Abstract: In this paper asymptotic test in multivariate regression based on set-indexed partial sums of the vector of recursive residuals is proposed. The limit process is derived for multivariate nonparametric regression with localized vector of regression functions under an equally spaced experimental design on a closed rectangle. Under mild condition it is shown that independent to the assumed model, the partial sums processes converges to a vector of trends plus the multivariate set-indexed Brownian sheet. The trend vanishes simultaneously when the hypothesis is true living the multivariate set-indexed Brownian sheet as the only limit process. The finite sample size behavior of the power functions of Kolmogorov-Smirnov (KS) and Cramér-von Mises (CM) type tests are investigated by simulation. It is shown that for testing multivariate polynomial model of low order the CM test seems to have larger power than the KS test has. The application of the test method in the empirical model building of corn plants data and its comparison with the classical test using Wilk’s lambda statistic is also demonstrated.

1 Introduction

Checking the validity of multivariate linear regression using set-indexed partial sums of the vector of ordinary least squares (OLS) residuals has been intensively studied in [16, 17, 18]. The limit processes have been derived by applying various mathematical techniques. The result in [16] has been obtained by the geometric approach of [4], whereas those in [17, 18] have been established based on Prohorov’s theorem (cf. [3]). However, the limit processes have been expressed as complicated functions of the multivariate set-indexed Brownian sheets which functionally depend not only on the assumed regression functions but also on the dimension of the model. Consequently, the application of the method in the practice is restricted. The quantiles of the Kolmogorov-Smirnov as well as the Cramér-von Mises type test statistics have been approximated by conducting Monte Carlo simulation. Estimation to the upper and lower bounds of the limiting power functions of the tests by applying Li-Kuelb’s shift inequality have been studied in [19, 20], see also [13], pp. 53–54.

In this paper we propose an asymptotic model validity check based on the limit process of the partial sums of the vector of recursive residuals instead of the OLS residuals. Our object of study is actually an extension of that considered in [21]. The derivation of the result will be mathematically more complicated by the existence of the correlation among the components of the vector of observations. It is not like the classical likelihood ratio test studied in e.g. [6], p. 9–20 and [10], p. 395–398, for our test method we need neither normality nor any other distributional assumption given to the vector of observations, so that our proposed method is more practice.

The application of the partial sums of the recursive residuals of multivariate regression in some test problem has been investigated in [9] by extending the approaches due to [5, 7, 8, 12, 15]. However the limit process has been obtained only for vector of time series observations. For our result we need to investigate a functional central limit theorem for the sequence of high dimensional triangular arrays of vector of recursive residuals. To the best knowledge of the author, there are no documentations available for such kind of limit theorem.

To see concretely the objective of the present paper, let us consider a standard p-variate nonparametric regression defined by

$$
\tilde{\mathbf{Y}}(t) = \tilde{\mathbf{g}}(t) + \tilde{\mathbf{E}}(t), \ t \in D,
$$

where $\tilde{\mathbf{Y}} = (Y^{(1)}, \ldots, Y^{(p)})^\top$ is the p-dimensional vector of observations, $\tilde{\mathbf{g}} = (g^{(1)}, \ldots, g^{(p)})^\top$ is the
true-unknown p-dimensional vector of regression functions defined on $D := \Pi_{j=1}^{d}[a_{j}, b_{j}] \subset \mathbb{R}^{d}$, and $\hat{\varepsilon} = (\varepsilon^{(1)}, \ldots, \varepsilon^{(p)})^\top$ is the p-dimensional vector of random errors with $E(\hat{\varepsilon}) = 0$ and $\text{Cov} (\hat{\varepsilon}) = \Sigma = \sigma_{k1}^{p} \mathbf{I}_{p \times p}$, where \mathbf{I} is a $p \times p$ positive definite matrix. Let f_{1}, \ldots, f_{p} be known linearly independent regression functions in $L_{2}(P_{0})$, where P_{0} is the Lebesque measure on D. Model validity check in multivariate linear regression analysis concerns with the problem of testing the following hypothesis

$$
H_{0} : Y^{(i)}(t) = \sum_{j=1}^{q} \beta_{ij} f_{j}(t) + \varepsilon^{(i)}(t), \ t \in D \quad (2)
$$

for $i = 1, \ldots, p$, where $\beta_{11}, \ldots, \beta_{pq}$ are unknown constants, cf [10], p. 323. Suppose Model 2 is observed independently over a triangular array of design points

$$
\Xi_{n_{1} \times n_{2}} := \{t_{j_{1}, j_{2}} : 1 \leq j_{1} \leq n_{1}, 1 \leq j_{2} \leq n_{2}\}.
$$

Let $R_{n_{1} n_{2}} := (r_{j_{1}, j_{2}})_{j_{1}=1 \ldots, n_{1}}^{n_{2}}$ be the corresponding sequence of $n_{1} \times n_{2}$ arrays of the p-dimensional vector of the OLS residuals of Model 1, where $r_{j_{1}, j_{2}} = (r^{(1)}_{j_{1}, j_{2}}, \ldots, r^{(p)}_{j_{1}, j_{2}})^\top$. The p-dimensional partial sums process of $R_{n_{1} n_{2}}$ indexed by the family of convex subsets A of D is defined by

$$
V_{n_{1} n_{2}}(R_{n_{1} n_{2}}) := \left(\sum_{j_{1}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{2}} \mathbf{1}_{A}(t_{j_{1}, j_{2}}) r_{j_{1}, j_{2}}^{(i)} \right)_{i=1}^{p}.
$$

By combining the univariate invariance principle of [1, 14] and the multivariate one of [11], Somayasa and et al. [16, 17] showed under an equidistance design (regular lattice), defined by

$$
t_{j_{1}, j_{2}} = \left(a_{1} + (b_{1} - a_{1}) \frac{j_{1}}{n_{1}}, a_{2} + (b_{2} - a_{2}) \frac{j_{2}}{n_{2}} \right),
$$

that

$$
\frac{1}{\sqrt{n_{1} n_{2}}} \sum_{i=1}^{n_{1} n_{2}} \left(\frac{1}{n_{1}} \sum_{j_{1}=1}^{n_{1}} \sum_{j_{2}=1}^{n_{2}} \mathbf{1}_{A}(t_{j_{1}, j_{2}}) r_{j_{1}, j_{2}}^{(i)} \right) \Rightarrow Z_{P_{0}},
$$

where $Z_{P_{0}}$ is a p-dimensional centered Gaussian process indexed by A, defined by

$$
Z_{P_{0}} = \left(Z_{P_{0}}^{(1)}, \ldots, Z_{P_{0}}^{(p)} \right)^{\top} \text{ is the } p-
$$

dimensional set-indexed Brownian sheet, which is a centered p-dimensional Gaussian process with the covariance function given by

$$
K_{Z_{P_{0}}}(A_{1}, A_{2}) = \text{diag}(P_{0}(A_{1} \cap A_{2}), \ldots, P_{0}(A_{1} \cap A_{2}))
$$

and $h_{f_{j}}(A) := \int_{A} f_{j}(x, y) P_{0}(dx, dy)$, for $A_{1}, A_{2} \in \mathcal{A}$. Thereby f^{R} stands for the Riemann-Stiltjes integral. By the dependency of the limit process on the regression functions, the computation of the critical values of the Kolmogorov-Smirnov and Cramér-von Mises statistics defined respectively by

$$
K S(Z_{P_{0}}) := \sup_{(t, s) \in D} \left\| Z_{P_{0}}^{*}(t, s) \right\|
$$

$$
C v M(Z_{P_{0}}) := \int_{D} \left\| Z_{P_{0}}^{*}(t, s) \right\|^{2} P_{0}(dt, ds)
$$

become complicated as the order of the model gets higher. Unfortunately, there are no documents available providing mathematical techniques for computing such critical values for the cases other than Brownian sheet. A good survey for the case of multivariate standard Brownian motion and Brownian bridge on the unit interval $[0, 1]$ can be found in [11]. Thus, the main point of this work is to define a transformation so that the limit process in (3) does not depend on the regression models. This will be handled recursively as in the times series case investigated in [9] by extending the functional central limit theorem studied in [21].

