Abstract: In 2017 S. Ghour and B. Irshedat defined the \(\theta \)-closure operator as a new topological operator and introduced \(\theta \)-open sets as a new class of sets and proved that this class of sets is strictly between the class of open sets and the class of \(\theta \)-open sets. In this paper we introduce continuous, \(\theta \)-irresolute, \(\theta \)-open, \(\theta \)-closed, pre-\(\theta \)-open, pre-\(\theta \)-closed, contra \(\theta \)-continuous and almost contra \(\theta \)-continuous mappings and investigate properties and characterizations of these new types of mappings in topological spaces.

Key-Words: \(\theta \)-open, \(\theta \)-continuous, \(\theta \)-irresolute, \(\theta \)-closed, pre-\(\theta \)-open, pre-\(\theta \)-closed, contra \(\theta \)-continuous, almost contra \(\theta \)-continuous.

1 Introduction

The notions of \(\theta \)-open subsets, \(\theta \)-closed subsets and \(\theta \)-closure were introduced by Velicko [39] for the purpose of studying the important class of H-closed spaces in terms of arbitrary filterbases. Dickman and Porter [8,9], Joseph [20] and Jankovic [18,19] continued the work of Velicko. Recently Noiri and Jafari [33] and Jafari [17] have also obtained several new and interesting results related to these sets. In what follows \((X, \tau) \) (or \(X \)) denotes topological spaces on which no separation axioms are assumed unless explicitly stated. We denote the interior and the closure of a subset \(A \) of \(X \) by \(Int(A) \) and \(Cl(A) \), respectively. A point \(x \in X \) is called a \(\theta \)-adherent point of \(A \) [10], if \(A \bigcap Cl(A) \neq \phi \) for every open set \(V \) containing \(x \). The set of all \(\theta \)-adherent points of \(A \) is called the \(\theta \)-closure of \(A \) and is denoted by \(AC(\theta)(A) \). A subset \(A \) of \(X \) is called \(\theta \)-closed if \(A = Cl(\theta)(A) \). Dontchev and Maki [10, Lemma 3.9] have shown that if \(A \) and \(B \) are subsets of a space \((X, \tau) \), then \(Cl(\theta)(A \cup B) = Cl(\theta)(A) \cup Cl(\theta)(B) \) and \(Cl(\theta)(A \cap B) = Cl(\theta)(A) \cap Cl(\theta)(B) \). Note also that the \(\theta \)-closure of a given set need not be a \(\theta \)-closed set. But it is always closed. The complement of a \(\theta \)-closed set is called a \(\theta \)-open set. The \(\theta \)-interior of set \(A \) in \(X \), written \(Int(\theta)(A) \), consists of those points \(x \) of \(A \) such that for some open set \(U \) containing \(x \), \(Cl(U) \subseteq A \). A set \(A \) is \(\theta \)-open if and only if \(A = Int(\theta)(A) \), or equivalently, \(X - A \) is \(\theta \)-closed. The collection of all \(\theta \)-open sets in a topological space \((X, \tau) \) forms a topology \(\tau_\theta \) on \(X \), coarser than \(\tau \) and \(\tau_\theta = \tau \) if and only if \((X, \tau) \) is regular.
Several authors continued the study of \(\theta\)-closure operator, \(\theta\)-open sets and their related topological concepts. Recently some authors have studied several generalizations of \(\theta\)-open sets. A set \(A\) is \(\omega\)-open set in \((X, \tau)\) if for each \(x \in A\), there is \(U \in \tau\) and a countable set \(C \subseteq X\) such that \(x \in U - C \subseteq A\). The family of all \(\omega\)-open sets in \((X, \tau)\) is denoted by \(\tau_{\omega}\). It is well known that \(\tau_{\omega}\) forms a topology on \(X\) finer than \(\tau\). \(\omega\)-open sets played a vital role in general topology research. Al Ghou used \(\omega\)-open sets to define \(\omega\)-regularity as a generalization of regularity as follows. A topological space \((X, \tau)\) is \(\omega\)-regular if for each closed set \(F\) in \((X, \tau)\) and \(x \in X - F\), there exist \(U \in \tau\) and \(V \in \tau\) such that \(x \in U\) and \(F \subseteq V\) with \(U \cup V = \phi\). The closure of \(A\) in the topological space \((X, \tau_{\omega})\) is called the \(\omega\)-closure of \(A\) in \((X, \tau)\) and is denoted by \(\text{Cl}_{\omega}(A)\). In 2017 Al Ghou used the \(\omega\)-closure operator to define the \(\theta_{\omega}\)-closure operator in a similar way to that used in the definition of the \(\omega\)-closure operator. A point \(x \in X\) is in \(\theta_{\omega}\)-closure of \(A\) \(\longleftarrow\) \(\text{Cl}_{\omega}(A)\) if \(\text{Cl}_{\omega}(A) \cap A \neq \phi\) for any \(U \in \tau\) with \(x \in U\). A set \(A\) is called \(\theta_{\omega}\)-closed if \(\text{Cl}_{\omega}(A) = A\). The complement of a \(\theta_{\omega}\)-closed set is called a \(\theta_{\omega}\)-open set. The family of all \(\theta_{\omega}\)-open sets in \((X, \tau)\) denoted by \(\tau_{\theta_{\omega}}\) forms a topology on \(X\) which is strictly between \(\tau_{\omega}\) and \(\tau\). In this paper we introduce \(\theta_{\omega}\)-continuous, \(\theta_{\omega}\)-irresolute, \(\theta_{\omega}\)-open, \(\theta_{\omega}\)-closed, \(\text{pre-}\theta_{\omega}\)-open, \(\text{pre-}\theta_{\omega}\)-closed, contra \(\theta_{\omega}\)-continuous and almost contra \(\theta_{\omega}\)-continuous and investigate properties and characterizations of these new types of mappings.

2 Preliminaries

Definition 2.1. ([39]) Let \((X, \tau)\) be a topological space and let \(A \subseteq X\).
(a) A point \(x\) in \(X\) is in the \(\theta\)-closure of \(A\) \(\longleftarrow\) \((x \in \text{Cl}_{\theta}(A))\) if \(\text{Cl}(U) \cap A \neq \phi\) for any \(U \in \tau\) and \(x \in U\).
(b) A is \(\theta\)-closed if \(\text{Cl}_{\theta}(A) = A\).
(c) A is \(\theta\)-open if the complement of \(A\) is \(\theta\)-closed.
(d) The family of all \(\theta\)-open sets in \((X, \tau)\) is denoted by \(\tau_{\theta}\).

Theorem 2.2. ([39]) Let \((X, \tau)\) be a topological space. Then (a) \(\tau_{\theta}\) forms a topology on \(X\).
(b) \(\tau_{\theta} \subseteq \tau\) and \(\tau_{\theta} \neq \tau\) in general.

Definition 2.3. ([16]) Let \((X, \tau)\) be a topological space and let \(A \subseteq X\).
(a) A point \(x\) in \(X\) is a condensation point of \(A\) if for each \(U \in \tau\) with \(x \in U\), the set \(U \cap A\) is uncountable.
(b) A set \(A\) is \(\omega\)-closed if it contains all its condensation points.
(c) A set \(A\) is \(\omega\)-open if the complement of \(A\) is \(\omega\)-closed.
The family of all \(\omega\)-open sets in a topological space \((X, \tau)\) is denoted by \(\tau_{\omega}\). For a subset \(A\) of a topological space \((X, \tau)\), it is known that \(A \in \tau_{\omega}\) if and only if for each \(x \in A\), there exists \(U \in \tau\) such that \(x \in U\) and \(U - A\) is countable.

Theorem 2.4. ([3]) Let \((X, \tau)\) be a topological space. Then the following statements are true.
(a) \(\tau_{\omega}\) is a topology on \(X\).
(b) \(\tau \subseteq \tau_{\omega}\) and \(\tau_{\omega} \neq \tau\) in general.

Theorem 2.5. Let \((X, \tau)\) be a topological space and let \(A \subseteq X\). Then \(\text{Cl}_{\omega}(A) \subseteq \text{Cl}(A)\) and \(\text{Cl}_{\omega}(A) \neq \text{Cl}(A)\) in general.

Definition 2.6. ([1]) Let \((X, \tau)\) be a topological space and let \(A \subseteq X\).
(a) A point \(x \) in \(X \) is in the \(\theta_{\omega} \)-closure of \(A \) \((x \in \text{Cl}_{\theta_{\omega}}(A)) \) if \(\text{Cl}_{\theta_{\omega}}(U) \neq \phi \) for any \(U \in \tau \) with \(x \in U \).
(b) A set \(A \) is called \(\theta_{\omega} \)-closed if \(\text{Cl}_{\theta_{\omega}}(A) = A \).
(c) A set \(A \) is called \(\theta_{\omega} \)-open if the complement of \(A \) is \(\theta_{\omega} \)-closed.
(d) The family of all \(\theta_{\omega} \)-open sets in \((X, \tau) \) is denoted by \(\tau_{\theta_{\omega}} \) (or \(\theta_{\omega}O(X) = \theta_{\omega}O(X, \tau) \)).
(e) The family of all \(\theta_{\omega} \)-closed sets in \((X, \tau) \) is denoted by \(\theta_{\omega}C(X) = \theta_{\omega}C(X, \tau) \).

Theorem 2.7. ([1]) Let \((X, \tau)\) be a topological space and let \(A \subseteq X \). Then
(a) \(\text{Cl}(A) \subseteq \text{Cl}_{\theta_{\omega}}(A) \subseteq \text{Cl}_{\theta_{\omega}}(A) \).
(b) If \(A \) is \(\theta \)-closed, then \(A \) is \(\theta_{\omega} \)-closed,
(c) If \(A \) is \(\theta_{\omega} \)-closed, then \(A \) is closed.

Theorem 2.8. ([1]) Let \((X, \tau)\) be a topological space. Then \(\tau_{\theta} \subseteq \tau_{\omega} \subseteq \tau \).

Theorem 2.9. ([1]) Let \((X, \tau)\) be a topological space.
(a) If \(A \subseteq B \subseteq X \), then \(\text{Cl}_{\theta_{\omega}}(A) \subseteq \text{Cl}_{\theta_{\omega}}(B) \).
(b) For each subsets \(A, B \subseteq X \), \(\text{Cl}_{\theta_{\omega}}(A \cup B) = \text{Cl}_{\theta_{\omega}}(A) \cup \text{Cl}_{\theta_{\omega}}(B) \).
(c) For each subset \(A \subseteq X \), \(\text{Cl}_{\theta_{\omega}}(A) \) is closed in \((X, \tau) \).
(d) For each \(A \in \tau_{\theta_{\omega}} \), \(\text{Cl}_{\theta_{\omega}}(A) = \text{Cl}(A) \).
(e) For each \(A \in \tau \), \(\text{Cl}_{\theta_{\omega}}(A) = \text{Cl}_{\theta_{\omega}}(A) = \text{Cl}(A) \).

Theorem 2.10. ([1]) Let \((X, \tau)\) be a topological space. Then
(a) \(\phi \) and \(X \) are \(\theta_{\omega} \)-closed sets.
(b) Finite union of \(\theta_{\omega} \)-closed sets is \(\theta_{\omega} \)-closed.
(c) Arbitrary intersection of \(\theta_{\omega} \)-closed sets is \(\theta_{\omega} \)-closed.

Theorem 2.11. ([1]) Let \((X, \tau)\) be a topological space. Then \(\tau_{\theta_{\omega}} \) is a topology on \(X \).

Theorem 2.12. ([1]) Let \((X, \tau)\) be a topological space and \(A \subseteq X \). Then \(A \in \tau_{\theta_{\omega}} \) if and only if for each \(x \in A \), there exists \(U \in \tau \) such that \(x \in U \subseteq \text{Cl}_{\theta_{\omega}}(U) \subseteq A \).

Corollary 2.13. Every open \(\omega \)-closed set in a topological space \((X, \tau)\) is \(\theta_{\omega} \)-open.

Corollary 2.14. Every countable open set in a topological space \((X, \tau)\) is \(\theta_{\omega} \)-open.

The following example shows that open \(\theta_{\omega} \)-closed sets and open sets.

Example 2.15. ([1]) Let \(^\omega \Raja , ^\omega \sqcup , ^\omega \diamond , ^\omega \cdot \), and \(^\omega \cdot \) denote, respectively the set of real numbers, the set of rational numbers, the set of irrational numbers and the set of natural numbers.

Consider \((X, \tau)\) where \(\tau = \{ \phi, ^\omega \Raja , ^\omega \sqcup , ^\omega \diamond , ^\omega \cdot U^\omega \cdot \} \).

