Completeness of Inference Rules for New Vague Multivalued Dependencies

DŽENAN GUŠIĆ
University of Sarajevo
Faculty of Sciences and Mathematics
Department of Mathematics
Zmaja od Bosne 33-35, 71000 Sarajevo
BOSNIA AND HERZEGOVINA
dzenang@pmf.unsa.ba

Abstract

In this paper we prove that the set of the main inference rules for new vague functional and vague multivalued dependencies is complete set. More precisely, we prove that there exists a vague relation instance on given scheme, which satisfies all vague functional and vague multivalued dependencies from the set of all vague functional and vague multivalued dependencies that can be derived from given ones by repeated applications of the main inference rules, and violates given vague functional resp. vague multivalued dependency which is initially known not to be an element of the aforementioned set of derived vague dependencies. The paper can be considered as a natural continuation of our previous study, where new definitions of vague functional and vague multivalued dependencies are introduced, the corresponding inference rules are listed, and are shown to be sound.

Key-Words: Vague functional and vague multivalued dependencies, inference rules, completeness

1 Introduction and preliminaries

The main tool applied in this research is a vague set.
Recall that a vague set in some universe of discourse U is a set

$$
V=\left\{\left\langle u,\left[t_{V}(u), 1-f_{V}(u)\right]\right\rangle: u \in U\right\}
$$

where $\left[t_{V}(u), 1-f_{V}(u)\right] \subseteq[0,1]$ is the vague value joined to $u \in U$, and $t_{V}: U \rightarrow[0,1], f_{V}: U \rightarrow[0,1]$ are functions such that $t_{V}(u)+f_{V}(u) \leq 1$ for all u $\in U$.

Let $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a relation scheme on domains $U_{1}, U_{2}, \ldots, U_{n}$, where A_{i} is an attribute on the universe of discourse $U_{i}, i \in\{1,2, \ldots, n\}=I$.

Suppose that $V\left(U_{i}\right)$ is the family of all vague sets in $U_{i}, i \in I$.

A vague relation instance r on $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a subset of the cross product $V\left(U_{1}\right) \times V\left(U_{2}\right) \times \ldots$ $\times V\left(U_{n}\right)$.

A tuple t of r is denoted by

$$
\left(t\left[A_{1}\right], t\left[A_{2}\right], \ldots, t\left[A_{n}\right]\right),
$$

where the vague set $t\left[A_{i}\right]$ may be considered as the value of the attribute A_{i} on tuple t.

Let $\operatorname{Vag}\left(U_{i}\right)$ be the set of all vague values associated to the elements $u_{i} \in U_{i}, i \in I$.

A similarity measure on $\operatorname{Vag}\left(U_{i}\right)$ is a mapping $S E_{i}: \operatorname{Vag}\left(U_{i}\right) \times \operatorname{Vag}\left(U_{i}\right) \rightarrow[0,1]$, such that $S E_{i}(x, x)=1, S E_{i}(x, y)=S E_{i}(y, x)$, and $S E_{i}(x, z) \geq$
$\max _{y \in \operatorname{Vag}\left(U_{i}\right)}\left(\min \left(S E_{i}(x, y), S E_{i}(y, z)\right)\right)$ for all x, y, $y \in \operatorname{Vag}\left(U_{i}\right)$ $z \in \operatorname{Vag}\left(U_{i}\right)$.

Suppose that $S E_{i}$ is a similarity measure on $\operatorname{Vag}\left(U_{i}\right), i \in I$.

If

$$
\begin{aligned}
A_{i} & =\left\{\left\langle u,\left[t_{A_{i}}(u), 1-f_{A_{i}}(u)\right]\right\rangle: u \in U_{i}\right\} \\
& =\left\{a_{u}^{i}: u \in U_{i}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
B_{i} & =\left\{\left\langle u,\left[t_{B_{i}}(u), 1-f_{B_{i}}(u)\right]\right\rangle: u \in U_{i}\right\} \\
& =\left\{b_{u}^{i}: u \in U_{i}\right\}
\end{aligned}
$$

are two vague sets in U_{i}, then, the similarity measure $S E\left(A_{i}, B_{i}\right)$ between the vague sets A_{i} and B_{i} is given by

$$
S E\left(A_{i}, B_{i}\right)=
$$

$$
\begin{aligned}
& \min \left\{\operatorname { m i n } _ { a _ { u } ^ { i } \in A _ { i } } \left\{\operatorname { m a x } _ { b _ { u } ^ { i } \in B _ { i } } \left\{S E _ { i } \left(\left[t_{A_{i}}(u), 1-f_{A_{i}}(u)\right],\right.\right.\right.\right. \\
& \left.\left.\left.\left[t_{B_{i}}(u), 1-f_{B_{i}}(u)\right]\right)\right\}\right\}, \\
& \min _{b_{u}^{i} \in B_{i}}\left\{\operatorname { m a x } _ { a _ { u } ^ { i } \in A _ { i } } \left\{S E _ { i } \left(\left[t_{B_{i}}(u), 1-f_{B_{i}}(u)\right],\right.\right.\right.
\end{aligned}
$$

$$
\left.\left.\left.\left.\left[t_{A_{i}}(u), 1-f_{A_{i}}(u)\right]\right)\right\}\right\}\right\} .
$$

