyer theory 

results, which are the correct solutions, according to 

the boundary layer theory (normal pressure gradient 

to the wall equal to zero). All schemes detect ahead 

of the ramp beginning a weaker shock, which is 

formed due to the increase of the boundary layer 

thickness in this region, because of the flow 
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separation, and the formation of the circulation 

bubble. This weaker shock is represented by an 

increase in the pressure ratio before the ramp. All 

three variants of the [4] TVD scheme capture the 

shock plateau appropriately, according to the 

inviscid solution, which represents a good signal of 

accuracy. The pressure recovery at the end of the 

expansion fan is well detected by all three variants 

of the [4] TVD scheme. 

 
Figure 38. Pressure contours ([4]-Min). 

 
Figure 39. Streamlines and circulation bubble ([4]-Min). 

 

 Table 6 shows the detachment and reattachment 

points obtained by the three limiters studied with the 

[4] TVD scheme. The region of flow separation 

with minimum extent is due to [4] TVD scheme 

using Min limiter and with the maximum extent is 

due to [4] TVD scheme using VL limiter. 

 Again, one way to quantitatively verify if the 

solutions generated by each scheme are satisfactory 

consists in determining the shock angle of the 

oblique shock wave, , measured in relation to the 

initial direction of the flow field. To the ramp 

problem,  = 20º (ramp inclination angle) and the 

freestream Mach number is 3.0, resulting from this 

diagram a value to  equal to 37.7º. Using a transfer 

in Figures 34, 36 and 38, considering the xy plane, it 

is possible to obtain the values of  to each scheme, 

as well the respective errors, shown in Tab. 7. As 

can be observed, the best scheme was the [4] TVD 

one using Min limiter, with an error of 0.53% (less 

than 1.0%). 

Figure 40. Wall pressure distributions ([4]-Lam). 

Table 6. Flow separation detachment and 

reattachment points ([4]-Laminar). 

 

Scheme Detachment 

(m) 

Reattachment 

(m) 

[4]-VL 0.1125 0.1720 

[4]-VA 0.1200 0.1664 

[4]-Min 0.1350 0.1665 

Table 7. Shock angle of the oblique shock wave at 

the ramp and percentage error ([4]-Laminar). 

 

Scheme  () Error (%) 

[4]-VL 37.0 1.86 

[4]-VA 37.0 1.86 

[4]-Min 37.5 0.53 

 

 As conclusion of the study analyzing the [4] 

TVD scheme in its three variants, the best variant is 

the [4] TVD scheme using Min limiter due to better 

accuracy than the others limiters in the 

determination of the shock angle and a minimum 

extent of the separation region, which agrees 

favorably with the turbulent results (to see in the 

next paper of this series). 

 Figures 41 to 44 exhibit the pressure contours 

and the streamlines of the velocity vector field 

generated by the [5] TVD scheme in its two 

variants, namely: VA and Min. The VL limiter did 

not produce converged results. Figures 41 and 42 
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show the pressure contours and the streamlines, 

respectively, obtained by the [5] TVD scheme using 

VA limiter; 

 
Figure 41. Pressure contours ([5]-VA). 

 

Figure 42. Streamlines and circulation bubble ([5]-VA). 

 
Figure 43. Pressure contours ([5]-Min). 

 

and Figures 43 and 44 show the pressure contours 

and the streamlines, respectively, obtained by the 

[5] TVD scheme using Min limiter. The [5] TVD 

scheme using VA limiter yields the most severe 

pressure field, which characterizes the most 

conservative solution, involving the variants of this 

scheme. Good symmetry and homogeneity 

properties at the k planes are observed in all 

solutions. The shock wave is well captured. The 

circulation bubble is also well captured by the two 

limiters. 

 

Figure 44. Streamlines and circulation bubble ([5]-Min). 

 Figure 45 exhibits the wall pressure distribution 

obtained by the two variants of the [5] TVD scheme. 

