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Abstract: - This paper deals with 2D acoustic problem. In order to study this problem, a finite element enriched
by a plane wave base is used. This work focus on two aspects. Firstly, the study of this element depending on
the frequency. Secondly, the description of an analytic integration technique. Two examples are studied, the
first resemble to car cavity and the second resemble to rectangular duct. A comparison between numerical
results obtained by standard finite element and enriched finite element are done, for the first one. And, for the
second example, a comparison between numerical results obtained by the use of enriched finite element and
analytic results are presented. With this work, the results found show that the performance of the enriched finite
element increases while increasing the frequency, in the same way for the analytic integration.

Key-Words: - Helmholtz equation; Finite elements; Plane wave basis; Frequency behaviour; Analytic
integration; GAUSS integration.

1 Introduction
Exposure to noise was a major environmental
problem at the beginning of the 20th century and
can be considered nowadays as a source of
pollution. Controlling noise involves the
implementation of two essential tools: noise
prediction and noise reduction. Both of those tools
are complimentary to establish an efficient control,
either through reducing or absorbing noise. The

need of cheap and efficient method to predict
vibration is an urgent requirement.

Finite element method (FEM) [1] is still
nowadays the most used to solve partial derivative
equation systems resulting from modelling of
physical problems, particularly in acoustic. Yet, the
implementation of FEM and Boundary Element
Method (BEM) [2] remains difficult and costly in
certain cases, especially in medium and high
frequencies. In fact, an accurate description of the
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problem needs, sometime, 10 degrees of freedom
(DOF) in the wave length [3], [4]. This great
number of DOF can generates a complicate and hard
solving problem. In order to overcome those
difficulties, new methods appeared, for example, the
PUFEM (Partition of Unity Finite Element Method)
[5], [6] is used to solve Helmholtz equation [7], the
generalized finite element method [8], which is a
combination of the classical finite element method
and the partition of unity method. According to this
method, the functional space is built by multiplying
classic form functions of finite elements by
particular solutions for homogenous problems.
Those particular solutions are oscillating functions
(Trefftz approach) [9], [10].

Charbel developed the discontinuous enrichment
method [11], [12], [13]. In this method the
enrichment functions are calculated analytically.
These functions are propagatory waves added to the
bases functions of finite element. Ultra Weak
Variational formulation (UWV) [14], [15] which
consists in partitioning domains into sub domains
with some adapted interface conditions is also used
to solve the acoustics problems. The discretisation
procedure of UWV is a physical approach which
consists in approximating the solution by using
plane waves. This formulation allows use of coarse
mesh compared to frequency. Eventually, the wave
based method [16]- [21] which is based on Trefftz
methods is also used to treat those problems.

This paper is dedicated to the finite elements
enriched by plane wave’s method; a study
depending on frequency will be presented later. The
comparison between the numerical results obtained
by simulation and the analytic expression results are
presented in order to analyse the influence of the
frequency increase on its finite enriched elements.
The results show significant improvements in the
number of used DOF. The second section of this
paper deals with the development of the analytic
integration technique; whish allows a considerable
improvement in the calculation time.

2 Definition of the problem and
variational formulation
Consider a 2D fluid cavity   (Fig.1), the border is
subdivided into three parts ,  andp v Z   . The

cavity is filled by a fluid of density 0 .

The boundary conditions that have been taken
are:
 And imposed pressure on p ,

 Normal speed is set on the frontier v ,

 Normal impedance on Z .

Fig.1 A 2D acoustic cavity.

The studied 2D problem is governed by
Helmholtz equation and the boundary conditions
given by the following equations:
Helmholtz equation:

2 0p k p   (1)

With
2 2

2 2x y

 
  

 
 represents the Laplace

operator and k  is the wave number given by:

k
c




Boundary conditions:
 Dirichlet condition

   ; pp r p r r  (2)

 Neumann condition

   0 ;n v

p r
v r r

n
 


 


(3)

 Mixed condition

   
 0 ; z

p r p r
r

n Z r
 


 


(4)

with
n




 the normal derivative and  p r ,

 nv r and  Z r  the prescribed values of the

acoustic pressure, normal velocity and normal
impedance.