It is worth mentioning that for testing the hypothesis H_{0} against a specific alternative of the form $H_{1} : g^{(i)} \in V := \{f_{1}, \ldots, f_{q}, f_{q+1}, \ldots, f_{m}\}$, for all $i \in \{1, \ldots, p\}$, under a normally distributed error term the likelihood ration test leads to the test based on the well known Wilk’s lambda statistic (cf. [10], p.324). However, there is no information available regarding the optimality of the test.

To give more insight on the multivariate recursive residuals we present in Section 2 its formal definition and investigate the related properties. The limit of the sequence of p-dimensional partial sums processes of recursive residuals is discussed in Section 3. Next in Section 4 we give an investigation to the performance of the KS and CM test by simulation. The application of the test method in real data is presented in Section 5. We close the paper with some conclusions and remarks for future works, see Section 6. Proofs are presented in the appendix.

2 Multivariate recursive residuals

As in univariate case, we assume throughout the paper that the design is given by a regular lattice over D and the observations are collected row wise initialized at the point t_{11} and terminated at the point $t_{n_{1} n_{2}}$.

Let (j_{1}^{*}, j_{2}^{*}) be a fixed pair of integers such that $Y_{j_{1}^{*}, j_{2}^{*}}$ becomes the first q-th observed vector of responses according to the preceding order. Keeping this in mind, let us define the following notations:

$$
T_{n_{1} n_{2}} := \{j_{1}, j_{2} : 1 \leq j_{1} \leq n_{1}, 1 \leq j_{2} \leq n_{2}\}
$$

$$
T_{n_{1} n_{2} - q} := T_{n_{1} n_{2} - q + 1} \setminus \{j_{1}^{*}, j_{2}^{*}\},
$$

$$
327
$$
where
\[T_{n_1 n_2 - q + 1} = \{(j_1^*, j_2^*), (j_1^* + 1, j_2^*), \ldots, (n_1, j_2^*) , (1, j_2^* + 1), \ldots, (n_1, j_2^* + 1), \ldots, (n_1, n_2)\}. \]

Thus \(T_{n_1 n_2} \), \(T_{n_1 n_2 - q} \) and \(T_{n_1 n_2 - q + 1} \) consist respectively of \(n_1 n_2 \), \(n_1 n_2 - q \) and \(n_1 n_2 - q + 1 \) ordered pairs. For every pair \((j_1, j_2) \in T_{n_1 n_2 - q + 1}\) and every \(i = 1, \ldots, p \), we define the following vector of observations and random errors
\[
Y_{(n_1 n_2)} := X_{j_1 j_2}^{(n_1 n_2)} B + E_{j_1 j_2}^{(n_1 n_2)}, \tag{4}
\]
where
\[
Y_{j_1 j_2}^{(n_1 n_2)} := \left(Y_{1 j_2}^{(1)}, Y_{2 j_2}^{(2)}, \ldots, Y_{p j_2}^{(p)} \right),
\]
\[
X_{j_1 j_2}^{(n_1 n_2)} := (f(t_{11}), f(t_{21}), \ldots, f(t_{j_1 j_2}))^T,
\]
\[
E_{j_1 j_2}^{(n_1 n_2)} := (e_{1 j_2}^{(1)}, e_{2 j_2}^{(2)}, \ldots, e_{p j_2}^{(p)}).
\]

Then the OLS of \(B \) based on (4) is given by
\[
B_{j_1 j_2}^{(n_1 n_2)} = \left(X_{j_1 j_2}^{(n_1 n_2)T} X_{j_1 j_2}^{(n_1 n_2)} \right)^{-1} X_{j_1 j_2}^{(n_1 n_2)T} Y_{j_1 j_2}^{(n_1 n_2)}
\]
for every \((j_1, j_2) \in T_{n_1 n_2 - q + 1}\). It is noticed that
\[
\left(X_{j_1 j_2}^{(n_1 n_2)T} X_{j_1 j_2}^{(n_1 n_2)} \right)^{-1}
\]
exists for large enough \(n_1 \) and \(n_2 \), provided the regression functions are linearly independent as functions in \(L_2(P_0) \), cf. [22], p. 37.

Now we are ready to define the notion of \(p \)-variate recursive residuals of Model 2.

Definition 1 Let \(\bar{Y}_{j_1 j_2} := \left(Y_{j_1 j_2}^{(1)}, Y_{j_1 j_2}^{(2)}, \ldots, Y_{j_1 j_2}^{(p)} \right)^T \) be the vector of observations of Model 2 on the point \(t_{j_1 j_2} \), for \((j_1, j_2) \in T_{n_1 n_2 - q}\). The \(n_1 n_2 - q \) numbers of vectors of recursive residuals based on Model 4 are defined by
\[
\bar{w}_{j_1 j_2} = \frac{\bar{Y}_{j_1 j_2} - \bar{B}_{j_1 j_2}^{(n_1 n_2)}}{\sqrt{1 + f^T(t_{j_1 j_2}) \left(X_{j_1 j_2}^{(n_1 n_2)T} X_{j_1 j_2}^{(n_1 n_2)} \right)^{-1} f(t_{j_1 j_2})}},
\]
for \(j_1 \neq 1 \), \(j_2 \in \{j_2^* + 1, \ldots, n_2\} \),
and
\[
\bar{w}_{1 j_2} = \frac{\bar{Y}_{1 j_2} - \bar{B}_{1 j_2}^{(n_1 n_2)}}{\sqrt{1 + f^T(t_{1 j_2}) \left(X_{1 j_2}^{(n_1 n_2)T} X_{1 j_2}^{(n_1 n_2)} \right)^{-1} f(t_{1 j_2})}},
\]
for \(j_1 = 1 \), and \(j_2 \in \{j_2^* + 1, \ldots, n_2\} \).

By substituting \(\bar{B}_{j_1 j_2}^{(n_1 n_2)} \), for \((j_1, j_2) \in T_{n_1 n_2 - q}\), it can be shown that the \(i \)-th component of \(\bar{w}_{j_1 j_2} \) coincides with that of the univariate case, see [21]. Hence, the argument that has been applied for univariate model can be adopted to get the following result.

