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Abstract: -The paper is devoted to improving and simplifying determination of the relaxation and retardation
spectrum (RRS). A concept is postulated that determination of RRS from some specially selected material
responses differing from the explicitly defined material functions, such as the real or imaginary parts of
complex compliance and complex modulus, may improve the recovery performance at the price of better
measurability of these specific material responses. As one of possible implementations of the postulated
concept, we propose to recover RRS from the modulus (absolute value) of a complex frequency-domain
(dynamic) material function, which, compared to the real or imaginary part, can be more accurately and easy
acquired by measuring the amplitudes of harmonic responses of a material. It is demonstrated that RRS
recovery problem from the modulus of a complex frequency-domain material function may be interpreted as a
filtering task with adiffusemagnitude response bounded by the responses of the Mellin deconvolution filters
corresponding to the minimum (zero) and maximum imaginary parts according to the Kramers-Kronig relation.
A discrete RRS recovery filter operating with geometrically sampled data is constructed for recovering RRS
from the modulus and the simulation results are presented. A measurement system is proposed implementing
RRS recovery through the modulus of a complex frequency-domain material function, where a material under
test is subjected to multi-harmonic excitation at geometrically spaced frequencies with subsequent measuring
the amplitudes of multi-harmonic responses and processing them by a discrete RRS recovery filter.

Key-Words: -Relaxation and Retardation Spectrum (RRS), Modulus of a Complex Frequency-Domain
Function, Complex Compliance, Complex Modulus, Mellin Deconvolution Filter, Diffuse Magnitude Response

1 Introduction (strain, charge, etc.) excitation ancbmpliance

Relaxation and retardation spectrum (RRS) is one ofunctionsin case of theorce (stress, voltage, etc.)
the most fundamental quantities in linear theory of €xcitation.

viscoelasticity [1-4] and other relaxation theories IN its turn, approaches —used for RRS
[4-6]. RRS relates to molecular structure of materialsdetermination can be classified parametric and
[7-9], it is independent of loading (excitation) and is Non-parametric ones [11,12]. The parametric
used in various studies, such as examination of théPProach presumes anpriori model form for the
relationship between the molecular weight material behaviour and RRS is determined based on

distribution and properties of a material, prediction Parametric curve fitting techniques. Contrary, no any
of the behaviour of materials after an arbitrary @Sumption made about the material behaviour for
excitation, interconversion of material functions, etc. thé non-parametric ~approach, where RRS is
Traditionally, RRS is determined from various determined by numerical inversion of the integral
experimental time-domain (static) or frequency- ransforms, —which interconnect the material
domain (dynamic) material functions, which go by responses with the spectrum. These inversions are
different names in specific experiments [1-6]. known to be fundamentally ill-posed in the sense that
However, in the most cases, these functions represerimall perturbations in the input data can yield
the characteristic responses of a material to the threlnrealistic high perturbations in the spectra.
standard excitations (loadings) [10], such as step (the Despite that the performance of RRS recovery,
Heaviside step function), impulse (the Dirac delta Particularly for non-parametric methods, depends on
function) and harmonic (the steady-state sinusoidal)°0th the experimental stage (input data acquisition)
ones, and may be generalized into two categories ad"d on the data processing stage (RRS recovery),
modulus functionsn the case of thelisplacement determination of RRS is generally considered only as
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a one-stage operation of construction of a recoveryy — ~ - 5 p >
algorithm from the explicity defined material X—=|G(a)”)|=\,{G(a)m)] +G"(@,)]" - ®3)
functions. "

Since no processing result is better than the input | jkewise, in the case of a MUT wittomplex

data behind it, we postulate a concept that : 3 , - :

. : compliance J(w) =J -JJ , the amplitudes
determination of RRS from some specially selected (;) i d(g)) (@) . J (.a)).l o th tp f(3
material responses differing from traditionally used &€ described by expression similar to that of (3)

material functions may improve the performance of - - -

RRS recovery at the price of the better measurability~ ™ = I @)=L (@2 +[I" (@), (4)
of these specific material responses. ™