Consider the Boundary Value Problem (BVP)
described by (1) - (4), the first equation is multiplied

p

z

v


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by a weighting function *p  which is supposed to

be regular and integrated on , so the result is
represented by the equation (5):

       2* * 0p r p r d k p r p r d
 

     (5)

By using the Green formula the former equation
becomes:

       

   

   

2* *

*

* 0

v

v

z

z

p r p r d k p r p r d

p r
p r d

n

p r
p r d

n

 





   


 




  



 





(6)

Finally, the problem (6) is called the weak
formulation of the BVP.

3 Plane Wave Based Method
(PWBM)
The use of the FEM is generally accepted for
dynamic response analyses. However, the FEM is
practically limited to the low frequency range due to
its computational costs, since the computational
costs increase for increasing frequency. To provide
a solution for problems in the mid-frequency range
many methods are developped, like the Plane Wave
Based Method (PWBM).

The aim of the PWBM is to enrich the bases
functions of the standard finite element with plane
waves which satisfy the Helmholtz homogeneous
equation.

Fig.2. shows the linear triangular finite element
geometry enriched by a plane wave basis which
directions are ‘attached’ to the nodes.

The pressure is written for the standard finite
element, under the sum of nodal values. This
pressure is interpolated by the standard shape
functions of the finite element given according to
the local coordinates.

1

2

3

1N

N

N

 



   
 
 

(7)

The nodes values are now approximated in the
form of discrete plane waves propagating sum in
different plan directions.

 
1

,
Nne

h
h

h

p p N  


 (8)

With:
Nne : The number of nodes per element.

Where the pressure hp  is written in the form:

 
_ _

1

exp .
N P W

q q
h h h

q

p ik p


  χ R (9)

Fig.2 Enriched linear triangular finite element.

With:
 _ _N P W : The number of directions of plane
waves,

 q
hp  : The amplitudes of the plane waves.

The plane waves directions attached to each node
are given by:

2 2
cos ,sin

_ _ _ _
q
h

q q

N P W N P W

     
     

    
χ (10)

The vector R  is the position vector of the
calculating point on the meshing given by:

   

        
1 1

, , ,

, , ,

Nne Nne
i i

i i
i i

i i
i i

R N x N y

N x N y

   

   

 

   
 



 
(11)

The shape functions of the finite enriched element
are the interpolation functions of the standard finite
element combined with the directions of plane
waves. That implies for each node a _ _N P W

degrees of freedom instead of 1. The unknown
quantities become the plane waves amplitude
instead of being the node pressure values.

   
_ _

1 1

, exp .
N P WNne

h q q
h h

h q

p N ik p 
 

  χ R (12)

The shape functions for the triangular linear element
in Figure 2 are described by the following equation:

   

        
1 1

, , ,

, , ,

Nne Nne
i i

i i
i i

i i
i i

R N x N y

N x N y

   

   

 

   
 



  (13)

The weighting function selected is the shape
function conjugate.

* ( )p conj p (14)

 conj : is the conjugated function.

1

3

2
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4 Numerical results
In this section the enriched finite elements and

the standard finite elements are compared, by
studying the enriched finite elements according to
frequency. Then an analytic integration technique,
used, is developed.

Firstly, a comparison between numerical results
obtained by standard finite element and enriched
finite element are presented. Then, a comparison
between the numerical results obtained by
simulation and the results of analytic expression are
presented too.

The error percentage according to the number of
DOF by wave length   is calculated. The number
of DOF by wave length   is given by:

_ _ _N Node N P W

S
  
  (15)

Where:
 _N Node : The mesh nodes number,

 S : The surface of the domain of study
  : The wave length presented by :

2

k

  (16)

All exemples are treated with the analytical
integration.

4.1 2D car-like cavity
Consider the 2D car cavity, shown in Fig.3, this

bounded cavity is filled with air
( 0 340 /c m s , 3

0 1.225 /kg m  ) and excited by a
normal acceleration boundary condition

21 /n m s  along the left vertical wall. Furthermore,
the upper panels of the cavity, representing the roof
of the car, are modelled as an acoustic normal

impedance  441 1241 . /nZ j Pa s m  .