Then \(\tau_{\theta_{\omega}} = \{ \phi, ^\omega \Raja , ^\omega \cdot \} \) and \(\tau_{\omega} = \{ \phi, ^\omega \cdot \} \).

Definition 2.16. Let \(A \) be a subset of a topological space \((X, \tau)\). Then the Kernel of \(A \), denoted by \(\text{Ker}(A) \), is the intersection of all open supersets of \(A \).

Lemma 2.17. Let \(A \) and \(B \) be subsets of a topological space \((X, \tau)\), then the following properties hold:

(i) \(x \in \text{Ker}(A) \) if and only if \(A \cap F \neq \phi \) for every closed set \(F \) in \((X, \tau)\) containing \(x \).

(ii) \(A \subseteq \text{Ker}(A) \) and if \(A \) is open in \((X, \tau)\), then \(A = \text{Ker}(A) \).

(iii) If \(A \subseteq B \), then \(\text{Ker}(A) \subseteq \text{Ker}(B) \).

3 \(\theta_{\omega} \)-Continuous Mappings

The purpose of this section is to investigate properties and characterizations of \(\theta_{\omega} \)-continuous functions.

Definition 3.1. A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be \(\theta_{\omega} \)-continuous if \(f^{-1}(V) \in \tau_{\theta_{\omega}} \) for every \(V \in \sigma \).
Theorem 3.2. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function. Then the following are equivalent:

1. \(f \) is \(\theta_{\omega} \)-continuous;

2. The inverse image of each closed set in \(Y \) is a \(\theta_{\omega} \)-closed set in \(X \);

3. \(Cl_{\theta_{\omega}} \left[f^{-1}(V) \right] \subseteq f^{-1} \left[Cl(V) \right] \), for every \(V \subseteq Y \);

4. \(f \left[Cl_{\theta_{\omega}} (U) \right] \subseteq Cl \left[f(U) \right] \), for every \(U \subseteq X \);

5. For any point \(x \in X \) and any open set \(V \) of \(Y \) containing \(f(x) \), there exists \(U \in \tau_{\theta_{\omega}} \) such that \(x \in U \) and \(f(U) \subseteq V \);

6. \(Bd_{\theta_{\omega}} \left[f^{-1}(V) \right] \subseteq f^{-1} \left[Bd(V) \right] \), for every \(V \subseteq Y \);

7. \(f \left[D_{\theta_{\omega}} (U) \right] \subseteq Cl \left[f(U) \right] \), for every \(U \subseteq X \);

8. \(f^{-1} \left[Int(V) \right] \subseteq Int_{\theta_{\omega}} \left[f^{-1}(V) \right] \), for every \(V \subseteq Y \);

Proof. (1) \(\Rightarrow \) (2): Let \(F \subseteq Y \) be closed. Since \(f \) is \(\theta_{\omega} \)-continuous, \(f^{-1}(Y-F) = X-f^{-1}(F) \) is \(\theta_{\omega} \)-open. Therefore, \(f^{-1}(F) \) is \(\theta_{\omega} \)-closed in \(X \).

(2) \(\Rightarrow \) (3): Since \(Cl(V) \) is closed for every \(V \subseteq Y \), then \(f^{-1} \left[Cl(V) \right] \) is \(\theta_{\omega} \)-closed. Therefore \(f^{-1} \left[Cl(V) \right] = Cl_{\theta_{\omega}} \left[f^{-1}(Cl(V)) \right] \subseteq Cl_{\theta_{\omega}} \left[f^{-1}(V) \right] \).

(3) \(\Rightarrow \) (4): Let \(U \subseteq X \) and \(f(U) = V \). Then

\[
Cl_{\theta_{\omega}} \left[f^{-1}(V) \right] \subseteq f^{-1} \left[Cl(V) \right].
\]

Thus

\[
Cl_{\theta_{\omega}} (U) \subseteq Cl_{\omega} \left[f^{-1}(f(U)) \right] \subseteq f^{-1} \left[Cl(f(U)) \right]
\]

and

\[
f \left[Cl_{\theta_{\omega}} (U) \right] \subseteq Cl \left[f(U) \right].
\]

(4) \(\Rightarrow \) (2): Let \(W \subseteq Y \) be a closed set, and \(U = f^{-1}(W) \). Then

\[
f \left[Cl_{\theta_{\omega}} (U) \right] \subseteq Cl \left[f(U) \right] = Cl(f \left(f^{-1}(W) \right)) \subseteq Cl(W) = W. \] Therefore \(Cl_{\theta_{\omega}} (U) \subseteq f^{-1} \left[f \left(Cl_{\theta_{\omega}} (U) \right) \right] \subseteq f^{-1}(W) = U \). So \(U \) is \(\theta_{\omega} \)-closed.

(2) \(\Rightarrow \) (1): Let \(V \subseteq Y \) be an open set. Then \(Y-V \) is closed. Then \(f^{-1}(Y-V) = X-f^{-1}(V) \) is \(\theta_{\omega} \)-closed in \(X \) and hence \(f^{-1}(V) \) is \(\theta_{\omega} \)-open in \(X \).

(1) \(\Rightarrow \) (5): Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be \(\theta_{\omega} \)-continuous. For any \(x \in X \) and any open set \(V \) of \(Y \) containing \(f(x) \), \(U = f^{-1}(V) \in \tau_{\theta_{\omega}} \) and \(f(U) = f \left(f^{-1}(V) \right) \subseteq V \).

(5) \(\Rightarrow \) (1): Let \(V \subseteq \sigma \). We prove \(f^{-1}(V) \in \tau_{\theta_{\omega}} \). Let \(x \in f^{-1}(V) \). Then \(f(x) \in V \) and there exists \(U \in \tau_{\theta_{\omega}} \) such that \(x \in U \) and \(f(U) \subseteq V \). Hence \(x \in U \subseteq \left[f(U) \right] \subseteq f^{-1}(V) \). It shows that \(f^{-1}(V) \) is a \(\theta_{\omega} \)-neighbourhood of \(x \). Therefore \(f^{-1}(V) \in \tau_{\theta_{\omega}} \).

(6) \(\Rightarrow \) (8): Let \(V \subseteq Y \). Then by hypothesis,

\[
Bd_{\theta_{\omega}} \left[f^{-1}(V) \right] \subseteq f^{-1} \left[Bd(V) \right] \Rightarrow f^{-1}(V) - Int_{\theta_{\omega}} \left[f^{-1}(V) \right] \subseteq f^{-1} \left[V - Int(V) \right]
\]

and

\[
f^{-1} \left[Int(V) \right] \subseteq Int_{\theta_{\omega}} \left[f^{-1}(V) \right].
\]

(8) \(\Rightarrow \) (6): Let \(V \subseteq Y \). Then by hypothesis,

\[
f^{-1} \left[Int(V) \right] \subseteq Int_{\theta_{\omega}} \left[f^{-1}(V) \right] \subseteq f^{-1} \left[V - Int(V) \right]
\]

and

\[
Bd_{\theta_{\omega}} \left[f^{-1}(V) \right] \subseteq f^{-1} \left[Bd(V) \right].
\]

(1) \(\Rightarrow \) (7): It is obvious, since \(f \) is \(\theta_{\omega} \)-continuous and by (4)

\[
f \left[Cl_{\theta_{\omega}} (U) \right] \subseteq Cl \left[f(U) \right] \]

for each \(U \subseteq X \). So

\[
f \left[D_{\theta_{\omega}} (U) \right] \subseteq Cl \left[f(U) \right].
\]

(7) \(\Rightarrow \) (1): Let \(U \subseteq Y \) be an open set, \(V = Y-U \) and \(f^{-1}(V) = W \). Then by hypothesis
\[f \left[D_{\theta_a}(W) \right] \subseteq \text{Cl} \left[f(W) \right]. \]

Thus
\[f \left[D_{\theta_a}(f^{-1}(V)) \right] \subseteq \text{Cl} \left[f \left(f^{-1}(V) \right) \right] \subseteq \text{Cl}(V) = V. \]

Then \(D_{\theta_a}[f^{-1}(V)] \subseteq f^{-1}(V) \) and \(f^{-1}(V) \) is \(\theta_a \)-closed. Therefore, \(f \) is \(\theta_a \)-continuous.

(1) \(\Rightarrow \) (8): Let \(V \subseteq Y \). Then \(f^{-1}[\text{Int}(V)] \) is \(\theta_a \)-open in \(X \). Thus \(f^{-1}[\text{Int}(V)] = \text{Int}_{\theta_a}[f^{-1}(V)]. \)

\[f^{-1}[\text{Int}(V)] \subseteq \text{Int}_{\theta_a}[f^{-1}(V)]. \]

Therefore
\[f^{-1}[\text{Int}(V)] \subseteq \text{Int}_{\theta_a}[f^{-1}(V)]. \]

(8) \(\Rightarrow \) (1): Let \(V \subseteq Y \) be an open set. Then \(f^{-1}(V) = f^{-1}[\text{Int}(V)] \subseteq \text{Int}_{\theta_a}[f^{-1}(V)]. \)

Therefore, \(f^{-1}(V) \) is \(\theta_a \)-open in \(X \). Hence \(f \) is \(\theta_a \)-continuous.

In the next Theorem, \(\#\theta_a-c. \) denotes the set of points \(x \) of \(X \) for which a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is not \(\theta_a \)-continuous.

Theorem 3.3. \(\#\theta_a-c. \) is identical with the union of the \(\theta_a \)-frontier of the inverse images of \(\theta_a \)-open sets containing \(f(x) \).

Proof. Suppose that \(f \) is not \(\theta_a \)-continuous at a point \(x \) of \(X \). Then there exists an open set \(V \subseteq Y \) containing \(f(x) \) such that \(f(U) \) is not a subset of \(V \) for every \(U \in \tau_{\theta_a} \) containing \(x \).

Hence, we have \(U \cap f^{-1}(X - f^{-1}(V)) \neq \emptyset \) for every \(U \in \tau_{\theta_a} \) containing \(x \). It follows that
\[x \in \text{Cl}_{\theta_a}[X - f^{-1}(V)]. \]

We also have
\[x \in f^{-1}(V) \subseteq \text{Cl}_{\theta_a}[f^{-1}(V)]. \]

This means that
\[x \in F_{\theta_a}[f^{-1}(V)]. \]

Now, let \(f \) be \(\theta_a \)-continuous at \(x \in X \) and \(V \subseteq Y \) any open set containing \(f(x) \). Then, \(x \in f^{-1}(V) \) is a \(\theta_a \)-open set of \(X \). Thus
\[x \in \text{Int}_{\theta_a}[f^{-1}(V)] \]

and therefore
\[x \in F_{\theta_a}[f^{-1}(V)] \]

for every open set \(V \) containing \(f(x) \).

Remarks 3.4. (1) Every \(\theta_a \)-continuous function is continuous but the converse may not be true.

(2) If a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\theta_a \)-continuous and a function \(g : (Y, \sigma) \rightarrow (Z, \eta) \) is \(\theta_a \)-continuous, then \(gof : (X, \tau) \rightarrow (Z, \eta) \) is \(\theta_a \)-continuous.

(3) If a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\theta_a \)-continuous and a function \(g : (Y, \sigma) \rightarrow (Z, \eta) \) is continuous, then \(gof : (X, \tau) \rightarrow (Z, \eta) \) is \(\theta_a \)-continuous.

(4) Let \((X, \tau) \) and \((Y, \sigma) \) be topological spaces. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is a function, and one of the following

(a) \(f^{-1}[\text{Int}(B)] \subseteq \text{Int}_{\theta_a}[f^{-1}(B)] \) for each \(B \subseteq Y \).

(b) \(\text{Cl}_{\theta_a}[f^{-1}(B)] \subseteq f^{-1}[\text{Cl}(B)] \) for each \(B \subseteq Y \).

(c) \(f[\text{Cl}_{\theta_a}(A)] \subseteq \text{Cl}[f(A)] \) for each \(A \subseteq X \).

holds, then \(f \) is continuous.

Lemma 3.5. Let \(A \subseteq Y \subseteq X \) is \(\theta_a \)-open in \(X \) and \(A \) is \(\theta_a \)-open in \(Y \). Then \(A \) is \(\theta_a \)-open in \(X \).

Proof. Since \(A \) is \(\theta_a \)-open in \(X \), there exists a \(\theta_a \)-open set \(U \subseteq X \) such that \(A = Y \cap U \). Thus \(A \) being the intersection of two \(\theta_a \)-open sets in \(X \), is \(\theta_a \)-open in \(X \).