They are compared with the oblique shock wave and 

the expansion wave Prandtl-Meyer theory results, 

which are the correct solutions, according to the 

boundary layer theory. All schemes detect ahead of 

the ramp beginning a weaker shock. This weaker 

shock is represented by an increase in the pressure 

ratio ahead of the ramp.  

Figure 45. Wall pressure distributions ([5]-Lam). 
 

Both variants of the [5] TVD scheme capture the 

shock plateau appropriately, according to the 

inviscid solution, which represents a good signal of 

accuracy. The pressure recovery at the end of the 
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expansion fan is well detected by both variants of 

the [5] TVD scheme. 

 Table 8 shows the detachment and reattachment 

points obtained by the two limiters studied with the 

[5] TVD scheme. The region of flow separation 

with minimum extent is due to [5] TVD scheme 

using Min limiter. 

 

Table 8. Flow separation detachment and 

reattachment points ([5]-Laminar). 

 

Scheme Detachment 

(m) 

Reattachment 

(m) 

[5]-VA 0.1050 0.1830 

[5]-Min 0.1275 0.1720 

 

 Using a transfer in Figures 41 and 43, 

considering the xy plane, it is possible to obtain the 

values of the shock angle of the oblique shock wave, 

, to each variant of the [5] TVD scheme, as well 

the respective errors, shown in Tab. 9. As can be 

observed, the best variant was the [5] TVD scheme 

using Min limiter, with a percentage error of 0.53%. 

Table 9. Shock angle of the oblique shock wave at 

the ramp and percentage error ([5]-Laminar). 

 

Scheme  () Error (%) 

[5]-VA 37.0 1.86 

[5]-Min 37.9 0.53 

 As conclusion of the study analyzing the [5] 

TVD scheme in its two variants, the best variant is 

the [5] scheme using Min limiter due to better 

accuracy than the VA limiter in the determination of 

the shock angle and a minimum extent of the 

separation region, which agrees favorably with the 

turbulent results (to see in the next paper of this 

series). 

 Figures 46 to 51 exhibit the pressure contours 

and the streamlines of the velocity vector field 

generated by the [6] TVD scheme in its three 

variants, namely: VL, VA and Min. Figures 46 and 

47 show the pressure contours and the streamlines, 

respectively, obtained by the [6] TVD scheme using 

VL limiter; Figures 48 and 49 show the pressure 

contours and the streamlines, respectively, obtained 

by the [6] TVD scheme using VA limiter; and 

Figures 50 and 51 show the pressure contours and 

the streamlines, respectively, obtained by the [6] 

TVD scheme using Min limiter. The [6] TVD 

scheme using VA limiter yields the most severe 

pressure field, which characterizes the most 

conservative solution, involving the variants of this 

scheme. Good symmetry and homogeneity 

properties at the k planes are observed in all 

solutions. The shock wave is well captured. The 

circulation bubble is also well captured by the three 

limiters. 

 
Figure 46. Pressure contours ([6]-VL). 

 
Figure 47. Streamlines and circulation bubble ([6]-VL). 

 
Figure 48. Pressure contours ([6]-VA). 

 

 Figure 52 exhibits the wall pressure distribution 

obtained by all three variants of the [6] TVD 

scheme. They are compared with the oblique shock 

wave and the expansion wave Prandtl-Meyer theory 

results. 
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Figure 49. Streamlines and circulation bubble ([6]-VA). 

 
Figure 50. Pressure contours ([6]-Min). 

 
Figure 51. Streamlines and circulation bubble ([6]-Min). 

 

All schemes detect ahead of the ramp beginning a 

weaker shock, which is formed due to the increase 

of the boundary layer thickness in this region, 

because of the flow separation, and the formation of 

the circulation bubble. All three variants of the [6] 

TVD scheme slightly over-predict the shock 

plateau, presenting a small divergence in relation to 

the inviscid solution. The pressure recovery at the 

end of the expansion fan is well detected by all three 

variants of the [6] TVD scheme. 

 

Figure 52. Wall pressure distributions ([6]-Lam). 
 

 Table 10 shows the detachment and reattachment 

points obtained by the three limiters studied with the 

[6] TVD scheme. The region of flow separation 

with minimum extent is due to [6] TVD scheme 

using VL and Min limiter. 