Accomplishment of this concept requires integration ' "

of the experimental and data processing stages, an\ghere. J'@)and J' @) arg the.real part (storage
actually leads to development of RRS measuremenfOmpliance) and the imaginary part (loss

systems [10]. Usage of optimised excitations may becompliance), respectively.

a promising direction for improvement RRS According to the linear relaxation theories [1-6],

recovery in the light of the postulated concept. the real and imaginary parts of complex modulus are
In presented paper, as one of possiblerelated to RRS by the following integral transforms:

implementations of the proposed concept, we o

2_2
consider the determination of RRS from thedulus G(w) =G, + IM (5)
(absolute valué) of complex frequency-domain o lto7
material functions, which, compared to the real or
imaginary parts, can be more accurately acquired by ? F(r)ordr
measuring the amplitudes of responses of a material>"(®) = J.ﬁ (6)
to the harmonic excitations [13]. 0 lrot

whereF(7) is relaxation spectrunrmamed alséunction
. of distribution of relaxation timesndG, is so-called
2 Theoretical Background satic modulus observed f@' o( 3t zero frequency.

Ea?norrr:'?:ti'[g duns?;tre :aesc;['té'i\'/loLrJ]T) 'tLSarankI)'Jte(c:jtng o Similarly, the following expressions are valid for
: y- xcitation wi piit the real and imaginary parts of complex compliance

x, ()= X, sinao,t, (1) “ E(r)dr

. . J(@)=3.+ [, (7)
it responds by a harmonic response of the same o1+ o

frequency w, but with a different amplitude and

phase Yoy - [FD0rds @
Yo =Y, siN@,t-0,), (2) > 1+t

whereY,, is amplitude an@, is phase angle of the In this caseF(7) is retardation spectrurmamed also
response with respect to the excitation. function of distribution of retardation timesnd J,,
AmplitudeYy, is proportional to the modulus of a represents so-called instantaneous component  of
complex frequency-domain material function at compliance observed fdi(w) at infinite frequency.
frequency ay. Thus, for a MUT with complex A large number of methods [11,12,14-18] based
modulus G(w) = G'(w) + jG"(w), where G’ ) is on different ideas have been proposed for inversion
the real part (storage modulusiz’ @ ( is the of integra_l transforms_(_S) —(8). W_e have d_evel_oped a
, _ , computationally  efficient functional filtering
imaginary part (loss modulus), anfl=+-1, the approach [19-22] for executing a wide variety of
amplitudes of the harmonic excitation and responseinterconversions between viscoelastic material
are related as functions, including the ones between the time-
domain and frequency-domain functions, and vice
versa [23], the interconversion between the real and
imaginary part of frequency-domain functions [24],
as well as calculation of RRS [25,26]. The functional
filtering approach has well grounded basis on the
advanced signal processing [27] and the

! The modulus (absolute value) of a complex
frequency-domain function may not be confused
with modulus functiomepresenting the response of a
material to displacement excitation.
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interconversions are executed by discrete Mellinideal systems (9) and (10). Since uniformly sampled
convolution or deconvolution filters operating with data on the logarithmic time or frequency scale
geometrically sampled data. manifest as the samples distributed according to
geometric progression in the linear scale, functional
filters operate with data at geometrically spaced times
. . . or frequencies.

3 Functional Filtering Approach Tr?e functional filtering approach has several
advantages. Digital filters are computationally

) efficient algorithms working without employing

3.1 Underlying Idea numerical integration [27]. Algorithms for the
The central idea behind the functional filtering interconversions between material functions are
approach is based on the following two key points:  constructed ~ with  uniform  structure  and
(i) functions of materials exhibiting relaxational jmplementation in software and hardware. Various
behaviour behave monotonically or locally interconversion problems are modified very easy by

monotonically and so are experimentally recordedchanging filter coefficients without modification of
over many decades of time or frequency. For thisthe common structure or implementation of the
reason, the widely used practice [1-6] is to consideralgorithm in hardware and software. For correctly
these functions on a logarithmic time or frequency designed digital filters no stability problems occur

scale; and they have the guaranteed performance, such as
(i) interrelations between various material gccuracy and sensitivity to noise.