Theorem 3.6. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a mapping and \(\{ U_i : i \in I \} \) be a cover of \(X \) such that \(U_i \in \tau_{\theta_a} \) for each \(i \in I \). Then prove that \(f \) is \(\theta_a \)-continuous.

Proof. Let \(V \subseteq Y \) be an open set, then \(\left(f \left| U_i \right. \right)^{-1}(V) \) is \(\theta_a \)-open in \(U_i \) for each \(i \in I \). Since \(U_i \) is \(\theta_a \)-open in \(X \) for each \(i \in I \). So by Lemma 3.5, \(\left(f \left| U_i \right. \right)^{-1}(V) \) is \(\theta_a \)-open in \(X \) for
4 θ_ω – Irresolute Mappings

In this section, the functions to be considered are those for which inverses of θ_ω-open sets are θ_ω-open. We investigate some properties and characterizations of such functions.

Definition 4.1. Let (X, τ) and (Y, σ) be topological spaces. A function $f : (X, \tau) \to (Y, \sigma)$ is called θ_ω-irresolute if the inverse image of each θ_ω-open set of Y is a θ_ω-open set in X.

Theorem 4.2. Let $f : (X, \tau) \to (Y, \sigma)$ be a function between topological spaces. Then the following are equivalent:

1. f is θ_ω-irresolute.
2. The inverse image of each θ_ω-closed set in Y is a θ_ω-closed set in X;
3. $\text{Cl}_{\theta_\omega}[f^{-1}(V)] \subseteq f^{-1} \left(\text{Cl}_{\theta_\omega}(V) \right)$ for every $V \subseteq Y$;
4. $f \left(\text{Cl}_{\theta_\omega}(U) \right) \subseteq \text{Cl}_{\theta_\omega}(f(U))$ for every $U \subseteq X$;
5. $f^{-1} \left(\text{Int}_{\theta_\omega}(B) \right) \subseteq \text{Int}_{\theta_\omega}(f^{-1}(B))$ for every $B \subseteq Y$.

Theorem 4.3. Prove that a function $f : (X, \tau) \to (Y, \sigma)$ is θ_ω-irresolute if and only if for each point p in X and each θ_ω-open set B in Y with $f(p) \in B$, there is a θ_ω-open set A in X such that $p \in A$, $f(A) \subseteq B$.

Proof. Necessity. Let $p \in X$ and $B \in \sigma_{\theta_\omega}$ such that $f(p) \in B$. Let $A = f^{-1}(B)$. Since f is θ_ω-irresolute, A is θ_ω-open in X. Also $p \in f^{-1}(B) = A$ as $f(p) \in B$. Thus we have $f(A) = f \left(f^{-1}(B) \right) \subseteq B$.

Sufficiency. Let $B \in \sigma_{\theta_\omega}$. Let $A = f^{-1}(B)$. We show that A is θ_ω-open in X. For this let $x \in A$. It implies that $f(x) \in B$. Then by hypothesis, there exists $A_x \in \tau_{\theta_\omega}$ such that $x \in A_x$ and $f(A_x) \subseteq B$. Then $A_x \subseteq f^{-1} \left(f(A_x) \right) \subseteq f^{-1}(B) = A$. Thus $A = \bigcup \{ A_x : x \in A \}$. It follows that A is θ_ω-open in X. Hence f is θ_ω-irresolute.

Definition 4.4. Let (X, τ) be a topological space. Let $x \in X$ and $N \subseteq X$. We say that N is a θ_ω-neighbourhood of x if there exists a θ_ω-open set M of X such that $x \in M \subseteq N$.

Theorem 4.5. Prove that a function $f : (X, \tau) \to (Y, \sigma)$ is θ_ω-irresolute if and only if for each $x \in X$, the inverse image of every θ_ω-neighbourhood of $f(x)$ is a θ_ω-neighbourhood of x.

Proof. Necessity. Let $x \in X$ and let B be a θ_ω-neighbourhood of $f(x)$. Then there exists $U \in \sigma_{\theta_\omega}$ such that $f(x) \in U \subseteq B$. This implies that $x \in f^{-1}(U) \subseteq f^{-1}(B)$. Since f is θ_ω-irresolute, so $f^{-1}(U) \in \tau_{\theta_\omega}$. Hence $f^{-1}(B)$ is a θ_ω-neighbourhood of x.

Sufficiency. Let $B \in \sigma_{\theta_\omega}$. Put $A = f^{-1}(B)$. Let $x \in A$. Then $f(x) \in B$. But then, B being θ_ω-open set, is a θ_ω-neighbourhood of $f(x)$. So by hypothesis, $A = f^{-1}(B)$ is a θ_ω-neighbourhood of x. Hence by definition, there exists $A_x \in \tau_{\theta_\omega}$ such that $x \in A_x \subseteq A$. Thus $A = \bigcup \{ A_x : x \in A \}$. It follows that A is a θ_ω-open set in X. Therefore f is θ_ω-irresolute.

Theorem 4.6. Prove that a function $f : (X, \tau) \to (Y, \sigma)$ is θ_ω-irresolute if and only if for each x in X, each θ_ω-neighbourhood U of $f(x)$, there is a θ_ω-neighbourhood V of x such that $f(V) \subseteq U$.

Proof. Necessity. Let \(x \in X \) and let \(U \) be a \(\theta_\omega \)-neighbourhood of \(f(x) \). Then there exists \(O_{f(x)} \in \sigma_{\theta_\omega} \) such that \(f(x) \in O_{f(x)} \subseteq U \). It follows that \(x \in f^{-1}[O_{f(x)}] \subseteq f^{-1}(U) \). By hypothesis, \(f^{-1}[O_{f(x)}] \subseteq \tau_{\theta_\omega} \). Let \(V = f^{-1}(U) \). Then it follows that \(V \) is a \(\theta_\omega \)-neighbourhood of \(x \) and \(f(V) = f[f^{-1}(U)] \subseteq U \).

Sufficiency. Let \(B \in \sigma_{\theta_\omega} \). Put \(O = f^{-1}(B) \). Let \(x \in O \). Then \(f(x) \in B \). Thus \(B \) is a \(\theta_\omega \)-neighbourhood of \(f(x) \). So by hypothesis, there exists a \(\theta_\omega \)-neighbourhood \(V_x \) of \(x \) such that \(f(V_x) \subseteq B \). Thus it follows that \(x \in V_x \subseteq f^{-1}[f(V_x)] \subseteq f^{-1}(B) \). Since \(V_x \) is a \(\theta_\omega \)-neighbourhood of \(x \), there exists an \(O_x \in \tau_{\theta_\omega} \) such that \(x \in O_x \), hence \(x \in O_x \subseteq O \). Let \(O = U \{ O_x : x \in O \} \). It follows that \(O \) is \(\theta_\omega \)-open in \(X \). Therefore, \(f \) is \(\theta_\omega \)-irresolute.

Theorem 4.7. Prove that a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\theta_\omega \)-irresolute if and only if \(f[D_{\theta_\omega}(A)] \subseteq f(A) \cup D_{\theta_\omega}[f(A)] \), for all \(A \subseteq X \).

Proof. Necessity. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be \(\theta_\omega \)-irresolute. Let \(A \subseteq X \), and \(a_0 \in D_{\theta_\omega}(A) \). Assume that \(f(a_0) \notin f(A) \) and let \(V \) denote a \(\theta_\omega \)-neighbourhood of \(f(a_0) \). Since \(f \) is \(\theta_\omega \)-irresolute, so by Theorem 4.6, there exists a \(\theta_\omega \)-neighbourhood \(U \) of \(a_0 \) such that \(f(U) \subseteq V \). From \(a_0 \in D_{\theta_\omega}(A) \), it follows that \(U \cap A \neq \emptyset \); there exists, therefore, at least one element \(a \in U \cap A \) such that \(f(a) \in f(A) \) and \(f(a) \in f(V) \). Since \(f(a_0) \notin f(A) \), we have \(f(a) \neq f(a_0) \). Thus every \(\theta_\omega \)-neighbourhood of \(f(a_0) \) contains an element of \(f(A) \) different from \(f(a_0) \), consequently, \(f(a_0) \in D_{\theta_\omega}[f(A)] \). This proves necessity of the condition.

Sufficiency. Assume that \(f \) is not \(\theta_\omega \)-irresolute. Then by Theorem 4.6, there exists \(a_0 \in X \) and a \(\theta_\omega \)-neighbourhood \(V \) of \(f(a_0) \) such that every \(\theta_\omega \)-neighbourhood \(U \) of \(a_0 \) contains at least one element \(a \in U \) for which \(f(a) \notin V \). Put \(A = \{ a \in X : f(a) \notin V \} \). Then \(a_0 \notin A \) since \(f(a_0) \in V \), and therefore \(f(a_0) \notin A \); also \(f(a_0) \notin D_{\theta_\omega}[f(A)] \) since \(V \cap \{ f(a_0) \} = \emptyset \). So \(f(a_0) \notin f[D_{\theta_\omega}(A)] \cup D_{\theta_\omega}[f(A)] \), which is a contradiction to the given condition. The condition of the theorem is therefore sufficient and the theorem is proved.

Theorem 4.8. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a one-to-one function. Then \(f \) is \(\theta_\omega \)-irresolute if and only if \(f[D_{\theta_\omega}(A)] \subseteq f(A) \cup D_{\theta_\omega}[f(A)] \), for all \(A \subseteq X \).

Proof. Necessity. Let \(f \) be \(\theta_\omega \)-irresolute. Let \(A \subseteq X \), \(a_0 \in D_{\theta_\omega}(A) \) and \(V \) be a \(\theta_\omega \)-neighbourhood of \(f(a_0) \). Since \(f \) is \(\theta_\omega \)-irresolute, so by Theorem 4.6, there exists a \(\theta_\omega \)-neighbourhood \(U \) of \(a_0 \) such that \(f(U) \subseteq V \). But \(a_0 \in D_{\theta_\omega}(A) \); hence there exists an element \(a \in U \cap A \) such that \(a \neq a_0 \); then \(f(a) \in f(A) \) and, since \(f \) is one to one, \(f(a) \neq f(a_0) \). Thus every \(\theta_\omega \)-neighbourhood \(V \) of \(f(a_0) \) contains an element of \(f(A) \) different from \(f(a_0) \); consequently \(f(a_0) \in D_{\theta_\omega}[f(A)] \). We have therefore \(f[D_{\theta_\omega}(A)] \subseteq D_{\theta_\omega}[f(A)] \).

Sufficiency. Follows from Theorem 4.7.

5 \(\theta_\omega \)-Open Mappings

The purpose of this section is to investigate some characterizations of \(\theta_\omega \)-open mappings.

Definition 5.1. Let \((X, \tau) \) and \((Y, \sigma) \) be topological spaces. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called \(\theta_\omega \)-open if for every open set \(G \) in \(X \), \(f(G) \) is a \(\theta_\omega \)-open set in \(Y \).
Theorem 5.2. Prove that a mapping $f : (X, \tau) \to (Y, \sigma)$ is θ_σ-open if and only if for each $x \in X$, and $\theta_\sigma U \in \tau_{\theta}$ such that $x \in U$, there exists a θ_σ-open set $W \subseteq Y$ containing $f(x)$ such that $W \subseteq f(U)$.

Proof. Follows immediately from Definition 5.1.

Theorem 5.3. Let $f : (X, \tau) \to (Y, \sigma)$ be θ_σ-open. If $W \subseteq Y$ and $F \subseteq X$ is a closed set containing $f^{-1}(W)$, then there exists a θ_σ-closed, $H \subseteq Y$ containing W such that $f^{-1}(H) \subseteq F$.

Proof. Let $H = Y - f(Y - F)$. Since $f^{-1}(W) \subseteq F$, we have $f^{-1}(Y - F) \subseteq (Y - W)$. Since f is θ_σ-open, then H is θ_σ-closed and $f^{-1}(H) = X - f^{-1}[f(X - F)] \subseteq X - (X - F) = F$.

Theorem 5.4. Let $f : (X, \tau) \to (Y, \sigma)$ be a θ_σ-open function and let $B \subseteq Y$. Then $f^{-1}[\text{Int}_{\theta_\sigma}(\text{Cl}_{\theta_\sigma}(f(B)))] \subseteq \text{Cl}[f^{-1}(B)]$.