Proposition 2 For every \((j_1, j_2) \in T_{n_1 n_2 - q}\), there exists an \((n_1 n_2 - q) \times n_1 n_2\) matrix \(A \), defined by
\[
A := \begin{pmatrix}
 a_{j_1 j_2 + 1}^T & \cdots & a_{n_1 n_2}^T \\
 \vdots & \ddots & \vdots \\
 a_{n_1 j_2}^T & \cdots & a_{n_1 n_2}^T \\
 a_{j_2}^T & \cdots & a_{n_2}^T
\end{pmatrix} \in \mathcal{R}^{(n_1 n_2 - q) \times n_1 n_2},
\]
such that
\[
\left(\bar{w}_{j_1 + 1 j_2}^*, \bar{w}_{j_1 j_2}^*, \ldots, \bar{w}_{j_1 n_2}^* \right)^T = A \bar{E}_{n_1 n_2},
\]
where for \(j_2 \in \{j_2^* + 1, \ldots, n_2\} \), and \(j_1 \neq 1 \),
\[
a_{j_1 j_2} \sqrt{d_{j_1 j_2}} := \left(-f^T(t_{j_1 j_2}) \left(X_{j_1 - 1 j_2}^{(n_1 n_2)T} X_{j_1 - 1 j_2}^{(n_1 n_2)} \right)^{-1} X_{j_1 - 1 j_2}^{(n_1 n_2)T} f(t_{j_1 j_2}), \right. \\
1, \ldots, 0)^T,
\]
with
\[
d_{j_1 j_2} = 1 + f^T(t_{j_1 j_2}) \left(X_{j_1 - 1 j_2}^{(n_1 n_2)T} X_{j_1 - 1 j_2}^{(n_1 n_2)} \right)^{-1} f(t_{j_1 j_2}),
\]
and for \(j_1 = 1 \) and \(j_2 \in \{j_2^* + 1, \ldots, n_2\} \),
\[
a_{j_1 j_2} \sqrt{d_{j_1 j_2}} := \left(-f^T(t_{j_1 j_2}) \left(X_{j_1 - 1 j_2 - 1}^{(n_1 n_2)T} X_{j_1 - 1 j_2 - 1}^{(n_1 n_2)} \right)^{-1} X_{j_1 - 1 j_2 - 1}^{(n_1 n_2)T}, \right.
\]
\[
1, 0, \ldots, 0)^T,
\]
with
\[
d_{j_1 j_2} := 1 + f^T(t_{j_1 j_2}) \left(X_{j_1 - 1 j_2 - 1}^{(n_1 n_2)T} X_{j_1 - 1 j_2 - 1}^{(n_1 n_2)} \right)^{-1} f(t_{j_1 j_2}).
\]
Moreover, \(A \) satisfies the condition \(A A^T = I_{n_1 n_2 - q} \), where \(I_{n_1 n_2 - q} \) is the \((n_1 n_2 - q) \times (n_1 n_2 - q)\) identity matrix.
By Proposition 2 every component of the vector of recursive residuals is expressible as a linear combination of the components of the vector of random errors \(\varepsilon_{n1n2}^{(i)} \), for every \((j_1, j_2) \in T_{n1n2-q}\), where the coefficients depend only on the pair \((j_1, j_2) \in T_{n1n2-q}\), but not on \(i \in \{1, \ldots, p\}\).

Let \(\tilde{W}_{n1n2} := (\tilde{w}_{j1j2})_{j1, j2=1}^{n1 \times n2}, n_1 \geq 1 \) and \(n_2 \geq 1 \) be the sequence of \(n_1 \times n_2 \) dimensional triangular arrays of the \(p \)-dimensional vectors of recursive residuals, where \(\tilde{w}_{j1j2} := 0 \), for \((j_1, j_2) \in T_{n1n2} \setminus T_{n1n2-q}\). Let \(\mathcal{A} \) be the collection of convex subsets of \(D := [a_1, b_1] \times [a_2, b_2] \), such that \(\mathcal{A} \) is totally bounded and have convergence integral entropy in the sense of [1, 14]. The set-indexed partial sums processes of the \(p \)-dimensional recursive residuals with respect to \(\mathcal{A} \) is defined as

\[
S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(A) := \sum_{(j_1, j_2)} 1_A(t_{j1j2})\tilde{w}_{j1j2},
\]

where the sum is defined component wise taken over all \((j_1, j_2) \in T_{n1n2-q}\). It is worth mentioning that for \(A = \emptyset \), we define \(S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(\emptyset) := 0 \) and for any \(A \in \mathcal{A} \), for which no design points \(t_{j1j2} \) with the corresponding pair \((j_1, j_2) \in T_{n1n2-q}\) are covered by \(A \), we define \(S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(A) := 0 \). To be able to sum the recursive residuals over all pairs \((j_1, j_2) \in T_{n1n2-q}\), the value of \(\tilde{w}_{j1j2} \) is set equal to zero, for \((j_1, j_2) \in T_{n1n2} \setminus T_{n1n2-q}\). So that we have

\[
S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(A) := \sum_{j_1=1}^{n1} \sum_{j_2=1}^{n2} 1_A(t_{j1j2})\tilde{w}_{j1j2}.
\]

The Kolmogorov-Smirnov and Cramér-von Mises type statistic for testing \(H_0 \) are defined respectively by

\[
KS_{n1n2}^{(p)} := \sup_{A \in \mathcal{A}} \left\| \Sigma^{-1/2} S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(A) \right\| \sqrt{n1n2 - q},
\]

\[
CM_{n1n2}^{(p)} := \sum_{A \in \mathcal{A}} \left\| \Sigma^{-1/2} S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(A) \right\|^2 / n1n2 - q,
\]

where \(\Sigma^{1/2} \) is the matrix that satisfies \(\Sigma = \Sigma^{1/2}\Sigma^{1/2} \) and \(\Sigma^{-1/2} = (\Sigma^{1/2})^{-1} \). Based on those statistics, \(H_0 \) will be rejected for large values of \(KS_{n1n2}^{(p)} \) or \(CM_{n1n2}^{(p)} \). The limit distributions of \(KS_{n1n2}^{(p)} \) and \(CM_{n1n2}^{(p)} \) will be derived in the next section. Since Proposition A1 states that the set \(\{\tilde{w}_{j1j2} : (j_1, j_2) \in T_{n1n2-q}\} \) consists of mutually uncorrelated \(p \)-dimensional random vectors with zero mean vector and the covariance matrix \(\Sigma \), by applying a well known result for multivariate normal distribution, cf. [10], p. 137, for \(1 \leq j_1 \leq n_1 \) and \(1 \leq j_2 \leq n_2 \), if the \(p \)-dimensional error vectors \(\tilde{e}_{j1j2} = (\varepsilon_{j1j2}^{(1)}, \ldots, \varepsilon_{j1j2}^{(p)})^T \) are assumed to be independent and identically distributed (iid) \(N_p(0, \Sigma) \), then \(\tilde{w}_{j1j2} \) are iid \(N_p(0, \Sigma) \) too. Hence, for normally distributed error model, the limit of \(KS_{n1n2}^{(p)} \) and \(CM_{n1n2}^{(p)} \) can be straightforwardly obtained by incorporating the techniques proposed in [16, 17, 18]. However for the more general setting that methods can not be applied. In this work the limit will be established by generalizing the functional central limit theorem studied in [9] and [15].