The impedance boundary condition represents
the acoustic damping due to the trim components
inside the car cavity.

The cavity dimensions are shown in Figure 3.
The considered problem represents a typical

uncoupled acoustic problem, as it is frequently
encountered in industry. The pressure field inside a
closed cavity needs to be determined, given an
acceleration and damping distribution on the cavity
boundary. Typically, an analysis engineer is
interested in predicting the pressure field up to a few
kHz.

This example is treated using the standard
triangular linear finite elements and the finite
enriched triangular linear elements. The following

Fig.4 and 5 illustrate the meshes used in the two
studies.

Fig.3 A 2D car-like cavity.

The standard triangular finite element mesh
includes 55830 nodes and 111658 elements.

Fig.4 A standard finite element mesh.

In the Fig.5 the enriched triangular finite element
mesh includes 37 nodes and 72 elements.

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig.5 An enriched finite element mesh.

The Fig.6 and 7 show the fluid cavity pressure
(for a wave number equal to 20).

0.5

x

y

0 1.5
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Fig.6 Pressure amplitude contour plot at k = 20
calculated with the FEM.

Fig.7 Pressure amplitude contour plot at k = 20
calculated with the PWBM.

The Table 1 illustrate the comparison between
the standard finite elements and the enriched finite
elements.

Table 1. Comparison between standard finite
elements and the enriched finite elements.

Standard finite
element

Enriched
finite element

Node number 55830 nodes 37 nodes
Element number 111658elements 72 elements
Degree of freedom 55830 DOF 370 DOF

Time
624,484 (s)

(10 mn 24 s)
2,187 (s)

According to this Table, the enriched elements
allows space memory gain, it need only 370 DOF
instead of 55830 DOF. These elements reduce the
time calculation from 624,484(s) to 2,187(s).

4.2 Wave propagation in a duct with rigid
walls

This paragraph deals with the distribution of
pressure in the space limited by a rectangular duct.

Acceleration is imposed to one of the duct sides,
impedance on other and the remained sides are
rigid. This pressure distribution, determined by
using enriched linear triangular finite element, is
compared to an analytic solution.

Fig.8 represents the rectangular duct study
domain.

The problem is defined by:

 

2 0                          (a)

cos 0 (b)

0 2 (c)

0 0,1 (d)

p k p x

p
m y at x

n
p

ikp at x
n
p

at y
n



   
  



  
  

(17)

Fig.8 Rectangular duct.

The inlet boundary x = 0 has an inhomogeneous
Neumann condition and the outlet boundary x = 2 is
characterized using an absorbing boundary
condition. The boundaries y = 0;1 are assumed
perfectly rigid leading to vanishing normal
derivatives on the boundary.

4.2.1 Analytical resolution
The pressure can be written as follows:

( , ) ( ) ( )p x y X x Y y (18)
Taking the boundary conditions x = 0, (17. b)

becomes:

       0, 0
cos

p y dX
m y Y y

n dx



  


(19)

This equation is equivalent to the following
equations system:

   
 

cos

0
1

Y y m y

dX

dx

  





(20)



y

x
0

2

1
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Hence the pressure can be written as follows:

 ( , ) ( ) cosp x y X x m y  (21)

Injecting this expression into the Helmholtz
equation we obtain:

         
2

2 2
2

cos 0 ;
d X x

m X x k X x m y y
dx

 
 

     
 

(22)

      
2

22
2

0
d X x

k m X x
dx

    (23)

It is a second degree differential equation
without second member.

So the component along the direction of the
pressure is written:

  1 2
x xik x ik xX x A e A e  (24)

with

 22
xk m k  (25)

The analytic expression of the pressure in the
duct is presented by the following equation:

    1 2, cos x xik x ik xp x y m y A e A e   (26)

With:

  22
xk k m  (27)

Hence the sound pressure is given by:

     1 2, cosx xik x ik xp x y A e A e m y   (28)

To determine the constant A1 and A2 the pressure
expression (26) is substituted in the mixed boundary
condition equation (17. c) and the derivative of

 X x  is taken along the x direction.