Proof. $\text{Cl}[f^{-1}(B)]$ is closed in X containing $f^{-1}(B)$. By Theorem 5.3, there exists a θ_σ-closed set $B \subseteq H \subseteq Y$ such that $f^{-1}(H) \subseteq \text{Cl}[f^{-1}(B)]$. Therefore, we obtain

$$f^{-1}[\text{Cl}_{\theta_\sigma}(\text{Int}_{\theta_\sigma}(\text{Cl}_{\theta_\sigma}(f(B))))] \subseteq f^{-1}[\text{Cl}_{\theta_\sigma}(\text{Int}_{\theta_\sigma}(H))] \subseteq f^{-1}[H] \subseteq \text{Cl}[f^{-1}(B)].$$

Theorem 5.5. Prove that a function $f : (X, \tau) \to (Y, \sigma)$ is θ_σ-open if and only if $f[\text{Int}(A)] \subseteq \text{Int}_{\theta_\sigma}[f(A)]$, for all $A \subseteq X$.

Proof. Necessity. Let $A \subseteq X$. Then $f(A) \subseteq Y$. Hence by hypothesis, we obtain $f[\text{Int}(A)] \subseteq \text{Int}_{\theta_\sigma}[f(A)]$.

Sufficiency. Let $U \in \tau$. Then by hypothesis, $f[\text{Int}(U)] \subseteq \text{Int}_{\theta_\sigma}[f(U)]$. Since $\text{Int}(U) = U$ as U is open. Also $\text{Int}_{\theta_\sigma}[f(U)] \subseteq f(U)$. Hence $f(U) = \text{Int}_{\theta_\sigma}[f(U)]$. Thus $f(U)$ is θ_σ-open.

Remark 5.6. The equality may not hold in the preceding Theorem.

Theorem 5.7. Prove that a function $f : (X, \tau) \to (Y, \sigma)$ is θ_σ-open if and only if $\text{Int}[f^{-1}(B)] \subseteq f^{-1}[\text{Int}_{\theta_\sigma}(B)]$, for all $B \subseteq Y$.

Proof. Necessity. Let $B \subseteq Y$. Since $\text{Int}[f^{-1}(B)]$ is open in X and f is θ_σ-open, $f[\text{Int}(f^{-1}(B))]$ is θ_σ-open in Y. Also we have $\text{Int}[f^{-1}(B)] \subseteq f[f^{-1}(B)] \subseteq B$. Hence, we have $\text{Int}[f^{-1}(B)] \subseteq \text{Int}_{\theta_\sigma}(B)$. Therefore, we obtain $\text{Int}(f^{-1}(B)) \subseteq f^{-1}[\text{Int}_{\theta_\sigma}(B)]$.

Sufficiency. Let $A \subseteq X$. Then $f(A) \subseteq Y$. Hence by hypothesis, we obtain $\text{Int}(A) \subseteq \text{Int}[f^{-1}(f(A))] \subseteq f^{-1}[\text{Int}_{\theta_\sigma}(f(A))]$. Thus $f[\text{Int}(A)] \subseteq \text{Int}_{\theta_\sigma}[f(A)]$, for all $A \subseteq X$. Hence, by Theorem 5.5, f is θ_σ-open.

Theorem 5.8. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping. Then a necessary and sufficient condition for f to be θ_σ-open is that $f^{-1}[\text{Cl}_{\theta_\sigma}(B)] \subseteq \text{Cl}[f^{-1}(B)]$ for every subset B of Y.

Proof. Necessity. Assume f is θ_σ-open. Let $B \subseteq Y$. Let $x \in f^{-1}[ext{Cl}_{\theta_\sigma}(B)]$. Then $f(x) \in \text{Cl}_{\theta_\sigma}(B)$. Let $U \in \tau$ such that $x \in U$. Since f is θ_σ-open, then $f(U)$ is a θ_σ-open set in Y. Therefore, $B \cap f^{-1}(B) \neq \emptyset$. Hence $x \in \text{Cl}[f^{-1}(B)]$. We conclude that $f^{-1}[ext{Cl}_{\theta_\sigma}(B)] \subseteq \text{Cl}[f^{-1}(B)]$.
Sufficiency. Let $B \subseteq Y$. Then $(Y-B) \subseteq Y$. By hypothesis, $f^{-1}[Cl_{\omega}(Y-B)] \subseteq Cl[f^{-1}(Y-B)]$. Thus $X-Cl[f^{-1}(Y-B)] \subseteq X-f^{-1}[Cl_{\omega}(Y-B)]$. By applying a well-known result, it implies that $Int[f^{-1}(B)] \subseteq f^{-1}[Int_{\omega}(B)]$. Now form Theorem 5.7, it follows that f is ω-open.

6 ω-Closed Mappings

In this section we introduce ω-closed functions and study certain properties and characterizations of this type of functions.

Definition 6.1. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is called ω-closed if the image of each closed set in X is a ω-closed set in Y.

Theorem 6.2. Prove that a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is ω-closed if and only if $Cl_{\omega}(f(A)) \subseteq f(Cl(A))$ for each $A \subseteq X$.

Proof. Necessity. Let f be ω-closed and let $A \subseteq X$. Then $f(A) \subseteq f(Cl(A))$ and $f(Cl(A))$ is a ω-closed set in Y. Thus $Cl_{\omega}(f(A)) \subseteq f(Cl(A))$.

Sufficiency. Suppose that $Cl_{\omega}(f(A)) \subseteq f(Cl(A))$, for each $A \subseteq X$. Let $A \subseteq X$ be a closed set. Then $Cl_{\omega}(f(A)) \subseteq f(Cl(A)) = f(A)$. This shows that $f(A)$ is a ω-closed set. Hence f is ω-closed.

Theorem 6.3. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be ω-closed. If $V \subseteq Y$ and $E \subseteq X$ is an open set containing $f^{-1}(V)$, then there exists a ω-open set $G \subseteq Y$ containing V such that $f^{-1}(G) \subseteq E$.

Proof. Let $G = Y-f(X-E)$. Since $f^{-1}(V) \subseteq E$, we have $f(X-E) \subseteq Y-V$. Since f is ω-closed, then G is a ω-open set and $f^{-1}(G) = X-f^{-1}[f(X-E)] \subseteq X-(X-E) = E$.

Theorem 6.4. Suppose that $f : (X, \tau) \rightarrow (Y, \sigma)$ is a ω-closed mapping. Then $Int_{\omega}[Cl_{\omega}(f(A))] \subseteq f(Cl(A))$ for every subset A of X.

Proof. Suppose f is a ω-closed mapping and A is an arbitrary subset of X. Then $f(Cl(A))$ is ω-closed in Y. Then $Int_{\omega}[Cl_{\omega}(f(Cl(A)))] \subseteq f(Cl(A))$. But also $Int_{\omega}[Cl_{\omega}(f(A))] \subseteq Int_{\omega}[Cl_{\omega}(f(Cl(A)))]$. Hence $Int_{\omega}[Cl_{\omega}(f(A))] \subseteq f(Cl(A))$.

Theorem 6.5. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a ω-closed function, and $B, C \subseteq Y$.

Proof. (1) If U is an open neighborhood of $f^{-1}(B)$, then there exists a ω-open neighborhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.

(2) If f is also onto, then if $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint open neighborhoods, so have B and C.

Proof. (1) Let $V = Y-f(X-U)$. Then $V^c = Y-V = f(U^c)$. Since f is ω-closed, so V is a ω-open set. Since $f^{-1}(B) \subseteq U$, we have $V^c = f(U^c) \subseteq f[f^{-1}(B^c)] \subseteq B^c$. Hence, $B \subseteq V$, and thus V is a ω-open neighborhood of B. Further $U^c \subseteq f^{-1}[f(U^c)] = f^{-1}(V^c) = f^{-1}(V)^c$. This proves that $f^{-1}(V) \subseteq U$.

(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint open neighborhoods M and N, then by (1), we have ω-open neighborhoods U and V of B and C respectively such that $f^{-1}(B) \subseteq f^{-1}(U) \subseteq Int_{\omega}(M)$ and $f^{-1}(C) \subseteq f^{-1}(V) \subseteq Int_{\omega}(N)$. Since M and N are disjoint, so are $Int_{\omega}(M)$ and $Int_{\omega}(N)$, hence
so \(f^{-1}(U) \) and \(f^{-1}(V) \) are disjoint as well. It follows that \(U \) and \(V \) are disjoint too as \(f \) is onto.

Theorem 6.6. Prove that a surjective mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\theta_o \)–closed if and only if for each subset \(B \) of \(Y \) and each open set \(U \) in \(X \) containing \(f^{-1}(B) \), there exists a \(\theta_o \)–open set \(V \) in \(Y \) containing \(B \) such that \(f^{-1}(V) \subseteq U \).

Proof. Necessity. This follows from (1) of Theorem 6.5.

Sufficiency. Suppose \(F \) is an arbitrary closed set in \(X \). Let \(y \) be an arbitrary point in \(Y - f(F) \). Then \(f^{-1}(y) \subseteq X - f^{-1}[f(F)] \subseteq (X - F) \) and \(X - F \) is open in \(X \). Hence by hypothesis, there exists a \(\theta_o \)–open set \(V_y \) containing \(y \) such that \(f^{-1}(V_y) \subseteq (X - F) \). Thus \(y \in V_y \subseteq Y - f(F) \). Thus we obtain \(Y - f(F) = \bigcup \{ V_y : y \in Y - f(F) \} \). So \(Y - f(F) \) being a union of \(\theta_o \)–open sets, is \(\theta_o \)–open. Thus its complement \(f(F) \) is \(\theta_o \)–closed. This shows that \(f \) is \(\theta_o \)–closed.

Theorem 6.7. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a bijection. Then the following are equivalent:

(a) \(f \) is \(\theta_o \)–closed.

(b) \(f \) is \(\theta_o \)–open.

(c) \(f^{-1} \) is \(\theta_o \)–ocontinuous.

Proof. (a) \(\Rightarrow \) (b): Let \(U \in \tau \). Then \(X - U \) is closed in \(X \). By (a), \(f(X - U) \) is \(\theta_o \)–closed in \(Y \). But \(f(X - U) = f(X) - f(U) = Y - f(U) \). Thus \(f(U) \) is \(\theta_o \)–open in \(Y \). This shows that \(f \) is \(\theta_o \)–open.

(b) \(\Rightarrow \) (c): Let \(U \subseteq X \) be an open set. Since \(f \) is \(\theta_o \)–open. So \(f(U) = (f^{-1})^{-1}(U) \) is \(\theta_o \)–open in \(Y \). Hence \(f^{-1} \) is \(\theta_o \)–ocontinuous.

(c) \(\Rightarrow \) (a): Let \(A \) be an arbitrary closed set in \(X \). Then \(X - A \) is open in \(X \). Since \(f^{-1} \) is \(\theta_o \)–ocontinuous, \((f^{-1})^{-1}(X - A) \) is \(\theta_o \)–open in \(Y \). But \((f^{-1})^{-1}(X - A) = f(X - A) = Y - f(A) \). Thus \(f(A) \) is \(\theta_o \)–closed in \(Y \). This shows that \(f \) is \(\theta_o \)–closed.

Remark 6.8. A bijection \(f : (X, \tau) \rightarrow (Y, \sigma) \) may be open and closed but neither \(\theta_o \)–open nor \(\theta_o \)–closed.

7 Pre–\(\theta_o \)–Open Mappings

The purpose of this section is to introduce and discuss certain properties and characterizations of pre–\(\theta_o \)–open functions.

Definition 7.1. Let \((X, \tau) \) and \((Y, \sigma) \) be topological spaces. Then a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be pre–\(\theta_o \)–open if and only if for each \(A \in \tau_{\theta_o} \), \(f(A) \in \sigma_{\theta_o} \).

Theorem 7.2. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \mu) \) be any two pre–\(\theta_o \)–open functions. Then the composition function \(g \circ f : (X, \tau) \rightarrow (Z, \mu) \) is a pre–\(\theta_o \)–open function.

Proof. Let \(U \in \tau_{\theta_o} \). Then \(f(U) \in \sigma_{\theta_o} \). Since \(f \) is pre–\(\theta_o \)–open, \(\textit{But} \) \(g \big(f(U) \big) \in \mu_{\theta_o} \) as \(g \) is pre–\(\theta_o \)–open. Hence, \(g \circ f \) is pre–\(\theta_o \)–open.

Theorem 7.3. Prove that a mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is pre–\(\theta_o \)–open if and only if for each \(x \in X \) and for any \(U \in \tau_{\theta_o} \) such that \(x \in U \), there exists \(V \in \sigma_{\theta_o} \) such that \(f(x) \in V \) and \(V \subseteq f(U) \).