For computational reason, in this paper we restrict the index set \(\mathcal{A} \) to the family \(\mathcal{R} \), defined by

\[
\mathcal{R} := \{[a_1, x] \times [a_2, y] : a_1 \leq x \leq b_1, a_2 \leq y \leq b_2\}.
\]

Hence, for every \([a_1, x] \times [a_2, y] \in \mathcal{R} \), we have

\[
S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})([a_1, x] \times [a_2, y]) = \sum_{(j_1, j_2) \in T_{n1n2-q}} 1_{[a_1, x] \times [a_2, y]}(t_{j1j2})\tilde{w}_{j1j2},
\]

and it will be denoted as \(S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(x, y) \) for brevity. Hence, the corresponding test statistics are given respectively by

\[
KS_{n1n2}^{(p)} = \sup_{(x, y) \in D} \left\| \Sigma^{-1/2} S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(x, y) \right\| \sqrt{n1n2 - q},
\]

\[
CM_{n1n2}^{(p)} = \int_D \left\| \Sigma^{-1/2} S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(x, y) \right\|^2 dx dy.
\]

In particular, for the case of a unit square experimental region \(U := [0, 1] \times [0, 1] \), the partial sums process indexed by such family of rectangles will take the form

\[
S_{n1n2-q}^{(p)}(\tilde{W}_{n1n2})(x, y) = \sum_{j_2=1}^{n2} \sum_{j_1=1}^{n1} \tilde{w}_{j1j2}, (x, y) \in U.
\]

So, when the experimental design is given by the regular lattice \(\Xi_{n1n2} \) over \(U \)

\[
\Xi_{n1n2} = \{(\ell/n_1, k/n_2) : 1 \leq \ell \leq n_1, 1 \leq k \leq n_2\},
\]

the property of the partial sums operator implies

\[
KS_{n1n2}^{(p)} = \max_{1 \leq k \leq n2: 1 \leq \ell \leq n1} \left\| \Sigma^{-1/2} \sum_{j1j2=1}^{\ell \times k} \tilde{w}_{j1j2} \right\| \sqrt{n1n2 - q},
\]

\[
CM_{n1n2}^{(p)} = \sum_{k=1}^{n2} \sum_{\ell=1}^{n1} \left\| \Sigma^{-1/2} \sum_{j1j2=1}^{\ell \times k} \tilde{w}_{j1j2} \right\|^2 / n1n2 - q.
\]

In the practice, the computation of the test statistics will be based on the partial sums indexed by the family \(\mathcal{R} \).
3 The partial sums limit process

In this section we state the main result that gives the limit process of the sequence of the set-indexed \(p \)-dimensional partial sums processes of the recursive residuals:

\[
\frac{1}{\sqrt{n_{1}n_{2} - q}} \sum_{q}^{-1/2} \hat{S}_{n_{1}n_{2} - q}(\hat{W}_{n_{1}n_{2}})(A), \quad A \in \mathcal{A}.
\]

The proof is postponed to the appendix.

Theorem 3 Let \(\{\hat{W}_{n_{1}n_{2}} \} = (\hat{w}_{j_{1},j_{2}})_{j_{1}=1,j_{2}=1}^{n_{1},n_{2}} \), \(n_{1} \geq 1 \) and \(n_{2} \geq 1 \), be the sequence of \(n_{1} \times n_{2} \) arrays of the \(p \)-dimensional recursive residuals of Model 2 observed over a regular lattice \(\Xi_{n_{1}n_{2}} \). Suppose that the regression functions are continuous and have bounded variation on \(D \). Then for \(n_{1}, n_{2} \to \infty \), it holds,

\[
\frac{1}{\sqrt{n_{1}n_{2} - q}} \sum_{q}^{-1/2} \hat{S}_{n_{1}n_{2} - q}(\hat{W}_{n_{1}n_{2}}) \Rightarrow Z_{\mathcal{P}_{0}},
\]

where \(Z_{\mathcal{P}_{0}} \) is the \(p \)-dimensional set-indexed Brownian sheet.

Theorem 3 shows that the limit process of the partial sums of the recursive residuals under \(H_{0} \) is given by the \(p \)-dimensional set-indexed Brownian sheet, whatever the regression functions we have. This means that the transformation defined by the recursive residuals reduces the dependency of the limit process on the assumed model. Theoretically this will give advantage particularly in the computation of the quantiles of the test statistics.

The limit of the test statistics \(\mathcal{K}_{S}^{(p)}(\alpha) \) as well as \(\mathcal{C}_{M}^{(p)}(\alpha) \) can be readily obtained by applying the continuous mapping theorem (cf. Theorem 27 in [3]), as stated in the following corollary.

Corollary 4 Under the conditions of Theorem 3, it holds for \(n_{1} \) and \(n_{2} \) are simultaneously large, that

\[
\mathcal{K}_{S}^{(p)}(\alpha) = \sup_{A \in \mathcal{A}} \| Z_{\mathcal{P}_{0}}(A) \|
\]

and

\[
\mathcal{C}_{M}^{(p)}(\alpha) = \int_{D} \| Z_{\mathcal{P}_{0}}(A) \|^{2} dA
\]

By Corollary 4, the implementation of the test in the practice can be realized by approximating the finite samples quantiles of \(\mathcal{K}_{S}^{(p)}(\alpha) \) and \(\mathcal{C}_{M}^{(p)}(\alpha) \) using those of \(\sup_{A \in \mathcal{A}} \| Z_{\mathcal{P}_{0}}(A) \| \) and \(\int_{D} \| Z_{\mathcal{P}_{0}}(A) \|^{2} dA \), respectively. More precisely, for \(\alpha \in (0, 1) \), let \(k_{s_{1} - \alpha} \) and \(c_{m_{1} - \alpha} \) be positive real numbers that satisfy the equations

\[
P \left(\sup_{A \in \mathcal{A}} \| Z_{\mathcal{P}_{0}}(A) \| \geq k_{s_{1} - \alpha} \right) = \alpha
\]

and

\[
P \left(\int_{D} \| Z_{\mathcal{P}_{0}}(A) \|^{2} dA \geq c_{m_{1} - \alpha} \right) = \alpha
\]

Then the rejection regions of asymptotic size \(\alpha \) tests for testing \(H_{0} \) are given respectively by

\[
\mathcal{C}_{KS} := \{ Y_{n_{1}n_{2}} : \mathcal{K}_{S}^{(p)}(\alpha) \geq k_{s_{1} - \alpha} \},
\]

when \(\mathcal{K}_{S}^{(p)}(\alpha) \) is used and

\[
\mathcal{C}_{CV} := \{ Y_{n_{1}n_{2}} : \mathcal{C}_{M}^{(p)}(\alpha) \geq c_{m_{1} - \alpha} \},
\]

when the statistic \(\mathcal{C}_{M}^{(p)}(\alpha) \) is used. Thus, the problem of testing \(H_{0} \) reduces to that of computing \(k_{s_{1} - \alpha} \) and \(c_{m_{1} - \alpha} \) for any pre-specified \(\alpha \in (0, 1) \). Moreover, without altering the test procedures, the unknown covariance function \(\Sigma \) can be estimated by any consistent estimator, such as by that given in [2].

To be able to investigate the limiting power of the tests, we consider the general localized version of Model 1, defined by:

\[
\tilde{Y}(t) = \frac{1}{\sqrt{n_{1}n_{2} - q}} \tilde{g}(t) + \tilde{E}(t), \quad t \in D,
\]

with \(E(\tilde{E}(t)) = 0 \) and \(Cov(\tilde{E}(t)) = \Sigma \). For \((j_{1}, j_{2}) \in T_{n_{1}n_{2} - q + 1} \), let

\[
\mathcal{I}^{(n_{1},n_{2})} := \left(g_{j_{1}j_{2}}, g_{j_{1}j_{2}}, \ldots, g_{j_{1}j_{2}} \right).
\]

Then, we have

\[
Y_{n_{1}n_{2}}^{(j_{1},j_{2})} = \frac{1}{\sqrt{n_{1}n_{2} - q}} \mathcal{I}^{(n_{1},n_{2})} + E_{n_{1}n_{2}}^{(j_{1},j_{2})}.
\]

Conversely, when \(H_{0} \) is true, the model clearly reduces to (4). Hence, by applying Theorem 3, the asymptotic test procedure is not altered when the localized model is considered, in the sense the test leads to the same size \(\alpha \) rejection region as that of the non localized model.