Finally, A1 and A2 coefficients satisfy the
equation:

   
1

2 2
2

1

0x x

x x
ik ik

x x

k k A
i

k k e k k e A

    
         

(29)

4.2.2 Analytical-numerical comparison
The solution represents propagating modes when

the mode number m is below the cut-off
value cut offm  .

cut off

k
m m

  (30)

The modes for which cut offm m   are

evanescent. To measure the accuracy of the numeric
solution to that analytic one, error 2L  should be

introduced as follows:

   

 

2

2

% 100
ex app L

ex L

p p
Error

p





 (31)

With:

exp : Exact pressure (analytic),

appp : Approximate pressure numerically calculated,

2L
: Norm 2.

The simulations are performed for the wave
numbers k = 20; 40 and 80 when the corresponding
to propagating mode number m = 6 and the first
evanescing mode number.

The mesh used in the simulation is shown in
Fig.9. This mesh consists of 22 finite elements
insides the domain and 12 finite elements on the
boundaries.

Fig.9 Triangular enriched finite element mesh.

Subsequently, the pressure distribution in the
domain of study is determined for the 6th mode, for
different frequencies f   1082, 2164.5 and 4329
Hz.

Fig.10 Error according to   for 6m  and
k = 20; 40 and 80

(Linear enriched triangular element).
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In conclusion, according to this figure, in order
to insure satisfactory error between 10-1 and 10-7, it
would be enough to use:
 3.2 to 5 degrees of freedom by wave length for the
frequency f = 1082 Hz,
 2 to 3 degrees of freedom by wave length for the
frequency f = 2164.5 Hz,
 1.8 to 2 degrees of freedom by wave length for the
frequency f = 4329 Hz.

Which is not the case when using standard finite
elements, that needs about 10 degrees of freedom by
wave length [3] to have the same error order.
It is also possible to conclude that the number of
DOF by wave length necessary to obtain the same
error decrease when increasing the frequency. These
results show that the enriched finite element by
plane wave basis performance increases while
increasing the frequency. To have a idea about the
pressure distribution in the duct for its different
frequencies, the Fig.11 shows the pressure
topography for the 6th mode and the Fig.12, the first
non propagative mode.

4.3 Integration technique
In the former studies, integration of the

exponential functions was evaluated by using high
scale integration, for example, Gauss Legendre
integration [22]. In fact, the exponential terms
generate a great oscillation in the finite elements.

For example, in the case of a plane wave
diffracted by a rigid cylinder O. Lagrouche and P.
Bettes [22] used more than 120 by 120 points of
Gauss to evaluate the integrals (ka = 10π).

In this part the analytic technique integration is
developed. Then a comparison between the results
found by using this technique and Gauss point
integration technique will be presented.

The problem consists on the wave function
integration on the triangle surface (the polynomial
function by an exponential complex function
product) this integral is defined by:

   

 

   

   

   

 

 

. .

( )

2 ( )

( )

( )

( )2

( )

1 ,

1 ,

1 ,

,

q m
iK R iK Rlj l j

Tréf

il j

Tréf

i

Tréf

i

Tréf

i

Tréf

i

Tréf

i

I I N N e e J d d

N N e J d d

e J d d

e J d d

e J d d

e J d d

e J d d

 

  

  

  

  

  

  

 

 

   

    

    

  

 



 

 

 

 

 

 

 



  
 

 


 













 ( )2

,
Tréf

i

Tréf

e J d d  



   











(32)

Where:

,l jN N :  Shape functions of standard finite
elements,

 ,x yR : Vector position,

χ : Vector characterizing the calculation
point coordinates,

,  and  Constants according to calculation
point coordinates,
J : The Jacobien matrix determinant,

refT : Reference triangle.

To calculate this integral, it would be enough to
calculate the integral W  below. The integral I  can
be written in a linear combination form of the
integral W  and its derivatives regarding to   and
 .