functions, including these with RRS, are described

by the integral transforms having kernels depending

on the ratio or product of arguments. For example,32 Functional Filtersfor RRSrecovery

integral transforms (5) — (8) are ones with kernels|, general, determination of RRS relates to inversion

depending on produetr. ~ of Eq. (10). The algorithms for RRS recovery from the
The mentioned transforms can be converted in th@eal and imaginary parts of a frequency-domain
form of the Mellin convolutions function have been derived in the form [25,26]:
M K u\dr
00 =407 k=[x ¥ | © e
0 > I‘[n]>(q’”m /uo) foranodd N
for direct transforms, and F(wWd™ =" 0z (11)

> hp j{(q’(’f*”’m uo) forarevenN

M © uldr n=— (N-2)/2-1
£0= YU " ku)=] y(r)k[—j— (10)

0 ror where h[n] is impulse response containig non-
zero filter coefficients x(.) represents the redb(w),
J(w)) or imaginary G"(w), J'(w)) parts, q is
progression ratio specifying the sampling rate in the
M sense thatnq defines the distance between samples
determined (output function), denotes the Mellin o the logarithmic frequency scale, ie. plays
convolution, andk(u) is a kernel depending on the formally a role of sampling period, whereas its
ratio of argumentay/r, which will be named further  reciprocal describes the appropriate sampling
Mellin kernel _ , _ frequency, andu, is an arbitrary normalization

For logarithmic variables, Mellin convolution constant usually chosen to be equal to 1.

type transforms (9) and (10) alter into the Fourier B Ki bstitutiorr = ua™ . alaorith 11
convolution type transforms. Since Fourier y making substitulion = L,q ", aigorl ms (11)
may be simplified

convolution type transforms describmear shift-
invariant systems or linear filters [27], the (N-1)/2

for inverse transforms, wherex(u) is some
experimental (recorded) material function (input
function), y(u) is some unknown function to be

interrelations between material functions with Zh[n]x(q’” Ir) foranodd N

kernels depending on the ratio or product of F(z)=1""{',)7 : (12)
arguments may be interpreted adeal filters Zhhk(q*““” t) forarevenN
operating on a logarithmic time or frequency scale. n=-(N-2)/21

This builds a theoretical foundation for executing the
interconversions between material functions by
discrete and digital filtering techniques approximating

Filters (11) and (12) have periodic frequency
responses in the Mellin transform domain
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H(e*)="" hnlexpE juninqg), 13 g
()= hinlexpt- juning) 09 5 naien) i, a7
—zln
which within main period—-z/Ing, z/Inq], named ’

filter ~bandwidth approximates non-periodic From Ed. (17), it follows that, for increasing

frequency responses magnitude responses (see Fig. 1(a)), extension of filter
bandwidth [-z/Inqg, z/Inq] by a decrease of
oy TN e progression rati@ enlarges the area (shaded region)
H 1) = MKYi- 4] _-([ Kyu™ du (14) under the increasing magnitude response and, due to

squared integration of the increasing magnitude
of ideal direct filters executing transforms (9), and  response, causes that the noise amplification
coefficient tends to infinity § — « ) when Img— 0

H p)=1/ M Ku;- ju]zl/j K U u“*du (15) or gq—1 (Fig. 1(b)). Therefore, depending ap
0 inversion problem can be well- or ill-conditioned, or,
in other words, progression rat@g or the sampling

of ideal inverse filters inverting transforms (10). In : ) .
rate in general, may be used for controlling noise

Egs. (14) and (15M denotes the Mellin transform e o . - X .
. . amplification of inverse filters, i.e. for their
[28], parameter, named Mellin frequency is reaularization
interpreted [22,25,26] as the angular frequency for a g '
function on the logarithmic time or frequency scale, (a) IH()|
and summation index in Eq. (13) depending on
evenness or oddness df runs in accordance with
Eq. (11) or (12).

3.3 Regularization via Sampling Rate

It is well known that determination of RRS is a

fundamentally ill-posed problem [29] needed that bl : -
X A . —-r/Inq Mellin frequency, p n/Inq

special stabilization or regularization procedures are

used to minimize the sensitivity to noise. Different

regularization methods have been proposed [14-16].