Proof. Routine.

Theorem 7.4. Prove that a mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is pre–\(\theta_o \)–open if and only if for each \(x \in X \) and for any \(\theta_o \)–neighbourhood \(U \)
of \(x \) in \(X \), there exists a \(\theta_\alpha \)-neighbourhood \(V \) of \(f(x) \) in \(Y \) such that \(V \subseteq f(U) \).

Proof. Necessity. Let \(x \in X \) and let \(U \) be a \(\theta_\alpha \)-neighbourhood of \(x \). Then there exists \(W \in \tau_\alpha \) such that \(x \in W \subseteq U \). Then \(f(x) \in f(W) \subseteq f(U) \). But \(f(W) \in \sigma_\alpha \) as \(f \) is pre-\(\theta_\alpha \)-open. Hence \(V = f(W) \) is a \(\theta_\alpha \)-neighbourhood of \(f(x) \) and \(V \subseteq f(U) \).

Sufficiency. Let \(U \in \tau_\alpha \). Let \(x \in U \). Then \(U \) is a \(\theta_\alpha \)-neighbourhood of \(x \). So by hypothesis, there exists a \(\theta_\alpha \)-neighbourhood \(V_{f(x)} \) of \(f(x) \) such that \(f(x) \in V_{f(x)} \subseteq f(U) \). It follows at once that \(f(U) \) is a \(\theta_\alpha \)-neighbourhood of \(x \) of each of its points. Therefore \(f(U) \) is \(\theta_\alpha \)-open. Hence \(f \) is pre-\(\theta_\alpha \)-open.

Theorem 7.5. Prove that a function \(f : (X, \tau) \to (Y, \sigma) \) is pre-\(\theta_\alpha \)-open if and only if \(f\left[\text{Int}_{\theta_\alpha}(A)\right] \subseteq \text{Int}_{\theta_\alpha}(f(A)) \), for all \(A \subseteq X \).

Proof. Necessity. Let \(A \subseteq X \). Then \(f(A) \subseteq Y \). Hence \(f\left[\text{Int}_{\theta_\alpha}(A)\right] \subseteq \text{Int}_{\theta_\alpha}(f(A)) \).

Sufficiency. Let \(U \in \tau_\alpha \). Then by hypothesis, \(f\left[\text{Int}_{\theta_\alpha}(U)\right] \subseteq \text{Int}_{\theta_\alpha}(f(U)) \). Since \(\text{Int}_{\theta_\alpha}(U) = U \) as \(U \) is \(\theta_\alpha \)-open. Also \(\text{Int}_{\theta_\alpha}(f(U)) \subseteq f(U) \). Hence \(f(U) = \text{Int}_{\theta_\alpha}(f(U)) \). Thus \(f(U) \) is \(\theta_\alpha \)-open in \(Y \). So \(f \) is pre-\(\theta_\alpha \)-open.

We remark that the equality does not hold in Theorem 7.5 as the following example shows.

Example 7.6. Let \(X = Y = \mathbb{R} \). Suppose \(X \) be with topology \(\tau = \{\phi, \mathbb{R}, \mathbb{R}^c, \mathbb{R} \cup \mathbb{R}^c\} \). Then \(\tau_\alpha = \{\phi, \mathbb{R}, \mathbb{R}^c\} \). Let \(Y \) be with discrete topology \(\tau_\beta = \{A: A \subseteq X\} = P(X) \). Let \(f = \text{Id} : X \to Y \) be an identity function defined as \(f(x) = x \), for each \(x \in X \). Let \(A = \mathbb{R}^c \). Then \(\phi = f\left[\text{Int}_{\theta_\alpha}(A)\right] \neq \text{Int}_{\theta_\alpha}(f(A)) = \mathbb{R}^c \).

Theorem 7.7. Prove that a function \(f : (X, \tau) \to (Y, \sigma) \) is pre-\(\theta_\alpha \)-open if and only if \(\text{Int}_{\theta_\alpha}(f^{-1}(B)) \subseteq f^{-1}\left[\text{Int}_{\theta_\alpha}(B)\right] \), for all \(B \subseteq Y \).

Proof. Necessity. Let \(B \subseteq Y \). Since \(\text{Int}_{\theta_\alpha}(f^{-1}(B)) \) is \(\theta_\alpha \)-open in \(X \) and \(f \) is pre-\(\theta_\alpha \)-open, \(f\left[\text{Int}_{\theta_\alpha}(f^{-1}(B))\right] \) is \(\theta_\alpha \)-open in \(Y \). Also we have \(f\left[\text{Int}_{\theta_\alpha}(f^{-1}(B))\right] \subseteq f\left[f^{-1}\left[\text{Int}_{\theta_\alpha}(B)\right]\right] \subseteq B \). Hence, \(f\left[\text{Int}_{\theta_\alpha}(f^{-1}(B))\right] \subseteq \text{Int}_{\theta_\alpha}(B) \). Therefore \(\text{Int}_{\theta_\alpha}(f^{-1}(B)) \subseteq f^{-1}\left[\text{Int}_{\theta_\alpha}(B)\right] \).

Sufficiency. Let \(A \subseteq X \). Then \(f(A) \subseteq Y \). Hence by hypothesis, we obtain \(\text{Int}_{\theta_\alpha}(A) \subseteq \text{Int}_{\theta_\alpha}(f^{-1}(f(A))) \subseteq f^{-1}\left[\text{Int}_{\theta_\alpha}(f(A))\right] \). This implies that \(f\left[\text{Int}_{\theta_\alpha}(A)\right] \subseteq f\left[f^{-1}\left(\text{Int}_{\theta_\alpha}(f(A))\right)\right] \subseteq \text{Int}_{\theta_\alpha}(f(A)) \).

Thus \(f\left[\text{Int}_{\theta_\alpha}(A)\right] \subseteq \text{Int}_{\theta_\alpha}(f(A)) \), for all \(A \subseteq X \).

Hence, by Theorem 7.5, \(f \) is pre-\(\theta_\alpha \)-open.

Theorem 7.8. Prove that a mapping \(f : (X, \tau) \to (Y, \sigma) \) is pre-\(\theta_\alpha \)-open if and only if \(f^{-1}\left[\text{Cl}_{\theta_\alpha}(B)\right] \subseteq \text{Cl}_{\theta_\alpha}(f^{-1}(B)) \), for every subset \(B \) of \(Y \).

Proof. Necessity. Let \(B \subseteq Y \). Let \(x \in f^{-1}\left[\text{Cl}_{\theta_\alpha}(B)\right] \). Then \(f(x) \in \text{Cl}_{\theta_\alpha}(B) \). Let \(U \in \tau_\alpha \) such that \(x \in U \). By hypothesis, \(f(U) \in \sigma_\alpha \) and \(f(x) \in f(U) \). Thus \(f(U) \cap B \neq \emptyset \). Hence \(U \cap f^{-1}(B) \neq \emptyset \). Therefore, \(x \in \text{Cl}_{\theta_\alpha}(f^{-1}(B)) \).

Sufficiency. Let \(B \subseteq Y \). Then \((Y-B) \subseteq Y \). By hypothesis, \(f^{-1}\left[\text{Cl}_{\theta_\alpha}(Y-B)\right] \subseteq \text{Cl}_{\theta_\alpha}(f^{-1}(Y-B)) \).

So \(X-\text{Cl}_{\theta_\alpha}(f^{-1}(Y-B)) \subseteq X-f^{-1}\left[\text{Cl}_{\theta_\alpha}(Y-B)\right] \).
So \(X - Cl_{\theta_\omega} \left[X - f^{-1}(B) \right] \subseteq f^{-1} \left[Y - Cl_{\theta_\omega} (Y - B) \right] \).

By a well-known result, it follows that \(Int_{\theta_\omega} \left[f^{-1}(B) \right] \subseteq f^{-1} \left[Int_{\theta_\omega} (B) \right] \). Now by Theorem 7.7, it follows that \(f \) is pre-\(\theta_\omega \)-open.

Theorem 7.9. Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \mu) \) be two mappings such that \(g \circ f : (X, \tau) \to (Z, \mu) \) is \(\theta_\omega \)-irresolute. Then

1. If \(g \) is a pre-\(\theta_\omega \)-open injection, then \(f \) is \(\theta_\omega \)-irresolute.

2. If \(f \) is a pre-\(\theta_\omega \)-open surjection, then \(g \) is \(\theta_\omega \)-irresolute.

Proof. (1) Let \(U \in \sigma_g \). Then \(g(U) \in \mu_g \) since \(g \) is pre-\(\theta_\omega \)-open. Also \(g \circ f \) is \(\theta_\omega \)-irresolute. Therefore, we have \((g \circ f)^{-1}[g(U)] \in \tau_f \). Since \(g \) is an injection, so we have:\((g \circ f)^{-1}[g(U)] = f^{-1}[g(U)] = f^{-1}[g^{-1}(g(U))] = f^{-1}(U) \). Consequently \(f^{-1}(U) \) is \(\theta_\omega \)-open in \(X \). This proves that \(f \) is \(\theta_\omega \)-irresolute.

(2) Let \(V \in \mu_g \). Then \((g \circ f)^{-1}(V) \in \tau_f \) since \(g \circ f \) is \(\theta_\omega \)-irresolute. Also \(f \) is pre-\(\theta_\omega \)-open \(\theta_\omega \)-open \(f \left[(g \circ f)^{-1}(V) \right] \) is \(\theta_\omega \)-open in \(Y \).

Since \(f \) is surjective, we note that \(f \left[(g \circ f)^{-1}(V) \right] = \left[f \circ (g \circ f)^{-1} \right](V) = \left[f \circ f^{-1} \circ g^{-1} \right](V) = g^{-1}(V). \) Hence \(g \) is \(\theta_\omega \)-irresolute.

8 Pre-\(\theta_\omega \)-Closed Mappings

In this last section, we introduce and explore several properties and characterizations of pre-\(\theta_\omega \)-closed functions.

Definition 8.1. A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be pre-\(\theta_\omega \)-closed if and only if the image set \(f(A) \) is \(\theta_\omega \)-closed for each \(\theta_\omega \)-closed subset \(A \) of \(X \).

Theorem 8.2. The composition of two pre-\(\theta_\omega \)-closed mappings is a pre-\(\theta_\omega \)-closed mapping.

Proof. The straightforward proof is omitted.

Theorem 8.3. Prove that a mapping \(f : (X, \tau) \to (Y, \sigma) \) is pre-\(\theta_\omega \)-closed if and only if \(Cl_{\theta_\omega} [f(A)] \subseteq f \left[Cl_{\theta_\omega} (A) \right] \) for every subset \(A \) of \(X \).

Proof. Necessity. Suppose \(f \) is a pre-\(\theta_\omega \)-closed mapping and \(A \) is an arbitrary subset of \(X \). Then \(f \left[Cl_{\theta_\omega} (A) \right] \) is \(\theta_\omega \)-closed in \(Y \). Since \(f(A) \subseteq f \left[Cl_{\theta_\omega} (A) \right] \), we obtain \(Cl_{\theta_\omega} [f(A)] \subseteq f \left[Cl_{\theta_\omega} (A) \right] \).

Sufficiency. Suppose \(F \) is an arbitrary \(\theta_\omega \)-closed set in \(X \). By hypothesis, we obtain \(f(F) \subseteq Cl_{\theta_\omega} [f(F)] \subseteq f \left[Cl_{\theta_\omega} (F) \right] = f(F) \).

Hence \(f(F) = Cl_{\theta_\omega} [f(F)] \). Thus \(f(F) \) is \(\theta_\omega \)-closed in \(Y \). It follows that \(f \) is pre-\(\theta_\omega \)-closed.

Theorem 8.4. Let \(f : (X, \tau) \to (Y, \sigma) \) be a pre-\(\theta_\omega \)-closed function, and \(B, C \subseteq Y \).

1. If \(U \) is a \(\theta_\omega \)-open neighborhood of \(f^{-1}(B) \), then there exists a \(\theta_\omega \)-open neighborhood \(V \) of \(B \) such that \(f^{-1}(B) \subseteq f^{-1}(V) \subseteq U \).

2. If \(f \) is also onto, then if \(f^{-1}(B) \) and \(f^{-1}(C) \) have disjoint \(\theta_\omega \)-open neighborhoods, so have \(B \) and \(C \).