The limiting distribution of the statistics \(\mathcal{K}_{S}^{(p)}(\alpha) \) and \(\mathcal{C}_{M}^{(p)}(\alpha) \) for the localized model (5), when \(H_{0} \) is not true is presented in the following theorem.

Theorem 5 Suppose that the vector of regression functions \(\tilde{g} = (g_{1}, \ldots, g_{p})^{\top} \) is continuous and has bounded variation on \(D \). Let \(\tilde{W}_{n_{1}n_{2}}^{\text{loc}} := (\tilde{w}_{n_{1}n_{2}}^{\text{loc}}) \), \((j_{1}, j_{2}) \in T_{n_{1}n_{2} - q} \) be the sequence of arrays of \(p \)-dimensional vector of recursive residuals associated with the localized model (5) observed over the regular lattice \(\Xi_{n_{1}n_{2}} \). Then, when \(H_{0} \) is not true it holds

\[
\sum_{q}^{-1/2} \frac{\hat{S}_{n_{1}n_{2} - q}(\hat{W}_{n_{1}n_{2}}^{\text{loc}})}{\sqrt{n_{1}n_{2} - q}} \Rightarrow \Sigma_{\mathcal{P}_{0}}^{-1/2} \mathcal{P}_{g} + Z_{\mathcal{P}_{0}},
\]

where

\[
h_{\mathcal{P}_{0}}(A) := \int_{A} \tilde{g}(x, y)P_{0}(dx, dy)
\]

and

\[
\tilde{f}(u, v) := \int_{A} f^{\top}(u, v)G^{-1}(u, v)H(u, v)P_{0}(du, dv),
\]
compared each other. The samples are generated over
so that the power attains the pre signed size of the test.

$$\text{lim}_{n_1, n_2 \to \infty} \mathcal{Y}_{KS_{n_1 n_2}} (\hat{g}) = \lim_{n_1, n_2 \to \infty} \mathbf{P} \left\{ KS_{n_1 n_2} \geq \alpha \right\} = \mathbf{P} \left\{ \sup_{A \in A} \left| \Sigma^{-1/2} h_{\hat{g}} (A) + Z_{P_0} (A) \right| \geq \bar{k}_1 - \alpha \right\}. $$

Similarly, the asymptotic power function of the Cramér-von Mises test of size α is given by

$$\text{lim}_{n_1, n_2 \to \infty} \mathcal{Y}_{CM_{n_1 n_2}} (\hat{g}) = \lim_{n_1, n_2 \to \infty} \mathbf{P} \left\{ CM_{n_1 n_2} \geq \alpha \right\} = \mathbf{P} \left\{ \int \left| \Sigma^{-1/2} h_{\hat{g}} (A) + Z_{P_0} (A) \right|^2 dA \geq \alpha \right\}. $$

In this paper the finite sample size behavior of the tests will be investigated by comparing the power functions of the tests based on the $KS_{n_1 n_2}$ and $CM_{n_1 n_2}$ statistics. It can be shown easily that when H_0 is true, the term $\Sigma^{-1/2} h_{\hat{g}}$ vanishes uniformly, so that the power attains the pre signed size of the test. That is $\mathcal{Y}_{KS_{n_1 n_2}} (\hat{g}) = \alpha = \mathcal{Y}_{CM_{n_1 n_2}} (\hat{g})$, for \hat{g} varies under H_0.

4 Simulation study

We now study the power of the KS and CM type tests via Monte Carlo simulations by considering three cases. In each case the graph of the empirical power function $\mathcal{Y}_{KS_{n_1 n_2}}$ and $\mathcal{Y}_{CM_{n_1 n_2}}$ are developed and compared each other. The samples are generated over \mathcal{U} with the experimental design given by 50×50 regular lattice

$$\Xi_{50 \times 50} = \{(\ell/50, k/50) : 1 \leq \ell \leq 50, 1 \leq k \leq 50\}. $$

The vectors of random errors are generated independently from the centered multivariate normal distribution $N_p (0, \Sigma)$ for some nonsingular covariance matrix Σ. However, in the simulation it is assumed that Σ is unknown, therefore it is estimated by a consistent estimator $\Sigma_{n_1 n_2}^{\hat{h}_0} / (n^2)$ defined in [2]. The number of runs is 1500.

4.1 Bivariate constant model

In the first scenario we test the hypothesis that a bivariate constant model holds true. The samples are generated based on the following localized bivariate first-order model

$$\tilde{Y} = \left(\left(\frac{5}{3} \right) + \rho \left(\frac{\ell}{n} + \frac{k}{n} \right) \right) / \sqrt{n^2 - 1 + \tilde{E}}. $$

The real constant ρ varies in some interval so that the mean function \tilde{g} varies in the space of vector functions of bounded variations on \mathcal{U}. It is clear that the observations are from H_0, when $\rho = 0$. The two dimensional random error \tilde{E} is generated independently from the bivariate normal distribution $N_2 (0, \Sigma)$, with the covariance matrix

$$\Sigma = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

Figure 1 exhibits the empirical power functions of the tests, where the graphs of $\mathcal{Y}_{KS_{n_1 n_2}}$ and $\mathcal{Y}_{CM_{n_1 n_2}}$ are indicated by a solid and dashed line, respectively. The left panel is for $\alpha = 0.01$, whereas the right one corresponds to $\alpha = 0.05$. The graphs show that the power increases as the model moves away from H_0. The power fluctuates around α as $\rho = 0$ as it must be. It can be seen that the test based on the Cramér-von Mises type statistic is slightly more powerful than that based on the Kolmogorov-Smirnov one.

4.2 Trivariate first-order model

In this subsection a more general hypothesis and model are simulated in which the samples are generated based on the following model

$$\tilde{g} \left(\frac{\ell}{n}, \frac{k}{n} \right) = \left(\frac{1 + 2\ell}{n} + \frac{k}{n} \right) + \rho \left(\frac{\exp \left(\frac{\ell}{n} \right)}{n} \right) \left(\frac{\exp \left(\frac{k}{n} \right)}{n} \right). $$

\(\tilde{g}\)...
for testing the hypothesis that a trivariate first-order model is true. Under alternative we consider a trivariate nonparametric model by adding the model specified under H_0 with an exponential terms. The error component is generated independently from the trivariate centered normal distribution $N_3(0, \Sigma)$, where

$$\Sigma = \begin{pmatrix} 0.65 & 0.31 & 1.18 \\ 0.31 & 0.58 & 0.81 \\ 1.18 & 0.81 & 2.50 \end{pmatrix}$$

The scatter plot of the empirical power functions of size $\alpha = 0.01$ and $\alpha = 0.05$ are presented in Figure 2. It can be concluded that the CM type test (dashed line) has larger power than the KS type test (solid line). The sizes of the tests are achieved when ρ is set to zero. That is as the observations are from H_0 both tests attain the pre-specified values of α.

4.3 Trivariate second-order model

The last simulation concerns with the problem of testing the hypothesis that a second-order model holds true. The vector of random error $\tilde{\varepsilon}$ is generated independently from the centered three-variate normal distribution $N_3(0, \Sigma)$ with the covariance matrix as in Subsection 4.2. As in the preceding scenarios, the simulation result for testing second-order model shows that the CM type test has larger power than the KS type test has, see Figure 3. When H_0 is true, the powers of the tests attain their predetermined sizes. However, when the model is far away from H_0, the power increases gradually.