However, irrespective of the idea and complexity of a

particular regularization method, stabilization for all

(b)

Noise coefficient, S

the methods is attained at the expense of accuracy. Seest__5
As it is shown [30,31], the ill-posedness for linear
inverse problems, i.e. inverse functional filters comes
. R . . . Qesic
fr(?m their increasing mqgnltude .r.esp-onéflels( j/.1)|. o
(Fig. 1(a)) causing that noise amplification coefficients
of the appropriate discrete filters Fig. 1. Increasing magnitude response (a) and noise
_ ) amplification coefficient versus progression ratio (b)
S= Zn:h [n] (16) for an inverse filter.

may take the values much greater than 1. Since noise The appropriate regularization procedure [32, 33]
amplification coefficient (16) multiplies variance’ has been developed, which, for available (limited)

of input noise (random error) to give noise variance frequency range of input data, searches a
2 of an output function gomblnatlon _of progression rat«_p_and a numbe_r of
Y filter  coefficients N  providing bandwidth

[-7/Inq z/Inq], which ensures desired — previously
specified — noise amplification coefficiefes; (S€e

the filter becomes sensitive to input noise in the casd 19 1(0)). Contrary to other regularization methods
when S>> 1. [14-16,29], where noise amplification for linear
According to the Parseval's relation [27], the noiseProPlems is typically minimized by limiting (in the
amplification coefficient can be also determined by filtering light — distorting) increasing magnitude
square integration of the magnitude response of a filter®SPONses  at high frequencies, in  the proposed

2 2
O'y—SO'X,
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regularization, the desired noise amplification is  An advantage of the identification method is that
attained by eventual violation of the sampling theoremit effectively disposes of various secondary effects
[27], i.e. at the expense of decreased accuracy due teuch as data truncation, rounding-off, etc. and allows
the eventual aliasing effects. The superiority of thedesigning filters of various types, e.g. with and
proposed method is that it is very simple and sowithout symmetry of the coefficients, etc. Additional
computationally efficient. Actually, no special constraints, such as maximum acceptable noise
denoising takes place for an inverse filter in this amplification coefficient, can easily be imposed on
case. The filter is simply enforced to operate atthe solution to ensure special targets.

sufficient low sampling rate (sufficient large

progression rati@ges;), Which guarantees the desired

noase amplification (see Fig 1(b)). The second 4 Recovery of RRSfrom the Modulus
advantage of the method is its transparency, it allows

explicit determination of regularization parameter — of Frequen_cy-Do_maln Functions _
progression rati@es: [32,33] at which desired noise Due to the operations of rising to the power and tal_<|ng
amplification coefficient S is attained, while there Square root in Egs. (3) and (4), the interrelation
no strong criterion for determination of regularization Petween the modulus and RRS cannot be written in
parameters for the traditional regularization methodsthe terms of a Mellin convolution and, consequently,

leading that human involvement is necessary to sefh® RRS recovery problem from the modulus cannot
appropriate regularization parameters. be formally formulated as a functional filtering task.

Design problem of a RRS recovery filter can be Since the real and imaginary_parts of causal physical
formulated as finding filter coefficients[n], which ~ Systems, such as materials are not wholly
for available or given frequency ranges of input dataindependent but are linked by the Kramers-Kronig
generates maximum accurate spectrum waveform&elations [24,34], two limiting cases can be defined
with acceptably low noise amplification. A method for modulus (3) and (4), when:

for designing the functional filters — named () the imaginary parts tend to zero

identification method- has been developed [19,25] G'(e)

based on system identification and learning -0,

principles. The block-diagram the identification J"(a))}

method is shown in Fig. 2. Contrary to conventional _

design methods of digital filters [27], the then the modulus approaches to the appropriate real
identification method implements filter design in the Part

input-output function domain A pair of exact ~ , ~ ,

(theoretical) functions interrelated to each other by an| G(@) > G'(@) and|J (@) > J'(@), (18)
integral transform to be performed are used input an
output ones in the identification process. The method
implements so-called grey-box modelling, when
structure of the algorithm to be constructed
(progression ratiog, number of coefficientsN, . or . 0’r?
symmetry of coefficients, etc.) is assumed known andG'(@) Zm’ then G'(w) Zm’
values of the coefficients are determined by

minimizing the error between an exact output function

and that obtained by filtering. and

- . Exact 2 2
(Additional Determine h[n] i - 2.2
: L theoretical) T T
constraints, » to minimize Error « ( — - - - =
if any) BFfOF output | G(a)) |— 1 2 2 + =