Finally, if r is a vague relation instance on $R\left(A_{1}, A_{2}, \ldots, A_{n}\right), t_{1}$ and t_{2} are any two tuples in r, and X is a subset of $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, then, the similarity measure $S E_{X}\left(t_{1}, t_{2}\right)$ between the tuples t_{1} and t_{2} on the attribute set X is given by

$$
S E_{X}\left(t_{1}, t_{2}\right)=\min _{A \in X}\left\{S E\left(t_{1}[A], t_{2}[A]\right)\right\} .
$$

Note that various authors proposed various definitions of similarity measures (see, e.g., [7], [2], [1], [5], [6]).

Through the rest of the paper, we shall assume that the similarity measures $S E_{i}, S E$ and $S E_{X}$ are given as above.

Recently, in [3] and [4], we introduced new formal definitions of vague functional and vague multivalued dependencies, respectively.

In particular, if X and Y are subsets of $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, and $\theta \in[0,1]$ is a number, then, the vague relation instance r is said to satisfy the vague functional dependency $X \stackrel{\theta}{\rightarrow}_{V} Y$, if for every pair of tuples t_{1} and t_{2} in r,

$$
S E_{Y}\left(t_{1}, t_{2}\right) \geq \min \left\{\theta, S E_{X}\left(t_{1}, t_{2}\right)\right\}
$$

Vague relation instance r is said to satisfy the vague multivalued dependency $X \rightarrow{ }_{\rightarrow}^{\theta} V$, if for every pair of tuples t_{1} and t_{2} in r, there exists a tuple t_{3} in r, such that

$$
\begin{aligned}
S E_{X}\left(t_{3}, t_{1}\right) \geq & \min \left\{\theta, S E_{X}\left(t_{1}, t_{2}\right)\right\}, \\
S E_{Y}\left(t_{3}, t_{1}\right) \geq & \min \left\{\theta, S E_{X}\left(t_{1}, t_{2}\right)\right\}, \\
& S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash(X \cup Y)}\left(t_{3}, t_{2}\right) \\
\geq & \min \left\{\theta, S E_{X}\left(t_{1}, t_{2}\right)\right\} .
\end{aligned}
$$

We write $X \rightarrow_{V} Y$ resp. $X \rightarrow_{V} Y$ instead of $X{ }_{\rightarrow}^{\theta} Y$ resp. $X \rightarrow{ }_{\rightarrow}^{\theta}{ }_{V} Y$ if $\theta=1$.

For various definitions of vague functional and vague multivalued dependencies proposed by various authors, see [7], [8], [11] and [9].

The following inference rules are the inference rules for vague functional and vague multivalued dependencies introduced above (see, [3] and [4]).

VF1 Inclusive rule for VFDs: If $X \xrightarrow{\theta_{1}} Y$ holds, and $\theta_{1} \geq \theta_{2}$, then $X \xrightarrow{\theta_{2}} V$ holds.

VF2 Reflexive rule for VFDs: If $X \supseteq Y$, then X $\rightarrow_{V} Y$ holds.

VF3 Augmentation rule for VFDs: If $X{ }^{\theta}{ }_{V} Y$ holds, then $X \cup Z \xrightarrow{\theta}_{V} Y \cup Z$ holds.

VF4 Transitivity rule for VFDs: If $X \xrightarrow{\theta_{1}} V$ and $Y \xrightarrow{\theta_{2}} V Z$ hold true, then $X \xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)}{ }_{V} Z$ holds true.

VF5 Union rule for VFDs: If $X \xrightarrow{\theta_{1}} V$ and $X \xrightarrow{\theta_{2}} V Z$ hold true, then $X \xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)}{ }_{V} Y \cup Z$ holds also true.

VF6 Pseudo-transitivity rule for VFDs: If X $\xrightarrow{\theta_{1}} V Y$ and $W \cup Y \xrightarrow{\theta_{2}} V Z$ hold true, then $W \cup$ $X \xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)}{ }_{V} Z$ holds true.

VF7 Decomposition rule for VFDs: If $X{ }_{\rightarrow}^{\theta_{V}} Y$ holds, and $Z \subseteq Y$, then $X \xrightarrow{\theta} V Z$ also holds.