Proof. (1) Let \(V = Y - f(X - U) \). Then \(V^c = Y - V = f(U^c) \). Since \(f \) is pre-\(\theta_\omega \)-closed, so \(V \) is \(\theta_\omega \)-open. Since \(f^{-1}(B) \subseteq U \), we have \(V^c = f(U^c) \subseteq f \left[f^{-1}(B^c) \right] \subseteq B^c \). Hence, \(B \subseteq V \), and thus \(V \) is a \(\theta_\omega \)-open neighborhood of \(B \).
Further \(U^c \subseteq f^{-1}\left[f(U^c)\right] = f^{-1}\left[f(V^c)\right] = f^{-1}(V)^c \).

This proves that \(f^{-1}(V) \subseteq U \).

(2) If \(f^{-1}(B) \) and \(f^{-1}(C) \) have disjoint \(\theta_o \)-open neighborhoods \(M \) and \(N \), then by (1), we have \(\theta_o \)-open neighborhoods \(U \) and \(V \) of \(B \) and \(C \) respectively such that \(f^{-1}(B) \subseteq f^{-1}(U) \subseteq \text{Int}_{\theta_v}(M) \) and \(f^{-1}(C) \subseteq f^{-1}(V) \subseteq \text{Int}_{\theta_v}(N) \). Since \(M \) and \(N \) are disjoint, so are \(\text{Int}_{\theta_v}(M) \) and \(\text{Int}_{\theta_v}(N) \), and hence so \(f^{-1}(U) \) and \(f^{-1}(V) \) are disjoint as well. It follows that \(U \) and \(V \) are disjoint too as \(f \) is onto.

Theorem 8.5. Prove that a surjective mapping \(f : (X, \tau) \to (Y, \sigma) \) is \(\text{pre-} \theta_o \)-closed if and only if for each subset \(B \) of \(Y \) and each \(\theta_o \)-open set \(U \) in \(X \) containing \(f^{-1}(B) \), there exists a \(\theta_o \)-open set \(V \) in \(Y \) containing \(B \) such that \(f^{-1}(V) \subseteq U \).

Proof. necessity. This follows from (1) of Theorem 8.4.

Sufficiency. Suppose \(F \) is an arbitrary \(\theta_o \)-closed set in \(X \). Let \(y \) be an arbitrary point in \(Y - f(F) \). Then \(f^{-1}(y) \subseteq X - f^{-1}\left[f(F)\right] \subseteq (X - F) \) and \((X - F) \) is \(\theta_o \)-open in \(X \). Hence by hypothesis, there exists a \(\theta_o \)-open set \(V_y \) containing \(y \) such that \(f^{-1}(V_y) \subseteq (X - F) \). This implies that \(y \in V_y \subseteq \left[Y - f(F)\right] \). Thus \(Y - f(F) = \bigcup \left\{V_y : y \in Y - f(F)\right\} \). Hence \(Y - f(F) \), being a union of \(\theta_o \)-open sets is \(\theta_o \)-open. Thus its complement \(f(F) \) is \(\theta_o \)-closed. This shows that \(f \) is \(\theta_o \)-closed.

Theorem 8.6. Let \(f : (X, \tau) \to (Y, \sigma) \) be a bijection. Then the following are equivalent:

1. \(f \) is \(\text{pre-} \theta_o \)-closed.
2. \(f \) is \(\text{pre-} \theta_o \)-open.
3. \(f^{-1} \) is \(\theta_o \)-irresolute.

Proof. (1) \(\Rightarrow \) (2): Let \(U \in \tau_{\theta_v} \). Then \(X - U \) is \(\theta_o \)-closed in \(X \). By (1), \(f(X - U) \) is \(\theta_o \)-closed in \(Y \). But \(f(X - U) = f(X) - f(U) = Y - f(U) \). Thus \(f(U) \) is \(\theta_o \)-open in \(Y \). This shows that \(f \) is \(\text{pre-} \theta_o \)-open.

(2) \(\Rightarrow \) (3): Let \(A \subseteq X \). Since \(f \) is \(\text{pre-} \theta_o \)-open, so by Theorem 7.8, \(f^{-1}\left[f(A)\right] \subseteq f^{-1}\left[f^{-1}(A)\right] \). It implies that \(f^{-1}\left[f(A)\right] \subseteq f^{-1}\left[f^{-1}(A)\right] \). Hence \(f^{-1}(A) \subseteq \left[f^{-1}\right]^{-1}\left[f^{-1}(A)\right] \), for all \(A \subseteq X \). Then by Theorem 4.2, it follows that \(f^{-1} \) is \(\theta_o \)-irresolute.

(3) \(\Rightarrow \) (1): Let \(A \) be an arbitrary \(\theta_o \)-closed set in \(X \). Then \(X - A \) is \(\theta_o \)-open in \(X \). Since \(f^{-1} \) is \(\theta_o \)-irresolute, \(\left(f^{-1}\right)^{-1}(X - A) \) is \(\theta_o \)-open in \(Y \).

But \(\left(f^{-1}\right)^{-1}(X - A) = f(X - A) = Y - f(A) \). Thus \(f(A) \) is \(\theta_o \)-closed in \(Y \). This shows that \(f \) is \(\text{pre-} \theta_o \)-closed.

9 Contra \(\theta_o \)-Continuous Mappings

We introduce the definition of contra \(\theta_o \)-continuous functions in topological spaces and study some of their properties in this section.

Definition 9.1. A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be contra \(\theta_o \)-continuous if \(f^{-1}(V) \) is \(\theta_o \)-closed in \((X, \tau) \) for each open set \(V \) of \((Y, \sigma) \).

Observe that if \(X \) is a countable set, then every function \(f : (X, \tau) \to (Y, \sigma) \) is contra \(\theta_o \)-continuous.

Theorem 9.2. Let \(f : (X, \tau) \to (Y, \sigma) \) be a function. Then the following are equivalent:

1. \(f \) is contra \(\theta_o \)-continuous.
(2) $f^{-1}(F)$ is θ_σ-open in (X, τ) for every closed subset F of (Y, σ).

(3) For each $x \in X$ and each closed set F in (Y, σ) containing $f(x)$, there exists a θ_σ-open set U in (X, τ) containing x such that $f(U) \subseteq F$.

(4) $f \left[\text{Cl}_{\theta_\sigma}(A) \right] \subseteq \text{Ker}[f(A)]$ for every subset A of (X, τ).

(5) $\text{Cl}_{\theta_\sigma}(f^{-1}(B)) \subseteq f^{-1}(\text{Ker}(B))$ for every subset B of (Y, σ).

Proof. (1) \Rightarrow (2): Let F be any closed set of Y. Then $Y - F$ is open. Hence by hypothesis $f^{-1}(Y - F)$ is θ_σ-closed. Thus $f^{-1}(Y - F) = \text{Cl}_{\theta_\sigma}(f^{-1}(Y - F))$. We can obtain $X - f^{-1}(F) = X - \text{Int}_{\theta_\sigma}(f^{-1}(F))$. Therefore, we have $f^{-1}(F) = \text{Int}_{\theta_\sigma}(f^{-1}(F))$. Thus $f^{-1}(F)$ is θ_σ-open in X.

(2) \Rightarrow (3): Let $x \in X$ and F be a closed set of Y containing $f(x)$. By (2), $x \in \text{Int}_{\theta_\sigma}(f^{-1}(F))$. Hence there exists $U \in \theta_\sigma(X)$ containing x such that $x \in U \subseteq f^{-1}(F)$. Then, $x \in U$ and $f(U) \subseteq F$.

(3) \Rightarrow (4): Let A be any subset of X. Let $x \in \text{Cl}_{\theta_\sigma}(A)$ and F be a closed set of Y containing $f(x)$. Then by (3) there exists $U \in \theta_\sigma(O(X))$ containing x such that $f(U) \subseteq F$: hence $x \in U \subseteq f(F)$. Since $x \in \text{Cl}_{\theta_\sigma}(A)$, so $U \cap A \neq \emptyset$ and hence it follows that $\emptyset \neq f(U)
\subseteq f(U) \cap f(A) \subseteq f(U) \cap f(A) \subseteq f(U)$. Then by Lemma 2.15, we have $f(x) \in \text{Ker}[f(A)]$ and hence we obtain $f \left[\text{Cl}_{\theta_\sigma}(A) \right] \subseteq \text{Ker}[f(A)]$.

(4) \Rightarrow (5): Let B be any subset of Y. By (4), $f \left[\text{Cl}_{\theta_\sigma}(f^{-1}(B)) \right] \subseteq \text{Ker}[f(f^{-1}(B))] \subseteq \text{Ker}(B)$ and hence $\text{Cl}_{\theta_\sigma}(f^{-1}(B)) \subseteq f^{-1}(\text{Ker}(B))$.

(5) \Rightarrow (1): Let V be any open set of Y. Then by (5) and Lemma 2.15 we obtain $\text{Cl}_{\theta_\sigma}(f^{-1}(V)) \subseteq f^{-1}(\text{Ker}(V)) = f^{-1}(V)$. Thus $\text{Cl}_{\theta_\sigma}(f^{-1}(V)) = f^{-1}(V)$. Hence $f^{-1}(V)$ is θ_σ-closed in X. This shows that f is contra θ_σ-continuous.

Proposition 9.3. Let $f : (X, \tau) \to (Y, \sigma)$ be contra θ_σ-continuous. If one of the following conditions holds, then f is θ_σ-continuous.

(1) (Y, σ) is regular,

(2) $\text{Int}_{\theta_\sigma}(f^{-1}(\text{Cl}(V))) \subseteq f^{-1}(V)$ for each open set V in (Y, σ).

Proof. (1) Let $x \in X$ and V be an open set of (Y, σ) containing $f(x)$. Since (Y, σ) is regular, there exists an open set W in (Y, σ) containing $f(x)$ such that $\text{Cl}(W) \subseteq V$. Since f is contra θ_σ-continuous, so by Theorem 9.2, there exists a θ_σ-open set U in (X, τ) containing x such that $f(U) \subseteq \text{Cl}(W)$; hence $f(U) \subseteq V$. Therefore f is θ_σ-continuous.

(2) Let V be an open set of (Y, σ). Since f is contra θ_σ-continuous and $\text{Cl}(V)$ is closed, by Theorem 9.2, $f^{-1}(\text{Cl}(V))$ is θ_σ-open set in (X, τ) and hence by (2), it implies $\text{Int}_{\theta_\sigma}(f^{-1}(\text{Cl}(V))) \subseteq f^{-1}(V)$. So, we obtain $f^{-1}(V) = \text{Int}_{\theta_\sigma}(f^{-1}(\text{Cl}(V)))$ and consequently $f^{-1}(V)$ is θ_σ-open in (X, τ). So f is a θ_σ-continuous function.

Recall that for a function $f : (X, \tau) \to (Y, \sigma)$, the subset $\{(x, f(x)) : x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by $G(f)$.

Theorem 9.4. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and $g : (X, \tau) \to (X \times Y, \tau \times \sigma)$ the graph function of f, defined by $g(x) = (x, f(x))$ for every $x \in X$. If g is contra θ_σ-continuous, then f is contra θ_σ-continuous.

Proof. Let U be an open set in (Y, σ), then $X \times U$ is an open set in $(X \times Y, \tau \times \sigma)$. Since g is contra θ_σ-continuous, $g^{-1}(X \times U) = f^{-1}(U)$ is θ_σ-closed in (X, τ). This shows that f is contra θ_σ-continuous.
Definition 9.5. A subset A of a topological space (X, τ) is said to be θ_ω-dense in X if $Cl_{\theta_\omega}(A) = X$.

Definition 9.6. A topological space (X, τ) is said to be a Urysohn space if for any two distinct points $x, y \in X$, there exist open subsets U and V of (X, τ) such that $x \in U$, $y \in V$ and $Cl(U) \cap Cl(V) = \emptyset$.

Theorem 9.7. Let $f, g : (X, \tau) \to (Y, \sigma)$ be two contra θ_ω-continuous functions. If (Y, σ) is Urysohn, the following properties hold:

1. The set $E = \{ x \in X : f(x) = g(x) \}$ is θ_ω-closed in (X, τ).

2. $f = g$ on (X, τ) whenever $f = g$ on a θ_ω-dense set $A \subseteq X$.

Proof. Let $x \in X - E$. Then $f(x) \neq g(x)$. By assumption on the space (Y, σ), there exist open sets V and W in (Y, σ) such that $f(x) \in V$, $g(x) \in W$ and $Cl(W) \cap Cl(V) = \emptyset$. Since f and g are contra θ_ω-continuous, $f^{-1}[Cl(V)]$ and $g^{-1}[Cl(W)]$ are θ_ω-open sets in (X, τ) containing x. Let $U = f^{-1}[Cl(V)]$ and $G = g^{-1}[Cl(W)]$ and set $A = U \cup G$. Then A is θ_ω-open set in (X, τ) containing x. Now, $f(A) = f(U \cup G) \subseteq f(U) \cup f(G) \subseteq Cl(V) \cup Cl(W) = \emptyset$. This implies that $A \subseteq \emptyset$, where A is θ_ω-open in (X, τ). Hence $x \notin Cl_{\theta_\omega}(E)$. So E is θ_ω-closed in (X, τ).