(i) the imaginary parts take maximum values
according to the Kramers-Kronig relation

function +OT 1+ a)zz'2 (19)
L] 1 or
Exact ’ N el
(thqoretical)o_ Functional filter o r;”&?gi? ,ll_}_ a)zz-z
input @N. ) function
function
for G,=0, and

Fig. 2. Block-diagram of the identification method.
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) oys , 1 For materials with the large imaginary parts,
I (@) = 1+ 0’ then J'(w) = 1+ 0?2 limiting cases (19) and (20) can be also generalized
and as Mellin convolutions. Thus, interrelation between

|(§(co)| and F ¢ ) for limiting case (19) can be
() \/( 1 Jz ( ot Jz _ described by the following Mellin convolution type
1+ 02 1+ w2 (20) transform
1 ~ tFU/7)olr dr
Vo SO e (22’
for J_=0.

Cases (18) are associated with very broad RR \,Nith Mellin kernel k(u) = u/v1+u® . According to

whereas RRS is equal to the line or the Dirac deltaEQ- (15), inversion of (22) leads to an ideal Mellin
function in cases (19) and (20). For example, in deconvolution filter with the frequency response
Fig. 3, modulus (20) and real part (7) of complex ® ol

compliance are shown corresponding to the Cole-H (jy)zl/_[ u du=

Cole (CC) relaxation response [35] for different o VA1+U? (23)
values of spectrum parameter As it is seen, a 2\r ’

relatively Iarg(_e difference between the modulus and T EU2—jul2 A+ jul?2)

the real part is observed far = (the Dirac delta

function spectrum), and it gradually decreases forwhere/ is the Gamma function.

smaller value ofa: (broader spectra). Similarly, for complex complianceJ ()
limiting case (20) can be generalized in the form of
1,0 ! the following Mellin convolution type transform
0,8 ey T F@/7) dr
ol T @)k [ —=— (24)
;8’ 0,6 £\/1+a)2/12 4
? 0,4 with kernel k(u)=1/+1+u? . Inversion of Eq. (24)
= 3 . . . . .
~ 02 leads to the ideal Mellin deconvolution filter with
I frequency response
0,0+
NPT TS EPE T PR TE T T Iy . © u*J'/J*ZL
0,001 0,01 0,1 1 10 100 1000 H(ju)= 1/]\/_2du=
1+u
Frequency, ® 0 . 25
quency e (25)
Fig. 3. The modulus (solid) and real parts (dashed) of TEjul2r @2+ jul?2)

complex compliance corresponding to CC relaxation
model at different values of parameter(numbers

near the curves)
4.2 Diffuse Magnitude Response

From limiting cases (18), it follows that Frequency responses (21) of the limiting filters for
determination of RRS from the modulus for deiermining RRS from the real parts of complex
materials with the small imaginary parts leads to themodulus and complex compliance differ by signs
ideal Mellin deconvolution filters recovering and so have equal magnitude respon&b(sj,u)|.

relaxation spectrum from the real parts having thefrequency responses (23) and (25) of the limiting

following frequency responses [25,26] filters for the large imaginary parts of complex
2 i 2 u modulus and complex compliance also have equal
H(ju)=t—sin——=+j—=sh—, (21) magnitude responses. The equality of these
7 2 T 2 magnitude responses follows from the fact that the
where H(jx) with plus sign relates to the filter for Mellin  kernels  for integral transform  (22)
determination of the spectrum from'(w), while interrelating |G & )| with F(z), and integral
H(jx) with minus sign - to the filter for

determination of thespectrum fronG'(w).
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transform (24) interrelating|J o )with F(r), 43  RRSRecovery Filtersfrom the

differ by multiplieru Modulus _
RRS from the modulus of a frequency-domain
Koa(W) = Uk, (U), matrial function is calculated by the same algorithms