 

Table 10. Flow separation detachment and 

reattachment points ([6]-Laminar). 

 

Scheme Detachment 

(m) 

Reattachment 

(m) 

[6]-VL 0.1050 0.1827 

[6]-VA 0.0975 0.1882 

[6]-Min 0.1050 0.1827 

 Using a transfer in Figures 46, 48 and 50, 

considering the xy plane, it is possible to obtain the 

values of the shock angle of the oblique shock wave, 

, to each variant of the [6] TVD scheme, as well 

the respective errors, shown in Tab. 11. As can be 

observed, the best variant was the [6] TVD scheme 

using Min limiter, with a percentage error of 0.53%. 

Table 11. Shock angle of the oblique shock wave 

at the ramp and percentage error ([6]-Laminar). 

 

Scheme  () Error (%) 

[6]-VL 38.5 2.12 

[6]-VA 37.2 1.33 

[6]-Min 37.9 0.53 

 

 As conclusion of the study analyzing the [6] 

TVD scheme in its three variants, the best variant is 

the [6] TVD scheme using Min limiter due to better 

accuracy than the other limiters in the determination 

of the shock angle and a minimum extent of the 
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separation region, which agrees favorably with the 

turbulent results (to see in the next paper of this 

series). 

 Figures 53 to 58 exhibit the pressure contours 

and the streamlines of the velocity vector field 

generated by the [7] TVD scheme in its three 

variants, namely: VL, VA and Min. Figures 53 and 

54 show the pressure contours and the streamlines, 

respectively, obtained by the [7] TVD scheme using 

VL limiter; Figures 55 and 56 show the pressure 

contours and the streamlines, respectively, obtained 

by the [7] TVD scheme using VA limiter; and 

Figures 57 and 58 show the pressure contours and 

the streamlines, respectively, obtained by the [7] 

TVD scheme using Min limiter. All solutions 

highlight the circulation bubble formed at the ramp 

wall. 

 
Figure 53. Pressure contours ([7]-VL). 

 
Figure 54. Streamlines and circulation bubble ([7]-VL). 

 

The [7] TVD scheme using VA limiter yields the 

most severe pressure field, which characterizes the 

most conservative solution, involving the variants of 

this scheme. Good symmetry and homogeneity 

properties at the k planes are observed in all 

solutions. The shock wave is well captured. The 

circulation bubble is also well captured by the three 

limiters. 

 
Figure 55. Pressure contours ([7]-VA). 

 
Figure 56. Streamlines and circulation bubble ([7]-VA). 

 
Figure 57. Pressure contours ([7]-Min). 

 

 Figure 59 exhibits the wall pressure distribution 

obtained by all three variants of the [7] TVD 

scheme. They are compared with the oblique shock 

wave and the expansion wave Prandtl-Meyer theory 

results. All schemes detect ahead of the ramp 

beginning a weaker shock. This weaker shock is 

represented by an increase in the pressure ratio 
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ahead of the ramp. All three variants of the [7] TVD 

scheme slightly over-predict the shock plateau, 

presenting a small divergence in relation to the 

inviscid solution. The pressure recovery at the end 

of the expansion fan is well detected by all three 

variants of the [7] TVD scheme. 

 
Figure 58. Streamlines and circulation bubble ([7]-Min). 

 

Figure 59. Wall pressure distributions ([7]-Lam). 

 Table 12 shows the detachment and reattachment 

points obtained by the three limiters studied with the 

[7] TVD scheme. All solutions present the same 

extent of the separated flow region. 

 

Table 12. Flow separation detachment and 

reattachment points ([7]-Laminar). 

 

Scheme Detachment 

(m) 

Reattachment 

(m) 

[7]-VL 0.1125 0.1773 

[7]-VA 0.1125 0.1773 

[7]-Min 0.1125 0.1773 

 

 Using a transfer in Figures 53, 55 and 57, 

considering the xy plane, it is possible to obtain the 

values of the shock angle of the oblique shock wave, 

, to each variant of the [7] TVD scheme, as well 

the respective errors, shown in Tab. 13. As can be 

observed, the best variant was the [7] TVD scheme 

using Min limiter, with a percentage error of 0.27%. 