VM1 Inclusive rule for VMVDs: If $X \rightarrow \xrightarrow{\theta_{1}} V$ Y holds, and $\theta_{1} \geq \theta_{2}$, then $X \rightarrow \xrightarrow{\theta_{2}} V$ holds.

VM2 Complementation rule for VMVDs: If X $\xrightarrow{\theta}{ }^{\theta} Y$ holds, then $X \xrightarrow{\theta}{ }_{V}\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ $\backslash(X \cup Y)$ holds.

VM3 Augmentation rule for VMVDs: If X $\rightarrow \xrightarrow{\theta} V V$ holds, and $W \supseteq Z$, then $W \cup X \rightarrow{ }_{\rightarrow}^{\theta} V$ $Y \cup Z$ also holds.

VM4 Transitivity rule for VMVDs: If $X \rightarrow \xrightarrow{\theta_{1}} V$ Y and $Y \rightarrow \xrightarrow{\theta_{2}} V$ hold true, then $X \xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)}{ }_{V}$ $Z \backslash Y$ holds true.

VM5 Replication rule: If $X{ }_{\rightarrow}^{\theta} V$ holds, then $X \rightarrow \xrightarrow{\theta}_{V} Y$ holds.

VM6 Coalescence rule for VFDs and VMVDs: If $X \rightarrow{\xrightarrow{\theta_{1}}}_{V} Y$ holds, $Z \subseteq Y$, and for some W disjoint from Y, we have that $W \xrightarrow{\theta_{2}} V Z$ holds true, then $X \xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)}{ }_{V} Z$ also holds true.

VM7 Union rule for VMVDs: If $X \rightarrow{\xrightarrow{\theta_{1}}}_{V} Y$ and $X \rightarrow \xrightarrow{\theta_{2}} V$ hold true, then $X \xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)}{ }_{V} Y$ $\cup Z$ holds true.

VM8 Pseudo-transitivity rule for VMVDs: If X $\rightarrow{\xrightarrow{\theta_{1}}}_{V} Y$ and $W \cup Y \rightarrow{\xrightarrow{\theta_{2}}}_{V} Z$ hold true, then $W \cup X \xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)}{ }_{V} Z \backslash(W \cup Y)$ holds also true.

VM9 Decomposition rule for VMVDs: If X $\rightarrow{\xrightarrow{\theta_{1}}}_{V} Y$ and $X \rightarrow{\xrightarrow{\theta_{2}}}_{V} Z$ hold true, then X $\xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)}{ }_{V} Y \cap Z, X \xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)} V Y \backslash Z$, and X $\xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)}{ }_{V} Z \backslash Y$ hold also true.

VM10 Mixed pseudo-transitivity rule:
If $X \rightarrow{\xrightarrow{\theta_{1}}}_{V} Y$ and $X \cup Y{\xrightarrow{\theta_{2}}}_{V} Z$ hold true, then $X \xrightarrow{\min \left(\theta_{1}, \theta_{2}\right)} V Z \backslash Y$ holds true.

The inference rules $V F 1-V F 4$ and $V M 1-$ $V M 6$ are the main inference rules, while the inference rules $V F 5-V F 7$ and $V M 7-V M 10$ are additional inference rules.

This means that the inference rules VF5-VF7 resp. $V M 7-V M 10$ follow from the rules $V F 1-$ $V F 4$ resp. $V F 1-V F 4$ and $V M 1-V M 6$ (see, [3, Th. 5] resp. [4, Th. 3]).

In [3] and [4], we have proved that the inference $V F 1-V F 7$ and $V M 1-V M 10$ are sound (see, Theorems 4, 5 and Theorems 2, 3).

The structure of the paper is as follows: Section 1 provides some necessary background and preliminary material. We introduce: vagues sets (over some universe of discourse), vague values (joined to the elements of some universe of discourse), vague relation instances (over some relation scheme), similarity measures between: vague values, vague sets, tuples. We recall the main and additional inference rules for vague functional and vague multivalued dependencies. Finally, we assemble those facts and results we will need. Section 2 is the main section of the paper. In this section we introduce closures, limit strengths of dependencies, dependency basis. We prove various auxiliary results related to closures and dependency basis. Ultimately, we state and prove the main result of the paper, i.e., that the set of the main inference rules for vague functional and vague multivalued dependencies is complete set.

Thus, the main purpose of the paper is to prove that the set $\{V F 1-V F 4, V M 1-V M 6\}$ is complete set (see, [10] in the case of fuzzy functional and fuzzy multivalued dependencies).