Theorem 9.8. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \mu)$ be functions, then the following properties hold:

1. gof is θ_ω-continuous, if f is contra θ_ω-continuous and g is contra-continuous.

2. gof is contra θ_ω-continuous, if f is contra θ_ω-continuous and g is continuous.

3. gof is contra θ_ω-continuous, if f is θ_ω-irresolute and g is contra θ_ω-continuous.

Theorem 9.9. Let $f : (X, \tau) \to (Y, \sigma)$ be a surjective θ_ω-irresolute and pre-θ_ω-open function and $g : (Y, \sigma) \to (Z, \mu)$ be any function. Then $gof : (X, \tau) \to (Z, \mu)$ is contra θ_ω-continuous if and only if g is contra θ_ω-continuous.

Proof. Suppose $gof : (X, \tau) \to (Z, \mu)$ is contra θ_ω-continuous. Let F be a closed set in (Z, μ). Then $f^{-1}[g^{-1}(F)] = (gof)^{-1}(F)$ is θ_ω-open in (X, τ). Since f is pre-θ_ω-open and surjective, $g^{-1}(F) = f[f^{-1}(g^{-1}(F))]$ is θ_ω-open in (Y, σ) and we obtain that g is contra θ_ω-continuous.

For the converse, suppose g is contra θ_ω-continuous. Let V be a closed set in (Z, μ). Then $g^{-1}(V)$ is θ_ω-open in (Y, σ). Since f is θ_ω-irresolute, $f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is θ_ω-open in (X, τ) and so gof is a contra θ_ω-continuous.

Definition 9.10. A space topological (X, τ) is said to be Strongly S-closed if every closed cover of X has a finite cover.

Definition 9.11. A space topological (X, τ) is said to be θ_ω-compact if every θ_ω-open cover of X has a finite cover.

Definition 9.12. A subset A of a space (X, τ) is said to be θ_ω-compact relative to X if for any cover $\{ V_{\alpha} : \alpha \in \mathcal{V} \}$ of A by θ_ω-open sets of X, there exists a finite subset V_0 of V such that $A \subseteq \bigcup \{ V_{\alpha} : \alpha \in V_0 \}$.

Theorem 9.13. Let $f : (X, \tau) \to (Y, \sigma)$ be contra θ_ω-continuous surjection.

1. If A is θ_ω-compact relative to (X, τ), then $f(A)$ is strongly S-closed in (Y, σ).
(2) If \((X, \tau)\) is strongly \(S\)-closed, then \((Y, \sigma)\) is compact.

Proof. Let \(\{V_\alpha : \alpha \in \mathcal{V}\}\) be any cover of \(f(A)\) by closed sets of the subspace \(f(A)\). For \(\alpha \in \mathcal{V}\), there exists a closed set \(A_\alpha\) of \((Y, \sigma)\) such that \(V_\alpha = A_\alpha \cap f(A)\). For each \(x \in A\), there exists \(\alpha \in \mathcal{V}\) such that \(f(x) \in A_\alpha\).

Now by hypothesis \(f\) is contra \(\theta_a\)-continuous and hence by Theorem 9.2, there exists a \(\theta_a\)-open set \(U_x\) in \((X, \tau)\) such that \(x \in U_x\) and \(f(U_x) \subseteq A_\alpha\). Since the family \(\{U_x : x \in A\}\) is a cover of \(A\) by \(\theta_a\)-open sets of \((X, \tau)\), there exists a finite subset \(A_0\) of \(A\) such that \(A \subseteq \bigcup \{U_x : x \in A_0\}\). Therefore, \(f(A) \subseteq \bigcup \{f(U_x) : x \in A_0\} \subseteq \bigcup \{A_\alpha : x \in A_0\}\). Thus \(f(A) = \bigcup \{V_\alpha : x \in A_0\}\) and hence \(f(A)\) is strongly \(S\)-closed.

(2) Let \(\{V_\alpha : \alpha \in \mathcal{V}\}\) be any open cover of \(Y\). Since \(f\) is contra \(\theta_a\)-continuous, \(\{f^{-1}(V_\alpha) : \alpha \in \mathcal{V}\}\) is a \(\theta_a\)-closed cover of the strongly \(S\)-closed space \((X, \tau)\). We have \(X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in \mathcal{V}\}\) for some finite subset \(V_0\) of \(V\). Since \(f\) is surjective, \(Y = \bigcup \{V_\alpha : \alpha \in V_0\}\). This shows that \((Y, \sigma)\) is compact.

Theorem 9.14. Let \(\{(X_\alpha, \tau_\alpha) : \alpha \in \Lambda\}\) be any family of topological spaces. If a function \(f : X \to \prod_{\alpha \in \Lambda} X_\alpha\) is contra \(\theta_a\)-continuous, then \(\pi_\alpha f : X \to X_\alpha\) is contra \(\theta_a\)-continuous, for each \(\alpha \in \Lambda\), where \(\pi_\alpha\) is the projection of \(\prod_{\alpha \in \Lambda} X_\alpha\) onto \(X_\alpha\).

Proof. For a fixed \(\alpha \in \Lambda\), let \(V_\alpha\) be any open subset of \(X_\alpha\). Since \(\pi_\alpha\) is continuous, \(\pi_\alpha^{-1}(V_\alpha)\) is open in \(\prod_{\alpha \in \Lambda} X_\alpha\). Since \(f\) is contra \(\theta_a\)-continuous, \(f^{-1}(\pi_\alpha^{-1}(V_\alpha)) = (\pi_\alpha f)^{-1}(V_\alpha)\) is \(\theta_a\)-closed in \(X\). Therefore, \(\pi_\alpha f\) is contra \(\theta_a\)-continuous, for each \(\alpha \in \Lambda\).

Definition 9.15. Let \((X, \tau)\) be a topological space. Then the \(\theta_a\)-frontier of a subset \(A\) of \(X\), denoted by \(Fr_{\theta_a}(A)\), is defined as
\[
Fr_{\theta_a}(A) = Cl_{\theta_a}(A) \cap Cl_{\theta_a}(X - A)
\]
\[
= Cl_{\theta_a}(A) - Int_{\theta_a}(A).
\]

Theorem 9.16. The set of all points \(x\) of \(X\) at which \(f : (X, \tau) \to (Y, \sigma)\) is not contra \(\theta_a\)-continuous is identical with the union of \(\theta_a\)-frontier of the inverse images of closed sets of \(Y\) containing \(f(x)\).

Proof. Necessity: Let \(f\) be not contra \(\theta_a\)-continuous at a point \(x \in X\). Then by Theorem 9.2, there exists a closed set \(F\) of \(Y\) containing \(f(x)\) such that \(f(U) \cap (Y - F) \neq \emptyset\) for every \(U \in \theta_aO(X, x)\), which implies that \(U \cap f^{-1}(Y - F) \neq \emptyset\). Thus \(x \in Cl_{\theta_a}[f^{-1}(Y - F)] = Cl_{\theta_a}[X - f^{-1}(F)]\). Again, since \(x \in f^{-1}(F)\), we get \(x \in Cl_{\theta_a}[f^{-1}(F)]\) and so it follows that \(x \in Fr_{\theta_a}[f^{-1}(F)]\).

Sufficiency: Suppose that \(x \in Fr_{\theta_a}[f^{-1}(F)]\) for some closed set \(F\) of \(Y\) containing \(f(x)\) and \(f\) is contra \(\theta_a\)-continuous at \(x\). Then there exists \(U \in \theta_aO(X, x)\) such that \(f(U) \subseteq F\). Therefore \(x \in U \subseteq f^{-1}(F)\) and hence it follows that \(x \in Int_{\theta_a}[f^{-1}(F)] \subseteq X - Fr_{\theta_a}[f^{-1}(F)]\). But this is a contradiction. So \(f\) is not contra \(\theta_a\)-continuous at \(x\).

Definition 9.17. A function \(f : (X, \tau) \to (Y, \sigma)\) is called almost weakly \(\theta_a\)-continuous, if, for each \(x \in X\) and for each open set \(V\) of \(Y\) containing
$f(x)$, there exists $U \in \theta_\omega O(X, x)$ such that $f(U) \subseteq \text{Cl}(V)$.

Theorem 9.18. Suppose that a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra θ_ω-continuous. Then f is almost weakly θ_ω-continuous.

Proof. For any open set V of Y, $\text{Cl}(V)$ is closed in Y. Since f is contra θ_ω-continuous, $f^{-1}[\text{Cl}(V)]$ is θ_ω-open set in X. We take $U = f^{-1}[\text{Cl}(V)]$, then $f(U) \subseteq \text{Cl}(V)$. Hence f is almost weakly θ_ω-continuous.

Definition 9.19. A space (X, τ) is said to be θ_ω-connected provided that X is not the union of two disjoint nonempty θ_ω-open sets.

Proposition 9.20. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be surjective and contra θ_ω-continuous. If (X, τ) is θ_ω-connected, then (Y, σ) is connected.

Proof. Assume that (Y, σ) is not connected. Then, there exist nonempty open sets V_1, V_2 of (Y, σ) such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = Y$. Hence we have $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$ and $f^{-1}(V_1) \cup f^{-1}(V_2) = X$. Since f is surjective, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are nonempty sets. Since f is contra θ_ω-continuous and V_1, V_2 are open sets. Hence $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are θ_ω-open sets in (X, τ). Therefore, (X, τ) is not θ_ω-connected.

Theorem 9.21. If every contra θ_ω-continuous function from a space (X, τ) into any T_ω-space (Y, σ) is constant, then (X, τ) is θ_ω-connected.

Proof. Suppose that (X, τ) is not θ_ω-connected and every contra θ_ω-continuous function from (X, τ) into any T_ω-space (Y, σ) is constant. Since (X, τ) is not θ_ω-connected, there exists a proper nonempty θ_ω-open subset A of (X, τ). Let $Y = \{a, b\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}\}$ be a topology for Y. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function such that $f^{-1}(\{a\}) = \{a\}$ and $f^{-1}(X - A) = \{b\}$.

Then f is not constant and contra θ_ω-continuous such that (Y, σ) is T_ω-space. This is a contradiction. Hence (X, τ) must be θ_ω-connected.

Definition 9.22. A topological space (X, τ) is said to be θ_ω-T_2 if for each two distinct points $x, y \in X$, there exist θ_ω-open sets U and V in (X, τ) such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 9.23. A topological space (X, τ) is said to be weakly Hausdorff if each element of X is an intersection of regular closed sets.

Definition 9.24. A topological space (X, τ) is said to be ultra Hausdorff if every two distinct points of X can be separated by disjoint clopen sets.

Definition 9.25. A topological space (X, τ) is said to be ultra normal (resp. θ_ω-normal) if each pair of non-empty disjoint closed sets can be separated by disjoint clopen (resp. θ_ω-open) sets.

Theorem 9.26. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a contra θ_ω-continuous injection, then the following properties hold:

1. (X, τ) is θ_ω-T_1 if (Y, σ) is weakly Hausdorff.
2. (X, τ) is θ_ω-T_2 if (Y, σ) is a Urysohn space or ultra Hausdorff.
3. (X, τ) is θ_ω-normal if (Y, σ) is ultra normal and f is closed.

Proof. (1) Suppose that (Y, σ) is weakly Hausdorff. For any distinct points x and y in (X, τ), there exist regular closed sets A, B in (Y, σ) such that $f(x) \in A, f(y) \notin A, f(x) \notin B$ and $f(y) \in B$. Since f is contra θ_ω-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are θ_ω-open sets in (X, τ) such that $x \notin f^{-1}(A), y \notin f^{-1}(A), x \notin f^{-1}(B)$ and $y \notin f^{-1}(B)$. This shows that (X, τ) is θ_ω-T_1.