Table 13. Shock angle of the oblique shock wave 

at the ramp and percentage error ([7]-Laminar). 

 

Scheme  () Error (%) 

[7]-VL 37.9 0.53 

[7]-VA 36.5 3.18 

[7]-Min 37.6 0.27 

 

 As conclusion of the study analyzing the [7] 

TVD scheme in its three variants, the best variant is 

the [7] TVD scheme using Min limiter due to better 

accuracy than the others limiters in the 

determination of the shock angle. 

 As global conclusion, the most severe pressure 

field was obtained by the [6] scheme using VA 

limiter. The best wall pressure distributions are 

obtained by [4-5] TVD schemes in its variants. They 

present pressure plateau closer to the theoretical 

results than the [6-7] TVD schemes. The minimum 

extent of the separated flow region was detected by 

the [4] TVD scheme using Min limiter. 

Table 14. Shock angle of the oblique shock wave 

at the ramp and percentage error (Best Results-

Laminar). 

 

Scheme  () Error (%) 

[4]-Min 37.5 0.53 

[5]-Min 37.9 0.53 

[6]-Min 37.9 0.53 

[7]-Min 37.6 0.27 

 

 Table 14 presents the best values of the shock 

angle of the oblique shock wave obtained by each 

scheme. The best result of all schemes, detecting 

more precisely the value of the shock angle, is due 

to [7] TVD scheme using Min limiter. As the [7] 

TVD scheme has presented the best value to the 

shock angle of the oblique shock wave with the Min 

variant, the best scheme in this viscous laminar 

simulation is due to the [7] scheme using Min 

limiter, although the [4] captures better pressure 

distribution and the minimum region of separated 

flow. 
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13  Conclusions 
In the present work, the [4-7] schemes are 

implemented, on a finite volume context and using a 

structured spatial discretization, to solve the Euler 

and the laminar/turbulent Navier-Stokes equations 

in the three-dimensional space. All schemes are flux 

vector splitting ones and in their original 

implementations are first order accurate. A MUSCL 

approach is implemented in these schemes aiming to 

obtain second order spatial accuracy. The Van Leer, 

the Van Albada and the Minmod nonlinear limiters 

are employed to guarantee such accuracy and TVD 

high resolution properties. These flux vector 

splitting schemes employ approximate factorizations 

in ADI form to solve implicitly the Euler equations. 

To solve the laminar/turbulent Navier-Stokes 

equations, an explicit formulation based on a 

dimensional splitting procedure is employed. All 

schemes are first order accurate in time in their 

implicit and explicit versions. Turbulence is taken 

into account considering two algebraic models, 

namely: the [14-15] ones. The algorithms are 

accelerated to the steady state solution using a 

spatially variable time step, which has demonstrated 

effective gains in terms of convergence rate ([19-

20]. All four schemes are applied to the solution of 

the physical problems of the supersonic flow along a 

compression corner, in the inviscid case, and of the 

supersonic flow along a ramp, in the laminar and 

turbulent cases. The results have demonstrated that 

the most severe and most accurate results are 

obtained with the [6] TVD high resolution scheme. 

 In the implicit inviscid case, the most severe 

pressure field was obtained by the [6] scheme using 

VA limiter. The best wall pressure distributions 

obtained by each scheme is shown in Fig. 31. The 

best wall pressure distribution among the 

distributions presented is due to [6] using Min 

limiter. Table 6 presents the best values of the shock 

angle of the oblique shock wave obtained by each 

scheme. Except the [4] TVD scheme, all other 

schemes always present a variant with the correct 

value of the shock angle. As the [6] TVD scheme 

has presented the best wall pressure distribution 

using Min limiter and as it also presents the correct 

value of the shock angle of the oblique shock wave 

with this variant (the other two limiters too), the best 

scheme in the inviscid simulation is due to the [6] 

scheme using Min limiter. 