In order to prove this, it will be enough to
prove that there exists a vague relation instance r on $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ which satisfies $A \xrightarrow{1^{\theta}} V B$ resp. A $\xrightarrow{1 \theta} \rightarrow_{V} B$ if $A \xrightarrow{1 \theta} V$ resp. $A \xrightarrow{{ }^{\theta}}{ }^{\theta} V B$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$, and violates $X \xrightarrow{\theta}_{V} Y$ resp. $X \xrightarrow{\theta} \rightarrow_{V} Y$, where $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a relation scheme on domains $U_{1}, U_{2}, \ldots, U_{n}, A_{i}$ is an attribute on the universe of discourse $U_{i}, i \in I, X \xrightarrow{\theta}_{V} Y$ resp. X $\xrightarrow[\rightarrow]{\theta} V$ is a vague functional resp. vague multivalued dependency on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ which is not an element of $(\mathcal{V}, \mathcal{M})^{+}$, and $(\mathcal{V}, \mathcal{M})^{+}$is the set of all vague functional and vague multivalued dependencies on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ that can be derived from $\mathcal{V} \cup \mathcal{M}$ by repeated applications of the inference rules $V F 1$ $-V F 4, V M 1-V M 6$, where \mathcal{V} resp. \mathcal{M} is some set of vague functional resp. vague multivalued dependencies on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.

We close this section by noting that $S E_{Y}\left(t_{1}, t_{2}\right)$ $\geq S E_{X}\left(t_{1}, t_{2}\right)$ for $Y \subseteq X$, and $S E_{X}\left(t_{1}, t_{3}\right) \geq \theta$ for $S E_{X}\left(t_{1}, t_{2}\right) \geq \theta, S E_{X}\left(t_{2}, t_{3}\right) \geq \theta$.

2 Main Result

Let $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a relation scheme on domains $U_{1}, U_{2}, \ldots, U_{n}$, where A_{i} is an attribute on the universe of discourse $U_{i}, i \in I$.

Suppose that \mathcal{V} resp. \mathcal{M} is some set of vague functional resp. vague multivalued dependencies on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.

The closure $(\mathcal{V}, \mathcal{M})^{+}$of $\mathcal{V} \cup \mathcal{M}$ is the set of all vague functional dependencies and vague multivalued dependencies that can be derived from $\mathcal{V} \cup \mathcal{M}$ by repeated applications of the inference rules: VF1$V F 4, V M 1-V M 6$.

The set $(\mathcal{V}, \mathcal{M})^{+}$is infinite one regardless of whether $\mathcal{V} \cup \mathcal{M}$ is finite or not.

Namely, if $X \rightarrow \xrightarrow{\theta}_{V} Y$ belongs to $\mathcal{V} \cup \mathcal{M}$ for example, then, by $V M 1, X \rightarrow{\xrightarrow{\theta_{1}}}_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$for $\theta_{1} \in[0, \theta]$.

Let $X \xrightarrow{\theta}_{V} Y$ be some vague functional dependency on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.

The dependency $X{ }_{\rightarrow}^{\theta}$ V Y may or may not belong to $(\mathcal{V}, \mathcal{M})^{+}$.

The limit strength of $X \stackrel{\theta}{\rightarrow}_{V} Y$ (with respect to \mathcal{V} and $\mathcal{M})$ is the number $\theta_{l}(\mathcal{V}, \mathcal{M}) \in[0,1]$, such that X ${ }^{\theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$, and $\theta^{\prime} \leq \theta_{l}(\mathcal{V}, \mathcal{M})$
for each $X{\xrightarrow{\theta^{\prime}}}_{V} Y$ that belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
If $X \xrightarrow{\theta}_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$, then the limit strength $\theta_{l}(\mathcal{V}, \mathcal{M})$ obviously exists.

Namely, in this case, $\theta_{l}(\mathcal{V}, \mathcal{M})$ is given by

$$
\theta_{l}(\mathcal{V}, \mathcal{M})=\max \left\{\theta^{\prime}: X \xrightarrow{\theta^{\prime}} V \in(\mathcal{V}, \mathcal{M})^{+}\right\}
$$

Otherwise, if $X \stackrel{\rightarrow}{\rightarrow}_{V} Y$ does not belong to $(\mathcal{V}, \mathcal{M})^{+}$, the limit strength $\theta_{l}(\mathcal{V}, \mathcal{M})$ does not necessarily exists.

Let $X \xrightarrow[\rightarrow]{\theta} \rightarrow_{V} Y$ be some vague multivalued dependency on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.

The dependency $X \xrightarrow{\theta} \rightarrow_{V} Y$ may or may not belong to $(\mathcal{V}, \mathcal{M})^{+}$.