5 Application

In this section we demonstrate the application of the asymptotic test procedures to a multivariate data which is the corn plant data. The data consist of the measurements of the maximum weight of the corn yield (in gram), the maximum height of the corn plants (in...
cm) and the rate of growth (in cm/day) of 21 x 16 corn plants planted over a rectangular farm region of size [0,12 m]x[0,15.75 m] running from west to east and from north to south. The experimental design is given by a 0.75 m x 0.75 m dimensional regular lattice, see [21]. The measurements have been conducted from August 2018 to October 2018. The goal is to build a model empirically describing how the values of the three variables vary over the region as a function of the coordinate of any point on the experimental region.

Descriptive investigation using matrix scatter plot and Pearson correlation coefficient regarding the existence of the correlations among the logarithm of the maximum weight (Ln Weight), the logarithm of the maximum height (Ln Height) and the Rate of Growth shows that the three variables are positively correlated each other (Figure 4). In particular, the correlation between the Ln Weight and the Ln Height is relatively strong compared to those between the Ln Weight and the Rate of Growth and between the Ln Weight and the Rate of Growth, see also Table 1. By this preliminary diagnostic results, the empirical model building must be conducted using multivariate analysis without ignoring the inherent correlation among the variables. Furthermore, based on the normal Kolmogorov-Smirnov test presented in Table 2 there is no enough statistical evidence to say that the three variables follow a tri-variate normal distribution.

Table 1: The Pearson correlation matrix for the Ln Weight, the Ln Height and the Rate of Growth.

<table>
<thead>
<tr>
<th></th>
<th>Ln Weight</th>
<th>Ln Height</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln Weight</td>
<td>1.00000</td>
<td>0.69965</td>
<td>0.18816</td>
</tr>
<tr>
<td>Ln Height</td>
<td>0.69965</td>
<td>1.00000</td>
<td>0.34798</td>
</tr>
<tr>
<td>Growth</td>
<td>0.18816</td>
<td>0.34799</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Table 2: The Kolmogorov-Smirnov goodness of fit test using the command "ks.go" in R for the normality of the Ln Weight, Ln Height and Rate of Growth.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Critical Values</th>
<th>p-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln Weight</td>
<td>0.10330</td>
<td>0.00000</td>
</tr>
<tr>
<td>Ln Height</td>
<td>0.08000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Rate of Growth</td>
<td>0.04390</td>
<td>0.50000</td>
</tr>
</tbody>
</table>

Three dimensional scatter plot of each variable presented respectively in Figure 5, Figure 6 and Figure 7 indicate that three dimensional polynomial of low order are reasonable for describing the regression relationship between the observed variables and the coordinate of every position on the experimental region.

The main objective is to test the validity of the assumed model based on the partial sums of the recursive residuals. The test results are presented in Table 3. When under H_0 a three dimensional constant model is assumed, both the KS and CCM type tests reject the hypothesis by the fact the corresponding p-values are very small. This conclusion is also supported by the Wilk’s lambda test when under the alternative a three dimensional first-order model is assumed by the reason the test also has a very small p-value, see the figures in
the second row of Table 3. Thus it can be concluded that three dimensional constant model is not plausible for the corn plant data.

Now we test the hypothesis that three dimensional first-order model is significant. The KS as well as the CM type tests lead to the acceptance of the hypothesis. Referring to the associated \(p \)-values of the tests (see the third rows of Table 3), the hypothesis will be rejected for \(\alpha \geq 32.093\% \). Since for these numbers the probabilities of the rejection of the hypothesis when it is true is large, we decide to accept the hypothesis. The same conclusion is also obtained when under the alternative a three dimensional second-order model is considered. By employing the Wilks lambda test, the hypothesis is also not rejected since the \(p \)-value is 32.093\%. We therefore conclude that first-order model is a significant model.

The least squares estimate of the parameter matrix \(\hat{B} \) is given by

\[
\hat{B} = \begin{pmatrix}
0.24424 & 4.42890 & 4.49722 \\
0.15932 & 0.40387 & 0.29157 \\
0.07932 & 0.00587 & 0.11326
\end{pmatrix}.
\]

Hence, the first-order fitted model associated with the corn plants data is as follows

\[
\begin{pmatrix}
\hat{Y}_1 \\
\hat{Y}_2 \\
\hat{Y}_3
\end{pmatrix} = \begin{pmatrix}
0.2442 + 0.1593x + 0.0793y \\
4.49722 + 0.40387x + 0.00587y \\
4.49722 + 0.29157x + 0.11326y
\end{pmatrix}.
\]
for \((x, y) \in D\). By this model the values of the Ln Weight, Ln Height and Rate of Growth simultaneously increase as the coordinate of the point moves away from the origin which is put on the south-west corner of the region. In fact, when the correlation among the variables are ignored, the one dimensional partial sums method proposed in [21] can be applied to each individual variable. A routine computation gives the result that first-order model is also fit well to the corn plants data, see [21].

From the agricultural perspective, the three observed variables (Ln Weight, Ln Height and Rate of Growth) can be regarded as indicators of the fertility level of a farm land. The larger the values of these variables, the better the fertility level of the land is vice versa, the smaller the values of these variables, the worst the fertility level of the land is. Hence, by observing the fitted model presented above, it can be concluded that the fertility level of the region gets large as the position moves away from the origin.

6 Conclusion

In this paper asymptotic procedure for testing model validity in multivariate linear regression based on the partial sums process of the recursive residuals has been established. The method is derived for the case when the probability distribution model of the vector of the observations is unknown. The limit process under \(H_0\) is given by the multivariate set-indexed Brownian sheet independent to whatever the assumed regression models is. This result gives an advantage in that, the computation of the quantiles of the test statistic theoretically becomes easier. The application of the test method to the corn plants data give the similar result as that of the Wilk’s lambda test. Three dimensional first-order polynomial model is fitted well to the corn plants data.

Appendix

Proposition A1. For the vector of recursive residuals \(\tilde{w}_{j1,j2} = (w_{j1,j2}^{(1)}, \ldots, w_{j1,j2}^{(p)})^\top\) defined in Definition 1, it holds \(E(\tilde{w}_{j1,j2}) = 0\) and

\[
\text{Cov}(\tilde{w}_{j1,j2}, \tilde{w}_{j'1,j'2}) = \left\{ \begin{array}{ll}
0 & \text{if } j_1 \neq j'_1 \text{ or } j_2 \neq j'_2 \\
\Sigma & \text{if } j_1 = j'_1 \text{ and } j_2 = j'_2
\end{array} \right.
\]

for every \((j_1, j_2), (j'_1, j'_2) \in T_{n_1n_2-q}\).