(11) and (12) used for the real and imaginary parts.
resulting that their Mellin transforms are the shifted  According to the symmetry properties of the

functions of one other [28] Fourier transform [27], pure imaginary frequency
) _ response (21) enforces an odd symmetry on impulse
H oa (1) =H comp (42 +1) responsé[n] of the filters recovering RRS from the

real parts [25]. Contrary to this, responses (23) and
(25) are complex functions @f which do not predict
ary symmetry for h[n] of the filters for RRS
recovery from the modulus of a frequency-domain
material function.
with equal absolute valuﬁﬁ mod(jﬂ)‘ =‘H comm(jﬂ)‘- Since all frequency responses (21), (23) and (25)
have zero values at zero Mellin frequency
(H(jO)=0) (see Fig. 4), the filters cut out zero

frequency (DC) component of an input function.
This means that the RRS recovery filters are
insensitive to bias or bias-invariant of an input
function, which is very important for practice,
because no special measure to be taken to separate
componentsG, and J,, from the whole response
functions to obtain their relaxing parts.

related as

H mod( J,Ll) = H compl( j/u)ej#

1000
100k

10f

IHGw)l

Table 1. Coefficient®[n] for 6-point filters designed
for recovering the retardation spectrum from the
modulus (filter 1) and from the real part (filter 2)

Misllin irequency Filter 1 Filter 2
: : . n
Fig. 4. Diffuse magnitude response (shaded area)
bounded by limiting response of (21) (dashed) and a -3 | 0.002118 -0.0621334
pair of magnitude responses of (23) and (25) (solid). -2 | 0.212985 0.577504
-1 | -1.49284 -2.25364

In Fig. 4, the magnitude responses are shown for 0 | 1.53843 2.25364
the limiting filters corresponding to the minimum 1 | -0.271549 -0.577504
(zero) and the maximum imaginary parts. As it is 2 | 0.0108601 0.0621334

seen, they are similar — extremely rapidly increasing

functions located relatively close one another. It can  Relatively similar magnitude responses of the
assume that the ideal magnitude responses for all othdiiters recovering RRS from the modulus of a
cases of determination of RRS from the modulusfrequency-domain material function to those
should lie in the lane between the both responsegecovering RRS from the real parts (see Fig. 4)
(shaded area). Therefore, the problem ofallows to use approximately the same filter
determination of RRS from the modulus of specification ¢ and N) to ensure the desired
frequency-domain material functions may be pefformance (accuracy and noise amplification).
interpreted as a functional filtering task witdifuse ~ Thus, the specification withg= 33and N= 6
magnitude response bounded by the magnitudgproposed in [25,26] has been chosen, which should
response for (21) and the magnitude response foensure noise amplification coefficient (16) of the
(23) or (25). A practical conclusion follows that, order of 10. For the mentioned specification,
despite that the interrelations between the modulus oblgorithm (12) takes the form:

frequency-domain material functions and RRS are no ,

longer a Mellin convolution, RRS likely can be F(r)=2h[n]x(3.3’°5”/r). (26)
recovered from the modulus by the appropriate s

discrete inverse functional filters.
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with J_ =2, and a= 09 and o= 08 are shown

recovered from noiseless input data by filter 1 and
filter 2. If filter 2 designed for recovering spectrum
from the real part gives an oscillating spectrum at
a =09, then already ata= 08 the recovery
results are very similar for the both filters.

Magnitude response

CC model:
a=0.8

0,1

Mellin frequency, p

(v)

F

Fig. 5. Magnitude responses of filters 1 and 2. Shaded 0,01k
area: ideatliffusemagnitude response.

Coefficients h[n] for (26) for recovering the 0,001k
retardation spectrum from the modulus of complex
compliance are given in Table 1 (filter 1), which 0,001 001 01 1 10 100 1000
according to Eg. (16) ensure actual experimental Retardation time, t

noise amplification coefficient S= 472 For

comparison, the coefficients are also presented inFig- 7. Retardation spectrum for CC modebat 038
Table 1 for a 6-point filter recovering the retardation recovered from the modulus by filters 1 (dotted) and 2
spectrum from the real part [25,26] havisg: 1083 (dashed). Solid line: exact spectrum.