The limit strength of $X \xrightarrow{\theta} \rightarrow_{V} Y$ (with respect to \mathcal{V} and $\mathcal{M})$ is the number $\theta_{l}(\mathcal{V}, \mathcal{M}) \in[0,1]$, such that $X \xrightarrow{\theta_{l}(\mathcal{V}, \mathcal{M})} V Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$, and θ^{\prime} $\leq \theta_{l}(\mathcal{V}, \mathcal{M})$ for each $X \xrightarrow{\theta^{\prime}} \rightarrow_{V} Y$ that belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Reasoning as in the case of vague functional dependencies, we conclude that $\theta_{l}(\mathcal{V}, \mathcal{M})$ exists if X $\stackrel{\theta}{\rightarrow}{ }_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Otherwise, if $X \xrightarrow[\rightarrow]{\theta} \rightarrow_{V} Y$ does not belong to $(\mathcal{V}, \mathcal{M})^{+}$, the limit strength $\theta_{l}(\mathcal{V}, \mathcal{M})$ does not necessarily exists.

Let X be a subset of $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, and θ be a number in $[0,1]$.

The closure $X^{+}(\theta, \mathcal{V}, \mathcal{M})$ of X (with respect to \mathcal{V} and \mathcal{M}) is the set of attributes A $\in\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, such that $X \xrightarrow{\theta}_{V} A$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Suppose that $A \in X$.
By $V F 2, X \rightarrow_{V} A$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
Now, by $V F 1, X \xrightarrow{\theta}_{V} A$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$. Therefore, $A \in X^{+}(\theta, \mathcal{V}, \mathcal{M})$.

Since $A \in X$, we obtain that $X \subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$.

Theorem 1. Let $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a relation scheme on domains $U_{1}, U_{2}, \ldots, U_{n}$, where A_{i} is an attribute on the universe of discourse $U_{i}, i \in I$. Let $(\mathcal{V}, \mathcal{M})^{+}$be the closure of $\mathcal{V} \cup \mathcal{M}$, where \mathcal{V} resp. \mathcal{M} is some set of vague functional resp. vague multivalued dependencies on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. Suppose that $X \xrightarrow{\theta}_{V} Y$ is some vague functional dependency on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. Then, $X \xrightarrow[\rightarrow]{\theta}_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$if and only if $Y \subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$.

Proof. (\Rightarrow) Suppose that $X \xrightarrow{\theta}{ }_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Now, by $V F 7, X \xrightarrow{\theta}_{V} A$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$for every $A \in Y$.

Thus, $A \in X^{+}(\theta, \mathcal{V}, \mathcal{M})$ for every $A \in Y$. This means that $Y \subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$.
(\Leftarrow) Suppose that $Y \subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$.
Now, $A \in X^{+}(\theta, \mathcal{V}, \mathcal{M})$ for every $A \in Y$.
This means that $X \xrightarrow{\theta}_{V} A$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$ for every $A \in Y$.

Now, by $V F 5, X \xrightarrow{\theta}_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
This completes the proof.

Theorem 2. Let $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a relation scheme on domains $U_{1}, U_{2}, \ldots, U_{n}$, where A_{i} is an attribute on the universe of discourse $U_{i}, i \in I$. Suppose that X is a subset of $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, and θ is a number in $[0,1]$. Put

$$
\begin{aligned}
& \mathcal{F}(X, \theta) \\
= & \left\{Z \subseteq\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}: X \rightarrow \rightarrow_{V} Z\right\} .
\end{aligned}
$$

There is a partition $Y_{1}, Y_{2}, \ldots, Y_{k}$ of $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, such that $Z \in \mathcal{F}(X, \theta)$ if and only if Z is the union of some of the sets $Y_{1}, Y_{2}, \ldots, Y_{k}$. Furthermore, $X \rightarrow \rightarrow_{V}^{\theta}$ Y_{i} for $i \in\{1,2, \ldots, k\}$.

Proof. We start with the case $k=1$, i.e., with the partition $Y_{1}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.

Let $Z_{1} \in \mathcal{F}(X, \theta), Z_{1} \neq\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.
We have, $X \rightarrow \rightarrow_{V} Z_{1}$.
Since $X \xrightarrow{\theta} \rightarrow_{V} Z_{1}$, it follows by $V M 2$ that X $\xrightarrow[\rightarrow]{\theta}{ }_{V}\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash\left(X \cup Z_{1}\right)$.

Furthermore, $X \supseteq X \backslash Z_{1}$ and $V F 2$ yield that X $\rightarrow_{V} X \backslash Z_{1}$.

Since $1 \geq \theta$, it follows by $V F 1$ that $X \xrightarrow{\theta}_{V} X \backslash$ Z_{1}.