Proof: Let \((j_1, j_2), (j'_1, j'_2) \in T_{n_1n_2-q}\) be arbitrary. By Proposition 2, we have

\[
E(\tilde{w}_{j1,j2}) = E\left(\tilde{w}_{j1,j2}^{(1)}e_{n_1n_2}^{(1)}, \ldots, \tilde{w}_{j1,j2}^{(p)}e_{n_1n_2}^{(p)}\right)^\top = 0,
\]

and

\[
\text{Cov}(\tilde{w}_{j1,j2}, \tilde{w}_{j'1,j'2}) = E\left(\tilde{w}_{j1,j2}^{(1)}e_{n_1n_2}^{(1)}(j_1,j_2), \ldots, \tilde{w}_{j1,j2}^{(p)}e_{n_1n_2}^{(p)}(j_1,j_2)\right) = E\left(a_{j1,j2}^{(1)}e_{n_1n_2}^{(1)}(j_1,j_2), \ldots, a_{j1,j2}^{(p)}e_{n_1n_2}^{(p)}(j_1,j_2)\right)
\]

\[
= E\left(\sigma_{11}a_{j1,j2}^{(1)}e_{n_1n_2}^{(1)}(j_1,j_2), \ldots, \sigma_{1p}a_{j1,j2}^{(p)}e_{n_1n_2}^{(p)}(j_1,j_2)\right)
\]

\[
= \sigma_{11}a_{j1,j2}^{(1)}e_{n_1n_2}^{(1)}(j_1,j_2), \ldots, \sigma_{1p}a_{j1,j2}^{(p)}e_{n_1n_2}^{(p)}(j_1,j_2)
\]

\[
= \left(\sigma_{p1}a_{j1,j2}^{(1)}e_{n_1n_2}^{(1)}(j_1,j_2), \ldots, \sigma_{p2}a_{j1,j2}^{(p)}e_{n_1n_2}^{(p)}(j_1,j_2)\right)
\]

Since \(a_{j1,j2}^{(1)}e_{n_1n_2}^{(1)}(j_1,j_2) = 1\) for \(j_1 = j'_1\) and \(j_2 = j'_2\) and \(a_{j1,j2}^{(1)}e_{n_1n_2}^{(1)}(j_1,j_2) = 0\), for \(j_1 \neq j'_1\) or \(j_2 \neq j'_2\), the result follows, establishing the proof.

Proof of Theorem 3: By the multivariate version of Donsker’s theorem (cf. [3]) we need to show that the finite dimensional distribution of the sequence

\[
\frac{1}{\sqrt{n_1n_2-q}}\Sigma^{-1/2}e_{n_1n_2-q}(A_{\ell}^{1/p})
\]

converges to that of \(Z_{P_0}\) and the sequence is tight. It is noticed that the sum is defined component-wise. Let \(\gamma_1, \ldots, \gamma_m\) and \(A_1, \ldots, A_m\) be arbitrary \(m\) constants and convex subsets of \(D\), respectively. Let

\[
U_{n_1n_2-q} := \sum_{\ell=1}^{m} \frac{\Sigma^{-1/2}e_{n_1n_2-q}(A_{\ell}^{1/p})(A_{\ell})}{\sqrt{n_1n_2-q}}
\]

Then, by Proposition A1, we get

\[
\text{Cov}(U_{n_1n_2-q}) = E\left(U_{n_1n_2-q}\right)^{2} = \sum_{\ell=1}^{m} \sum_{k=1}^{m} \gamma_{\ell} \gamma_{k} \times
\]

\[
\times \sum_{(j_1,j_2), (j'_1,j'_2)\in T_{n_1n_2-q}} 1_{A_{\ell}}(j_1,j_2)1_{A_{k}}(j'_1,j'_2)
\]

\[
\times E\left(\tilde{w}_{j1,j2}^{(1)}e_{n_1n_2}^{(1)}(j_1,j_2), \ldots, \tilde{w}_{j1,j2}^{(p)}e_{n_1n_2}^{(p)}(j_1,j_2)\right)
\]

\[
= \sum_{\ell=1}^{m} \sum_{k=1}^{m} \gamma_{\ell} \gamma_{k} \times
\]

\[
\times \left(\int_{A_{\ell}\cap A_{k}} P_{n_1n_2}(dx, dy) + o(1)\right) I_{p},
\]

where \(I_{p}\) is the \(p \times p\) dimensional identity matrix and \(P_{n_1n_2}\) is the discrete probability measure on \(B(D)\), such that for every \(A \in B(D)\),

\[
P_{n_1n_2}(A) := \frac{1}{n_1n_2} \sum_{(j_1,j_2)\in T_{n_1n_2}} 1_{A}(j_1,j_2).
\]
Since for n_1 and n_2 simultaneously large, $P_{n_1 \times n_2}$ converges weakly to the Lebesgue measure P_0 and the ratio $\frac{n_{12}}{n_1 n_2}$ converges to 1, then we have

$$
\lim_{n_1, n_2 \to \infty} Cov \left(U_{n_1 n_2 - q} \right) = \sum_{j=1}^{m} \sum_{k=1}^{m} \gamma_j \gamma_k \int_{A_k \cap A_k} P_0(dx, dy) I_p
$$

$$
= \sum_{j=1}^{m} \sum_{k=1}^{m} \gamma_j \gamma_k P_0(A_k \cap A_k) I_p.
$$

The right-hand side is the covariance of the linear combination $\sum_{j=1}^{m} \gamma_j Z_{P_j}(A_j)$. Next, we show that

$$
\lim_{n_1, n_2 \to \infty} \sum_{(j_1, j_2) \in T_{n_1 n_2 - q}} \|b_{j_1, j_2}\|^2 = 0.
$$

Since, for $(j_1, j_2) \in T_{n_1 n_2 - q}$, the vector b_{j_1, j_2} has the form

$$
(-f^T(t_{j_1, j_2}) \left(X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)} \right)^{-1} X_{j_1-1, j_2}^{(n_1, n_2)\top}, 1, 0, \ldots, 0, 0, 0, \ldots, 0) \in \mathbb{R}^{n_1 n_2},
$$

it holds

$$
\|b_{j_1, j_2}\|^2 = \left\| f^T(t_{j_1, j_2}) \left(X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)} \right)^{-1} X_{j_1-1, j_2}^{(n_1, n_2)\top}, 1 \right\|^2
$$

$$
\leq \left\| f^T(t_{j_1, j_2}) \frac{X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)}}{\sqrt{n_1 n_2}} \right\|^2 + o(1).
$$

The result follows by the continuity of the norm operator and the regression functions. So, following and extending the technique in [15], the first assertion follows.

Proof of Theorem 5: For the localized model, suppose that H_0 does not hold true. Then for $(j_1, j_2) \in T_{n_1 n_2 - q}$, we get the corresponding p-dimensional vector of recursive residuals as

$$
\tilde{w}_{j_1, j_2}^{loc} = \tilde{Y}_{j_1, j_2} - f^T(t_{j_1, j_2}) \tilde{B}_{j_1-1, j_2}^{(n_1, n_2)}.
$$

interpreting \tilde{w}_{j_1, j_2} and \tilde{Y}_{j_1, j_2} as the row vectors.