(filter 2). Fig. 5 illustrates the magnitude responses

of the both recovery filters. Logarithmic| _ d
clock [
1E Om = ©1q™"
CC model: —M*r 1
_ ulti- RRS
=0.9 harmonic x'“s) Ym(t) Amplitude T
0.1 excitation meter rec.overy
— generator filter
=
L 0,01
0,001
Fig. 8. Block diagram of a measurement system
0,0001 ! . implementing RRS recovery through the modulus of

| /| /| | |
0,001 001 01 1 10 100 1000 a complex frequency-domain function.
Retardation time, ©

Fig. 6. Retardation spectrum for CC modetat 09 easu
recovered from the modulus by filters 1 (dotted) and zg;ste?ml:iansatli\gn of ;eénse?fomwiimm odulus of a

(dashed). Solid line: exact spectrum. complex frequency-domain material function gives a
basis for simplifying RRS measurement system [10].
If classical approach of determination of the real or
. : imaginary part of a complex frequency-domain
The simulations performed have demonstrated thatmaterial function requires such operations as (i)

for the narrow spectrao(> OB the better results \o55rement of amplitudes of harmonic excitations,
give the filters designed for spectrum recovering (i) measurement of amplitudes of responses, (iii)

from _the modulus, i.e. these be constructed foraasurement of phase differences between the
inverting Eq. (24). However, for the broader spectra, g citations and responses, and (iv) calculation of the
the accuracy of the filters designed for spectrum qq| or imaginary part, determination of the modulus
recovering from the modulus and the real part IS according to Egs. (3) and (4) leads to measurement
approximately the same. of harmonic amplitudes only. However, the basic

As an example, in Fig. 6 and 7, the retardationimnact on improving the performance of RRS
spectrum corresponding to CC relaxation model [35]

4.4 Simulation Results
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recovery comes from the potentially increasedtwo limiting cases for the modulus — corresponding
accuracy of measurement of the amplitudesto the small (zero) and the large (maximum)
compared to the accuracy of measurement of the redmaginary parts — can be represented in the form of
part and, particularly, of the imaginary part. the Mellin convolution, from which it follows that
For implementation of RRS recovery through thetwo ideal limiting Mellin deconvolution filters can
modulus of a complex frequency-domain function, be derived for these cases. Based on this, the
we propose to develop a RRS measurement systerproblem of determination of RRS from the modulus
[13], which executes an active measurementof a complex frequency-domain material function is
experiment by exciting MUT with multi-harmonic formulated as a functional filtering task with a
excitations, measuring MUT responses anddiffuse magnitude response bounded by the
processing them by a RRS recovery filter. A generalmagnitude responses of the two limiting

block diagram of the system is shown in Fig. 8. deconvolution filters.

A harmonic electrical excitation signaig(t) A discrete RRS recovery filter operating with
from a multi-harmonic excitation generatorat geometrically sampled data is designed for
geometrically spaced frequencies, recovering RRS from the modulus and the simulation

results are presented. It is shown that the filters
0, =0q™" (27) designed for RRS recovery from the real parts are

_ _ also applicable for recovering RRS from the
are transmitted to sensory system, which produces mqqyus, particularly, for the broader spectra. For
appropriate  physical (mechanical,  electrical, 1o narrower spectra, however, the better results give
magnetic, thermal, etc.) excitations to MUT and {he gigorithms designed for recovering the spectrum
detects and converts MUT responses back intoqm the modulus.
electrical signalsyy(t). The amplitudes of these A measurement system is proposed implementing

electrical response signals are measured by akrs recovery through the modulus of a complex
amplitude meterTo calculate RRS, the measured frequency-domain material function, where a

anplitudes are processed byRRS recovery filter  material under test is subjected to multi-harmonic

To provide the geometrically spaced frequencies, thegycitations at geometrically spaced frequencies, and
multi-harmonic excitation generator is controlled by amplitudes of multi-harmonic  responses  are

a logarithmic clock generating logarithmic clock easured and processed by a RRS recovery filter.
signals for reference frequencies (27).
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