Now, by $V M 5, X \rightarrow{ }^{\theta} \rightarrow_{V} X \backslash Z_{1}$.
Since $X \rightarrow \rightarrow_{V}\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash\left(X \cup Z_{1}\right)$ and $X \xrightarrow{\theta} \rightarrow_{V} X \backslash Z_{1}$, it follows by $V M 7$ that $X \xrightarrow{\theta} \rightarrow_{V}$ $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash Z_{1}$,

Note that $Z_{1} \neq Y_{1}$.
Having in mind this fact, we replace Y_{1} by $Y_{1} \cap$ $Z_{1}=Z_{1}$ and $Y_{1} \backslash Z_{1}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash Z_{1}$. Denote these sets by Y_{1} and Y_{2}, respectively.

Since $X \xrightarrow{\theta} \rightarrow_{V} Z_{1}$ and $X \xrightarrow{\theta} \rightarrow_{V}$ $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash Z_{1}$, it follows that $X \xrightarrow{\theta} \rightarrow_{V} Y_{1}$ and $X \xrightarrow{\theta} \rightarrow_{V} Y_{2}$.

Now, if $Z \in\left\{Z_{1}\right\} \subseteq \mathcal{F}(X, \theta)$, it follows that Z $=Z_{1}=Y_{1}$, i.e., it follows that Z is the union of some of the sets Y_{1}, Y_{2}.

Suppose that Z is the union of some of the sets Y_{1}, Y_{2}. It follows that $Z=Y_{1}$ or $Z=Y_{2}$ or $Z=Y_{1} \cup$ Y_{2}.

Now, $X \xrightarrow{\theta} \rightarrow_{V} Y_{1}, X \xrightarrow{\theta} \rightarrow_{V} Y_{2}$ and $V M 7$ imply that $X \xrightarrow{\theta}{ }_{V} Y_{1} \cup Y_{2}$.

This means that $Z \in \mathcal{F}(X, \theta)$ in any case.
We proceed with the partition Y_{1}, Y_{2}.
Let $Z_{2} \in \mathcal{F}(X, \theta)$.
We have, $X \xrightarrow[\rightarrow]{\theta}{ }_{V} Z_{2}$.
Suppose that Z_{2} is the union of some of the sets Y_{1}, Y_{2}.

Now, if $Z \in\left\{Z_{1}, Z_{2}\right\} \subseteq \mathcal{F}(X, \theta)$, it follows that Z is the union of some of the sets Y_{1}, Y_{2}.

If Z is the union of some of the sets Y_{1}, Y_{2}, then, as before, $Z \in \mathcal{F}(X, \theta)$.

Suppose that Z_{2} is not the union of some of the sets Y_{1}, Y_{2}.

Now, reasoning as earlier, we replace each $Y_{i} \in$ $\left\{Y_{1}, Y_{2}\right\}$ such that $Y_{i} \cap Z_{2}$ and $Y_{i} \backslash Z_{2}$ are both nonempty, by $Y_{i} \cap Z_{2}$ and $Y_{i} \backslash Z_{2}$.

The obtained partition we denote by $Y_{1}, Y_{2}, \ldots, Y_{j}$. Clearly, $j=3$ or $j=4$.

Suppose that $Y_{i} \in\left\{Y_{1}, Y_{2}\right\}$ is such that $Y_{i} \cap Z_{2}$ and $Y_{i} \backslash Z_{2}$ are both nonempty.

Since $X \xrightarrow[\rightarrow]{\theta}{ }_{V} Y_{i}$ and $X \xrightarrow{\theta} \rightarrow_{V} Z_{2}$, it follows by $V M 9$ that $X \xrightarrow[\rightarrow]{\theta} \rightarrow_{V} Y_{i} \cap Z_{2}$ and $X \xrightarrow{\theta}{ }_{V} Y_{i} \backslash Z_{2}$.

This means that $X \xrightarrow[\rightarrow]{\theta}{ }_{V} Y_{i}$ for $i \in\{1,2, \ldots, j\}$.
Now, if $Z \in\left\{Z_{1}, Z_{2}\right\} \subseteq \mathcal{F}(X, \theta)$, it immediately follows that Z is the union of some of the sets Y_{1}, Y_{2}, \ldots, Y_{j}.

If Z is the union of some of the sets $Y_{1}, Y_{2}, \ldots, Y_{j}$, then, $X \rightarrow \rightarrow_{V}^{\theta} Y_{i}$ for $i \in\{1,2, \ldots, j\}$ and $V M 7$ yield that $X \xrightarrow[\rightarrow]{\theta}{ }_{V} Z$. Therefore, $Z \in \mathcal{F}(X, \theta)$.