 

 
( )

i i
i

Tréf

e e
W e d d

 
      

  
   

 
 (33)

It is obvious that there exist some singularity

when  ,  or     tend to zero. For that

reason four calculation zones will be defined as
follows:

   
   
   

       

0 & 0

0 & 0

0 & 0

0 & 0 & 0

   

   

   

      

 

 

 

   

(34)

Where  0 near zero.
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Fig. 1. Analytical and numerical pressure distribution for the 6th  mode

a) 20k  ;   b) 40k  ;   c) 80k 

b)

c)
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Fig. 2. Analytical and numerical pressure distribution for the first evanescing mode

a) 20k  ;   b) 40k  ;   c) 80k 
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b)

c)
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Beyond these zones, this integral calculation is
normally done with a primitive formula.

Fig.13 shows the different calculation zones.

Fig.13 Different calculation zones.

In the first three zones the limited development

close to zero of the functions  ie  ,  ie   and

 ,i ie e   is done respectively. Not simplified form

fourth zone for W is taken as follow:
 

 
1 1 1ii ie e e

W
  

    

  
  


(35)

 

 1

1ie
W

 

 

 



 represents a singularity for

   0    , so the limited development of the

function is done close to zero.

The integrals ljI  are written according to W
and its derivatives as follows:

 
2 2 2

11
2 2

2 2
12

2

2 2
13

2

2
22

2

2
23

2
33

2

2 2 2i

i

i

W W W W W
I Je W i i

W W W
I Je i

W W W
I Je i

W
I Je

W
I Je

W
I Je













    

  

  







     
            

   
        

   
        








 






(36)

Either the   and   angles characterizing the
two plane wave basis position vectors, these two
angles are given by:

2
; 1 _ _

_ _

2
; 1 _ _

_ _

q
q N P W

N P W

n
n N P W

N P W





  

  
(37)

Where the q  and n  vectors are given by:

    
    

 = cos ,sin

 = cos ,sin

q

n

  

  
(38)

The integral I  can be written under the
following shape:

          cos cos sin siniK x yl j

Tréf

I N N e J d d
     

      (39)

By identification the ,   and   constants are
given by:

           
           
         

1 2 1 2

1 3 1 3

1 1

cos cos sin sin

cos cos sin sin

cos cos sin sin

k x x y y

k x x y y

k x y

    

    

    

       
       
     

(40)

Where:
,j jx y : The coordinates of j  node.

In order to test and to validate this integration
technique a comparison between the calculation
times for the two technical will be presented.

The error according to  (evoked in subsection
§ 4.2.2) will be presented for the two integrations
techniques for a wave number 20,40 and 80k  .

While comparing the results given by the Figure
14, respecting acceptable error, the analytic
integration needed time is less than the Gauss
points integration time. The ratio calculation time
between those tow techniques
( time of the analytic integration

time of the numeric integration
) decreases while

increasing the frequency, it represent the
1

5
th  for a

wave number 20k   and it nearly reaches
1

10
 for

a wave number 80k  .

4 Conclusion
This article describes the plane wave basis

method. This paper aimed to the study of these
enriched elements according to the frequency so
the development of the, used, integration technique.












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The validation examples clearly illustrate the
potential of the PWBM to predict accurate results
with substantially smaller prediction models
compared with the FEM. The small model size of
the PWBM, together with the high convergence
rate, make it a less computationally demanding
method than the FEM, which creates opportunities
for the PWBM to tackle problems at higher
frequencies, as compared to the low-frequency
applicability of the FEM. The gotten results show
the performance of the PWBM in the gain of the
space memory and the time calculation. And these
results show that, while increasing the frequency of
excitation, the necessary number of DOF by wave
length decreases.

The analytic technique integration is developed,
exact expressions have been derived for the
integrals of products of polynomials and
exponentials functions. The results prove that the
using analytic integration technique, the time of
calculation decreases while increasing the
frequency. We can reduce the time of calculation
until 1 10  of calculation time put by the GAUSS
points integration technique for a wave number

80k  .
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