202 Volume 19, 2020
(2) Let \(x_1 \) and \(x_2 \) be any distinct points in \(X \). Then, since \(f \) is injective, \(f(x_1) \neq f(x_2) \). Moreover, since \((Y, \sigma) \) is ultra-Hausdorff, there exist clopen sets \(V_1, V_2 \) such that \(f(x_1) \in V_1 \), \(f(x_2) \in V_2 \) and \(V_1 \cap V_2 = \emptyset \). Since \(f \) is contra \(\theta_\omega \)-continuous. So there exists \(U_i \in \theta_\omega O(X, \tau) \) containing \(x_i \) such that \(f(U_i) \subseteq V_i \) for \(i = 1, 2 \). Clearly, we obtain \(U_1 \cap U_2 = \emptyset \). Thus \((X, \tau) \) is \(\theta_\omega - T_2 \).

In case \((Y, \sigma) \) is Urysohn space, there here exist open sets \(U_1, U_2 \) such that \(f(x_1) \in U_1 \), \(f(x_2) \in U_2 \) and \(\text{Cl}(U_1) \cap \text{Cl}(U_2) = \emptyset \). Let \(G = f^{-1}[\text{Cl}(U_1)] \) and \(H = f^{-1}[\text{Cl}(U_2)] \). Then \(x_1 \in G, x_2 \in H \) and \(G \cap H = \emptyset \). Since \(f \) is contra \(\theta_\omega \)-continuous. Therefore \(G \) and \(H \) are \(\theta_\omega \)-open sets in \((X, \tau) \). Thus \((X, \tau) \) is \(\theta_\omega - T_2 \).

(3) Let \(F_1 \) and \(F_2 \) be disjoint closed subsets of \((Y, \sigma) \). Since \(f \) is closed and injective, \(f(F_1) \) and \(f(F_2) \) are disjoint closed subsets of \((Y, \sigma) \). Since \((Y, \sigma) \) is ultra normal, \(f(F_1) \) and \(f(F_2) \) are separated by disjoint clopen sets \(V_1 \) and \(V_2 \), respectively. Since \(f \) is contra \(\theta_\omega \)-continuous, \(F_i \subseteq f^{-1}(V_i) \) and \(f^{-1}(V_i) \) is \(\theta_\omega \)-open in \((X, \tau) \) for \(i = 1, 2 \) and \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \). Thus \((X, \tau) \) is \(\theta_\omega \)-normal.

Theorem 9.27. Let \((X, \tau) \) be a topological space. If for each pair of distinct points \(x_1 \) and \(x_2 \) in \(X \) there exists a function \(f \) of \((X, \tau) \) into a Urysohn space \((Y, \sigma) \) such that \(f(x_1) \neq f(x_2) \) and \(f \) is contra \(\theta_\omega \)-continuous at \(x_1 \) and \(x_2 \), then \((X, \tau) \) is \(\theta_\omega - T_2 \).

Proof. Let \(x \) and \(y \) be any two distinct points of \(X \). By the hypothesis, there exist a Urysohn space \((Y, \sigma)\) and a function \(f: (X, \tau) \rightarrow (Y, \sigma) \) which satisfies the condition of the theorem. Let \(y_i = f(x_i) \) for \(i = 1, 2 \). Then \(y_1 \neq y_2 \). Since \(Y \) is Urysohn, there exist open sets \(U \) and \(V \) containing \(y_1 \) and \(y_2 \), respectively, such that \(\text{Cl}(U) \cap \text{Cl}(V) = \emptyset \). Since \(f \) is contra \(\theta_\omega \)-continuous at \(x_1 \) and \(x_2 \), so there exists \(\theta_\omega \)-open sets \(G \) and \(H \) in \((X, \tau)\) containing \(x_1 \) and \(x_2 \), respectively, such that \(f(G) \subseteq \text{Cl}(U) \) and \(f(H) \subseteq \text{Cl}(V) \). Hence we obtain \(G \cap H = \emptyset \). Therefore, \((X, \tau) \) is \(\theta_\omega - T_2 \).

Definition 9.28. A function \(f: (X, \tau) \rightarrow (Y, \sigma) \) is called almost contra \(\theta_\omega \)-continuous if \(f^{-1}(V) \) is \(\theta_\omega \)-closed for every regular open set \(V \) of \(Y \).

Theorem 9.29. Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function. Then the following statements are equivalent:

(a) \(f \) is almost contra \(\theta_\omega \)-continuous

(b) \(f^{-1}(F) \) is \(\theta_\omega \)-open in \(X \) for every regular closed set \(F \) of \(Y \).

(c) for each \(x \in X \) and each regular open set \(F \) of \(Y \) containing \(f(x) \), there exists \(U \in \theta_\omega O(X) \) such that \(x \in U \) and \(f(U) \subseteq F \).

(d) for each \(x \in X \) and each regular open set \(V \) of \(Y \) non-containing \(f(x) \), there exists a \(\theta_\omega \)-closed set \(K \) of \(X \) non-containing \(x \) such that \(f^{-1}(V) \subseteq K \).

Proof. (a) \(\Leftrightarrow \) (b): Let \(F \) be any regular closed set of \(Y \). Then \((Y - F) \) is regular open and therefore \(f^{-1}(Y - F) = X - f^{-1}(F) \in \theta_\omega C(X) \). Hence, \(f^{-1}(F) \in \theta_\omega O(X) \). The converse part is obvious.

(b) \(\Rightarrow \) (c): Let \(F \) be any regular closed set of \(Y \) containing \(f(x) \). Then \(f^{-1}(F) \in \theta_\omega O(X) \) and \(x \in f^{-1}(F) \). Taking \(U = f^{-1}(F) \) we get \(f(U) \subseteq F \).

(c) \(\Rightarrow \) (b): Let \(F \) be any regular closed set of \(Y \) and \(x \in f^{-1}(F) \). Then, there exists
$U_x \in \theta_a O(X, x)$ such that $f(U_x) \subseteq F$ and so $U_x \subseteq f^{-1}(F)$. Also, we have $f^{-1}(F) = \bigcup_{x \in f^{-1}(F)} U_x$. Hence $f^{-1}(F) \in \theta_a O(X)$.

(c) \Rightarrow (d): Let V be any regular open set of Y non-containing $f(x)$. Then $(Y - V)$ is regular closed set of Y containing $f(x)$. Hence by (c), there exists $U \in \theta_a O(X, x)$ such that $f(U) \subseteq (Y - V)$. Hence, we obtain $U \subseteq f^{-1}(Y - V) \subseteq X - f^{-1}(V)$ and so $f^{-1}(V) \subseteq (X - U)$. Now, since $U \in \theta_a O(X)$, $(X - U)$ is θ_a-closed set of X not containing x. The converse part is obvious.

Theorem 9.30. Let $f : (X, \tau) \to (Y, \sigma)$ be almost contra θ_a-continuous. Then f is almost weakly θ_a-continuous.

Proof. For $x \in X$, let H be any open set of Y containing $f(x)$. Then $Cl(H)$ is a regular closed set of Y containing $f(x)$. Then by Theorem 9.29, there exists $G \in \theta_a O(X, x)$ such that $f(G) \subseteq Cl(H)$. So f is almost weakly θ_a-continuous.

Theorem 9.31. Let $f : (X, \tau) \to (Y, \sigma)$ be an almost contra θ_a-continuous injection and Y is weakly Hausdorff. Then X is θ_a-T_1.

Proof. Since Y is weakly Hausdorff, for distinct points x, y of Y, there exist regular closed sets U and V such that $f(x) \in U$, $f(y) \not\in U$ and $f(y) \in V$, $f(x) \not\in V$. Now, f being almost contra θ_a-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are θ_a-open subsets of X such that $x \in f^{-1}(U)$, $y \not\in f^{-1}(U)$ and $y \in f^{-1}(V)$, $x \not\in f^{-1}(V)$. This shows that X is θ_a-T_1.

Corollary 9.32. If $f : (X, \tau) \to (Y, \sigma)$ is a contra θ_a-continuous injection and Y is weakly Hausdorff, then X is $Bc-T_1$.

Theorem 9.33. Let $f : (X, \tau) \to (Y, \sigma)$ be an almost contra θ_a-continuous surjection and X be θ_a-connected. Then Y is connected.

Proof. If possible, suppose that Y is not connected. Then there exist disjoint non-empty open sets U and V of Y such that $Y = U \cup V$. Since U and V are clopen sets in Y, they are regular open sets of Y. Again, since f is almost contra θ_a-continuous surjection, $f^{-1}(U)$ and $f^{-1}(V)$ are θ_a-open sets of X and $X = f^{-1}(U) \cup f^{-1}(V)$. This shows that X is not θ_a-connected. But this is a contradiction. Hence Y is connected.

Definition 9.34. A topological space (X, τ) is said to be countably θ_a-compact if every countable cover of X by θ_a-open sets has a finite subcover.

Definition 9.35. A topological space (X, τ) is said to be θ_a-Lindelöf if every θ_a-open cover of X has a countable subcover.

Theorem 9.36. Let $f : (X, \tau) \to (Y, \sigma)$ be an almost contra θ_a-continuous surjection. Then the following statements hold:

(a) If X is θ_a-compact, then Y is S-closed.

(b) If X is θ_a-Lindelöf, then Y is S-Lindelöf.

(c) If X is countably θ_a-compact, then Y is countably S-closed.
Proof. (a): Let \(\{ V_\alpha : \alpha \in I \} \) be any regular closed cover of \(Y \). Since \(f \) is almost contra \(\theta_\omega \)-continuous, then \(\{ f^{-1}(V_\alpha) : \alpha \in I \} \) is a \(\theta_\omega \)-open cover of \(X \). Again, since \(X \) is \(\theta_\omega \)-compact, there exist a finite subset \(I_0 \) of \(I \) such that \(X = \bigcup \{ f^{-1}(V_\alpha) : \alpha \in I_0 \} \) and hence \(Y = \{ V_\alpha : \alpha \in I_0 \} \). Therefore, \(Y \) is nearly closed.

The proofs of (b) and (c) are being similar to (a): omitted.

Definition 9.37. A topological space \((X, \tau)\) is said to be \(\theta_\omega \)-closed compact if every \(\theta_\omega \)-closed cover of \(X \) has a finite subcover.

Definition 9.38. A topological space \((X, \tau)\) is said to be countably \(\theta_\omega \)-closed if every countable cover of \(X \) by \(\theta_\omega \)-closed sets has a finite subcover.

Definition 9.39. A topological space \((X, \tau)\) is said to be \(\theta_\omega \)-closed Lindelof if every \(\theta_\omega \)-closed cover of \(X \) has a countable subcover.

Theorem 9.40. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be an almost contra \(\theta_\omega \)-continuous surjection. Then the following statements hold:

(a) If \(X \) is \(\theta_\omega \)-closed compact, then \(Y \) is nearly compact.

(b) If \(X \) is \(\theta_\omega \)-closed Lindelof, then \(Y \) is nearly Lindeloff.

(c) If \(X \) is countably \(\theta_\omega \)-closed compact, then \(Y \) is nearly countable compact.

Proof. (a): Let \(\{ V_\alpha : \alpha \in I \} \) be any regular open cover of \(Y \). Since \(f \) is almost contra \(\theta_\omega \)-continuous, then \(\{ f^{-1}(V_\alpha) : \alpha \in I \} \) is a \(\theta_\omega \)-closed cover of \(X \). Again, since \(X \) is \(\theta_\omega \)-closed compact, there exists a finite subset \(I_0 \) of \(I \) such that \(X = \bigcup \{ f^{-1}(V_\alpha) : \alpha \in I_0 \} \) and hence \(Y = \{ V_\alpha : \alpha \in I_0 \} \). Therefore, \(Y \) is nearly compact.

The proofs of (b) and (c) are being similar to (a): omitted.

10 Conclusion

Sets and functions in topological spaces are developed and used in many engineering problems, information systems and computational topology. By researching generalizations of closed sets, some new separation axioms and compact spaces have founded and are turned to be useful in the study of digital topology. In this paper we have introduced \(\theta_\omega \)-continuous, \(\theta_\omega \)-irresolute, \(\theta_\omega \)-open, \(\theta_\omega \)-closed, \(\theta_\omega \)-pre-open, \(\theta_\omega \)-pre-closed, contra \(\theta_\omega \)-continuous and almost contra \(\theta_\omega \)-mappings and have investigated properties and characterizations of these new types of mappings in topological spaces. We have studied new types of functions using \(\theta_\omega \)-open sets and these functions will have many possibilities of applications in computer graphics and digital topology.

Acknowledgment

The author is highly and gratefully indebted to the Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia, for providing all necessary research facilities during the preparation of this research paper.

References:

[1] Samer Al-Ghour, Bayan Irshedat, The Topology of \(\theta_\omega \)-open Sets, Filomat (Faculty of Sciences and Mathematics, University of Nis, Serbia) 31:16 (2017), 5369 – 5377.