Proceeding with the partition $Y_{1}, Y_{2}, \ldots, Y_{j}$ in the way described above, we obtain that there exists a partition $Y_{1}, Y_{2}, \ldots, Y_{k}$ of $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, such that $Z \in$ $\mathcal{F}(X, \theta)$ if and only if Z is the union of some of the sets $Y_{1}, Y_{2}, \ldots, Y_{k}$.

Moreover, we obtain that $X \xrightarrow{\theta} \rightarrow_{V} Y_{i}$ for $i \in$ $\{1,2, \ldots, k\}$.

This completes the proof.

The set $\left\{Y_{1}, Y_{2}, \ldots, Y_{k}\right\}$ of the sets $Y_{1}, Y_{2}, \ldots, Y_{k}$ that appear in Theorem 2 is called the dependency basis of X with respect to θ. The dependency basis of X with respect to θ is denoted by $\operatorname{dep}(X, \theta)$.

Theorem 3. The set $\{V F 1-V F 4, V M 1-V M 6\}$ is complete set.

Proof. Let $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a relation scheme on domains $U_{1}, U_{2}, \ldots, U_{n}$, where A_{i} is an attribute on the universe of discourse $U_{i}, i \in I$.

Let $(\mathcal{V}, \mathcal{M})^{+}$be the closure of $\mathcal{V} \cup \mathcal{M}$, where \mathcal{V} resp. \mathcal{M} is some set of vague functional resp. vague multivalued dependencies on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.

Suppose that $X \xrightarrow{\theta}_{V} Y$ resp. $X \rightarrow_{\rightarrow}^{\theta} Y$ is some vague functional resp. vague multivalued dependency on $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ which is not a member of $(\mathcal{V}, \mathcal{M})^{+}$.

In order to prove the theorem, it is enough to prove that there exists a vague relation instance r on $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ which satisfies $A \xrightarrow{1^{\theta}} B$ resp. A
 $(\mathcal{V}, \mathcal{M})^{+}$, and violates $X \xrightarrow{\theta}_{V} Y$ resp. $X \xrightarrow[\rightarrow]{\rightarrow_{V}} Y$. r can be constructed in the following way.
Suppose that $X^{+}(\theta, \mathcal{V}, \mathcal{M})=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.
It follows that $Y \subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$.
Hence, by Theorem 1, $X \xrightarrow{\theta}_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Consequently, by $V M 5, X \xrightarrow{\theta} \rightarrow_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

This contradicts the fact that $X \xrightarrow{\theta}_{V} Y$ resp. X $\xrightarrow[\rightarrow]{\theta}{ }_{V} Y$ is not a member of $(\mathcal{V}, \mathcal{M})^{+}$.

We conclude, $X^{+}(\theta, \mathcal{V}, \mathcal{M}) \subset\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.
Let $\operatorname{dep}(X, \theta)=\left\{Y_{1}, Y_{2}, \ldots, Y_{k}\right\}$ be the dependency basis of X with respect to θ.

Since $X^{+}(\theta, \mathcal{V}, \mathcal{M}) \subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$, it follows ba Theorem 1 that $X \xrightarrow{\theta}_{V} X^{+}(\theta, \mathcal{V}, \mathcal{M})$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Thus, by $V M 5$, the dependency $X \xrightarrow{\theta} V$ $X^{+}(\theta, \mathcal{V}, \mathcal{M})$ exists.

Hence, by Theorem 2, $X^{+}(\theta, \mathcal{V}, \mathcal{M})$ is the union of some of the sets $Y_{1}, Y_{2}, \ldots, Y_{k}$.

Since $X^{+}(\theta, \mathcal{V}, \mathcal{M}) \subset\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, we have that

$$
X^{+}(\theta, \mathcal{V}, \mathcal{M})=\bigcup_{i=1}^{l} Y_{i}
$$

for some $l<k$. Therefore,

$$
\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash X^{+}(\theta, \mathcal{V}, \mathcal{M})=\bigcup_{i=1+1}^{k} Y_{i} .
$$

For the sake of simplicity, we shall write

$$
\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash X^{+}(\theta, \mathcal{V}, \mathcal{M})=\bigcup_{i=1}^{m} W_{i}
$$

where, clearly, $m \geq 1$, and $W_{1}=Y_{l+1}, W_{2}=Y_{l+2}, \ldots$, $W_{m}=Y_{k}$.

Thus, the sets $Y_{1}, Y_{2}, \ldots, Y_{l}$ cover $X^{+}(\theta, \mathcal{V}, \mathcal{M})$, while the sets $Y_{l+1}, Y_{l+2}, \ldots, Y_{k}$, i.e., the sets W_{1}, W_{2}, \ldots, W_{m} cover $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash X^{+}(\theta, \mathcal{V}, \mathcal{M})$.