 In the viscous case, the most severe pressure 

field was obtained by the [6] scheme using VA 

limiter. This behavior was observed in the laminar 

case and in the turbulent cases using the [14-15] 

models. The best wall pressure distributions are 

obtained by the [4] TVD scheme in its three 

variants, namely: VL, VA and Min, and by the [5] 

TVD scheme in its two variants, namely: VA and 

Min, in the laminar and in the turbulent case with 

the [15] model. These behaviors will be shown in 

the next paper of this series. 

 

 

14  Acknowledgments 
The present author acknowledges the CNPq by the 

financial support conceded under the form of a DTI 

(Industrial Technological Development) scholarship 

no. 384681/2011-5. He also acknowledges the infra-

structure of the ITA that allowed the realization of 

this work. 
 

References: 

[1] P. Kutler, Computation of Three-Dimensional, 

Inviscid Supersonic Flows, Lecture Notes in 

Physics, Springer Verlag, Berlin, Vol. 41, 

1975, pp. 287-374. 

[2] J. L. Steger, Implicit Finite-Difference   

Simulation of Flow About Arbitrary Two-

Dimensional Geometries, AIAA Journal, Vol. 

16, No. 7, 1978, pp. 679-686. 

[3] P. L. Roe, Approximate Riemann Solvers, 

Parameter Vectors, and Difference Schemes, 

Journal of Computational Physics, Vol. 43, 

1981, 357-372. 

[4] J. L. Steger, R. F. Warming, Flux Vector 

Splitting of the Inviscid Gasdynamic Equations 

with Application to Finite-Difference Methods, 

Journal of Computational Physics, Vol. 40, 

1981, pp. 263-293. 

[5]  B. Van Leer, Flux-Vector Splitting for the Euler  

Equations,  Lecture  Notes  in  Physics, Vol.  

170, 1982, pp. 507-512, Springer Verlag, 

Berlin. 

[6] M. Liou, C. J. Steffen Jr., A  New  Flux  

Splitting  Scheme, Journal  of  Computational 

Physics, Vol. 107, 1993, pp. 23-39. 

[7] R. Radespiel, N. Kroll, Accurate Flux  Vector  

Splitting  for  Shocks  and  Shear  Layers, 

Journal of Computational Physics, Vol. 121, 

1995, pp. 66-78. 

[8]  C. Hirsch, Numerical Computation of Internal 

and External Flows – Computational Methods 

for Inviscid and Viscous Flows, John Wiley & 

Sons Ltd, 691p, 1990. 

[9] R. M. Beam, R. F. Warming, An Implicit 

Factored Scheme for the Compressible Navier-

Stokes Equations, AIAA Journal, Vol. 16, No. 

4, 1978, pp. 393-402. 

[10] J. Douglas, On the Numerical Integration of 

uxx+uyy=ut by Implicit  Methods,  Journal  of  

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-3429 138 Issue 2, Volume 7, April 2012



the Society of Industrial and Applied 

Mathematics, Vol. 3, 1955, pp. 42-65 

[11] D. W. Peaceman, H. H. Rachford, The  

Numerical  Solution  of  Parabolic  and  Elliptic 

Differential Equations, Journal of the Society of  

Industrial  and  Applied  Mathematics, Vol. 3, 

1955, pp. 28-41. 

[12] J. Douglas, J. E. Gunn, A General Formulation 

of Alternating Direction Methods, Numerische 

Mathematiks, Vol. 6, 1964, pp. 428-453. 

[13] N. N. Yanenko, The Method of Fractional 

Steps, Springer Verlag, NY, EUA, 1971. 

[14] T. Cebeci, A. M. O. and Smith, A Finite-

Difference Method for Calculating 

Compressible Laminar and Turbulent 

Boundary Layers,  Journal  of  Basic  

Engineering,  Trans.  ASME, Series B, Vol. 92, 

No. 3, 1970, pp. 523-535. 

[15] B. D. Baldwin, H. Lomax, Thin Layer 

Approximation and Algebraic Model for 

Separated Turbulent Flows, AIAA Paper 78-

257, 1978. 