By substituting the vector of observation \tilde{Y}_{j_1, j_2} and $\tilde{B}_{j_1-1, j_2}^{(n_1, n_2)}$, we further get

$$
\tilde{w}_{j_1, j_2}^{loc} = \frac{\tilde{g}(t_{j_1, j_2})}{\sqrt{d_{j_1, j_2}}} + \tilde{e}_{j_1, j_2} - f^T(t_{j_1, j_2}) \times
$$

$$
\left(X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)} \right)^{-1} X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)}
$$

$$
= \frac{\tilde{g}(t_{j_1, j_2})}{\sqrt{d_{j_1, j_2}}} + \tilde{e}_{j_1, j_2} - f^T(t_{j_1, j_2}) \times
$$

$$
\left(X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)} \right)^{-1} X_{j_1-1, j_2}^{(n_1, n_2)\top} G_{j_1-1, j_2}
$$

$$
= \frac{\tilde{g}(t_{j_1, j_2})}{\sqrt{d_{j_1, j_2}}} + \tilde{e}_{j_1, j_2} - f^T(t_{j_1, j_2}) \times
$$

$$
\left(X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)} \right)^{-1} X_{j_1-1, j_2}^{(n_1, n_2)\top} E_{j_1-1, j_2}
$$

$$
= \frac{\tilde{g}(t_{j_1, j_2})}{\sqrt{d_{j_1, j_2}}} + \tilde{e}_{j_1, j_2} - f^T(t_{j_1, j_2}) \times
$$

$$
\left(X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)} \right)^{-1} X_{j_1-1, j_2}^{(n_1, n_2)\top} E_{j_1-1, j_2}
$$

Since Proposition 2 ensures that

$$
\tilde{e}_{j_1, j_2} + \left(X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)} \right)^{-1} X_{j_1-1, j_2}^{(n_1, n_2)\top} E_{j_1-1, j_2}
$$

$$
= \tilde{w}_{j_1, j_2},
$$

which is the vector of recursive residual under H_0, then the last expression can be simplified as

$$
\tilde{w}_{j_1, j_2}^{loc} = \frac{\tilde{g}(t_{j_1, j_2})}{\sqrt{d_{j_1, j_2}}} - f^T(t_{j_1, j_2}) \times
$$

$$
\left(X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)} \right)^{-1} X_{j_1-1, j_2}^{(n_1, n_2)\top} G_{j_1-1, j_2}
$$

$$
+ \tilde{w}_{j_1, j_2}.
$$

Let $\tilde{W}_{n_1 \times n_2}^{loc} := (\tilde{w}_{j_1, j_2}^{loc})_{j_1=1, j_2=1}^{n_1, n_2}$ be the $n_1 \times n_2$ array of the p-dimensional vector of the recursive residuals associated with the localized model. By considering the linearity of the partial sums operator we get for every $A \in \mathcal{A}$,

$$
\frac{1}{\sqrt{n_1 n_2 - q}} S^{(p)}_{n_1 n_2 - q}(\tilde{W}_{n_1 \times n_2}^{loc})(A)
$$

$$
= \sum_{(j_1, j_2) \in T_{n_1 n_2 - q}} 1_A(t_{j_1, j_2}) \frac{\tilde{g}(t_{j_1, j_2})}{(n_1 n_2 - q)\sqrt{d_{j_1, j_2}}}
$$

$$
- \sum_{(j_1, j_2) \in T_{n_1 n_2 - q}} 1_A(t_{j_1, j_2}) f^T(t_{j_1, j_2}) \times
$$

$$
\left(X_{j_1-1, j_2}^{(n_1, n_2)\top} X_{j_1-1, j_2}^{(n_1, n_2)} \right)^{-1} X_{j_1-1, j_2}^{(n_1, n_2)\top} G_{j_1-1, j_2}
$$

$$
+ \frac{1}{\sqrt{n_1 n_2 - q}} S^{(p)}_{n_1 n_2 - q}(\tilde{W}_{n_1 \times n_2}^{loc})(A).
$$

The first term on the right-hand side of the last equation can be re-written as

$$
\frac{n_1 n_2}{(n_1 n_2 - q)\sqrt{d_{j_1, j_2}}} \sum_{(j_1, j_2)} 1_A(t_{j_1, j_2}) \frac{\tilde{g}(t_{j_1, j_2})}{n_1 n_2}
$$
where the sum is over \(T_{n_1 n_2 - q} \). Since the components of \(\tilde{g} \) has bounded variation on \(D \) and \(P_{n_1 n_2} \Rightarrow P_0 \), then by the definition of integral component-wise and the fact that \(q \ll n_1 n_2 \), we get by applying the similar argument as in the univariate case (cf. [21]), that

\[
\lim_{n_1 n_2 \to \infty} \int_A \frac{n_1 n_2 \tilde{g}(x, y)}{(n_1 n_2 - q) \sqrt{d_{j_1 j_2}}} P_{n_1 n_2}(dx, dy) = \int_A \tilde{g}(x, y) P_0(dx, dy).
\]

For the second term we have

\[
\sum_{(j_1, j_2) \in T_{n_1 n_2 - q}} A(t_{j_1 j_2}) f^T(t_{j_1 j_2})
\]

\[
\left(\frac{X_{j_1 - 1 j_2}^T X_{j_1 - 1 j_2} - 1}{(n_1 n_2 - q) \sqrt{d_{j_1 j_2}}} \right) G_{j_1 - 1 j_2}
\]

\[
= \frac{1}{n_1 n_2} \sum_{(j_1, j_2) \in T_{n_1 n_2 - q}} \frac{(n_1 n_2) A(t_{j_1 j_2}) f^T(t_{j_1 j_2})}{(n_1 n_2 - q) \sqrt{d_{j_1 j_2}}}
\]

\[
\times \left(\frac{X_{j_1 - 1 j_2}^T X_{j_1 - 1 j_2} - 1}{n_1 n_2} \right) G_{j_1 - 1 j_2}
\]

\[
= \frac{n_1 n_2}{(n_1 n_2 - q) \sqrt{d_{j_1 j_2}}} \int_A f^T(u, v) \times
\]

\[
\left(\int_{B_{u,v}} (f_k(x, y) f_\ell(x, y))^{q q} k=1, \ell=1 P_{n_1 n_2}(dx, dy) \right)^{-1}
\]

\[
\times \left(\int_{B_{u,v}} g_k(x, y) g_\ell(x, y) P_{n_1 n_2}(dx, dy) \right)^{q p}
\]

\[
P_{n_1 n_2}(du, dv).
\]

Hence, by applying the similar argument as in the case of the univariate model (cf. [21]), the last term converges to

\[
\int_A f^T(u, v) G^{-1}(u, v) H(u, v) P_0(du, dv).
\]

Thus, overall we have

\[
\frac{1}{\sqrt{n_1 n_2 - q}} \sum_{k=1, \ell=1}^{q q} S(k, \ell) \tilde{g}\left(\mathbf{W}_{n_1 n_2}(A)\right)
\]

converges in distribution to

\[
\Sigma^{-1/2} h_g(A) + Z P_0,
\]

finishing the proof.

Acknowledgements: The research was supported by the Ministry of Research and Higher Education of the Republic of Indonesia through the Fundamental Research Grant 2019.

References:
[17] W. Somayasa, G.N.A. Wibawa, and Y.B. Pa-
solon, Multidimensional Set-Indexed Partial
Sums Method for Checking the Appropriateness
of a Multivariate Spatial Regression Int. J. Math.
Models and Methods in Applied Sciences, 9,
2015, pp. 700-713.

[18] W. Somayasa, G.N.A. Wibawa, L. Hamimu and
L.O. Ngkoimani, Asymptotic theory in model di-
agnostic for general multivariate spatial regres-
sion, Int. J. Mathematics and Mathematical Sci-
ences 2016, pp. 1–16.

[19] W. Somayasa, Estimating the power of lack-of-
fit test for the mean of multivariate spatial re-
gression, Applied Mathematical Sciences, 11(52),

Based on Set-Indexed Partial Sums of Multi-
ivariate Regression Residuals, Journal of Applied

[21] W. Somayasa, Recursive residuals partial sums
method for testing model validity in modelling
of spatial data, WSEAS Trans. Math., 18, 2019,

[22] L. Xie and I.B. MacNeill, Spatial residual pro-
cesses and boundary detection, South African