[16] E. S. G. Maciel, Turbulent Flow Simulations 

Using the  MacCormack  and  the  Jameson  

and Mavriplis Algorithms Coupled with the 

Cebeci  and  Smith  and  the  Baldwin  and  

Lomax Models in Three-Dimensions, 

Engineering   Applications of Computational 

Fluid Mechanics, China, Vol. 1, No. 3, 2007, 

pp. 147-163. 

[17] R. W. MacCormack, The Effect of Viscosity in 

Hypervelocity Impact Cratering, AIAA Paper 

69-354, 1969. 

[18] A. Jameson, D. J. Mavriplis, Finite Volume 

Solution of the Two-Dimensional  Euler 

Equations on a Regular Triangular Mesh, AIAA  

Journal Vol. 24, No. 4, 1986, pp. 611-618, 

1986. 

[19] E. S. G. Maciel, Analysis of Convergence  

Acceleration Techniques Used in Unstructured 

Algorithms in the Solution of Aeronautical 

Problems  –  Part  I,  Proceedings  of  the  XVIII 

International Congress  of  Mechanical  

Engineering  (XVIII  COBEM),  Ouro  Preto,  

MG, Brazil, 2005. [CD-ROM] 

[20] E. S. G. Maciel, Analysis of Convergence  

Acceleration Techniques Used in Unstructured 

Algorithms  in  the  Solution  of  Aerospace  

Problems  –  Part  II,  Proceedings  of  the  XII 

Brazilian Congress of Thermal Engineering 

and  Sciences  (XII  ENCIT),  Belo  Horizonte, 

MG, Brazil, 2008. [CD-ROM] 

 

 

[21] R. W. Fox, A. T. McDonald, Introdução à 

Mecânica  dos  Fluidos,  Ed.  Guanabara  

Koogan, Rio de Janeiro, RJ, Brazil, 632p, 

1988. 

[22] E. S. G. Maciel, Comparação entre os 

Algoritmos de MacCormack e de Jameson e 

Mavriplis na Solução das Equações de Euler e 

de Navier-Stokes no Espaço Tridimensional, 

Mecánica Computacional Journal, Argentina, 

Vol. XXIV, No. 12, 2005, pp. 2055-2074. 

[23] E. S. G. Maciel, Solutions of the Euler 

Equations Using Implicit TVD High 

Resolution Algorithms in Three-Dimensions, 

Mecánica Computacional Journal, Argentina, 

Vol. XXVIII, No. 18, 2009, pp. 1517-1541. 

[24] L. N. Long, M. M. S. Khan, H. T. Sharp, H. T., 

Massively Parallel Three-Dimensional Euler / 

Navier-Stokes Method. AIAA Journal, Vol. 29, 

No. 5, 1991, pp. 657-666. 

[25] B. Van Leer, Towards the Ultimate 

Conservative Difference Scheme. II. 

Monotonicity and Conservation Combined in a 

Second-Order Scheme, Journal of 

Computational Physics, Vol. 14, 1974, pp. 361-

370. 

[26] P. L. Roe, 1983, In Proceedings of the AMS-

SIAM  Summer  Seminar  on  Large-Scale 

Computation in Fluid Mechanics, Edited by B. 

E. Engquist et al, Lectures in Applied 

Mathematics, Vol. 22, 1983, p. 163. 

[27] E. S. G. Maciel, Simulação Numérica de  

Escoamentos Supersônicos e Hipersônicos 

Utilizando Técnicas de Dinâmica dos Fluidos 

Computacional, Doctoral Thesis, ITA, São José 

dos Campos, SP, Brazil, 258p, 2002. 

[28] J. T. Batina, Implicit Upwind Solution 

Algorithms for Three-Dimensional 

Unstructured Meshes, AIAA Journal, Vol. 31, 

No. 5, 1993, pp. 801-805. 

[29] J. D. Anderson Jr., Fundamentals of 

Aerodynamics, McGraw-Hill, Inc., EUA, 

563p, 1984.  

 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-3429 139 Issue 2, Volume 7, April 2012