Consequently, the sets $X^{+}(\theta, \mathcal{V}, \mathcal{M}), W_{1}, W_{2}, \ldots$, W_{m} form a partition of $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.

Now, if $X \xrightarrow{\theta_{1}}{ }_{V} Z$ is a vague multivalued dependency such that $\theta_{1} \geq \theta$, then, by $V M 1$, the dependency $X \xrightarrow{\theta} \rightarrow_{V} Z$ exists. Therefore, by Theorem 2, Z is the union of some of the sets $Y_{1}, Y_{2}, \ldots, Y_{k}$, i.e., the sets $Y_{1}, Y_{2}, \ldots, Y_{l}, W_{1}, W_{2}, \ldots, W_{m}$. Since

$$
X^{+}(\theta, \mathcal{V}, \mathcal{M})=\bigcup_{i=1}^{l} Y_{i}
$$

it follows that Z is the union of a subset of $X^{+}(\theta, \mathcal{V}, \mathcal{M})$ and some of the sets $W_{1}, W_{2}, \ldots, W_{m}$.

Suppose that ${ }_{1} \Delta_{l}(\mathcal{V}, \mathcal{M}) \neq \varnothing$, where ${ }_{1} \Delta_{l}(\mathcal{V}, \mathcal{M}) \subseteq(\mathcal{V}, \mathcal{M})^{+}$is given by

$$
\begin{aligned}
& { } \Delta_{l}(\mathcal{V}, \mathcal{M}) \\
= & \left\{A \xrightarrow{1^{\theta}} V\right. \\
V & \left.B \in(\mathcal{V}, \mathcal{M})^{+}:{ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M})<\theta\right\} \cup \\
& \left\{A \xrightarrow{1 \theta}{ }_{V} B \in(\mathcal{V}, \mathcal{M})^{+}:{ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M})<\theta\right\} .
\end{aligned}
$$

Fix some $\theta^{\prime} \in\left(\theta^{\prime \prime}, \theta\right)$, where

$$
\theta^{\prime \prime}=\max _{1 \Delta_{l}(\mathcal{V}, \mathcal{M})}\left\{{ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M})\right\}
$$

If ${ }_{1} \Delta_{l}(\mathcal{V}, \mathcal{M})=\varnothing$, we put $\theta^{\prime}=0$.
Now, if $A \xrightarrow[\rightarrow]{1_{V}^{\theta}} B \in(\mathcal{V}, \mathcal{M})^{+}$resp. $A{\xrightarrow{1} \rightarrow_{V}^{\theta} B}$ $\in(\mathcal{V}, \mathcal{M})^{+}$is a vague functional resp. vague multivalued dependency whose limit strength ${ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M})$ is less than θ, then

$$
{ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M}) \leq \theta^{\prime \prime}<\theta^{\prime}<\theta
$$

i.e.,

$$
{ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M})<\theta^{\prime}<\theta
$$

Otherwise, if ${ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M}) \geq \theta$, then

$$
\theta^{\prime}<\theta \leq_{1} \theta_{l}(\mathcal{V}, \mathcal{M})
$$

Suppose that $U_{1}=U_{2}=\ldots=U_{n}=\{u\}=U$.
Let

$$
\begin{aligned}
V_{1} & =\left\{\left\langle u,\left[t_{V_{1}}(u), 1-f_{V_{1}}(u)\right]\right\rangle: u \in U\right\} \\
& =\left\{\left\langle u,\left[t_{V_{1}}(u), 1-f_{V_{1}}(u)\right]\right\rangle\right\}=\{\langle u, a\rangle\}
\end{aligned}
$$

and

$$
\begin{aligned}
V_{2} & =\left\{\left\langle u,\left[t_{V_{2}}(u), 1-f_{V_{2}}(u)\right]\right\rangle: u \in U\right\} \\
& =\left\{\left\langle u,\left[t_{V_{2}}(u), 1-f_{V_{2}}(u)\right]\right\rangle\right\}=\{\langle u, b\rangle\}
\end{aligned}
$$

be two vague sets in U, such that

$$
S E_{U}(a, b)=\theta^{\prime}
$$

where $S E_{U}: \operatorname{Vag}(U) \times \operatorname{Vag}(U) \rightarrow[0,1]$ is a similarity measure on $\operatorname{Vag}(U)$.

We obtain,

$$
\begin{aligned}
& S E\left(V_{1}, V_{2}\right) \\
= & \min \left\{\min _{\langle u, a\rangle \in V_{1}}\left\{\max _{\langle u, b\rangle \in V_{2}}\left\{S E_{U}(a, b)\right\}\right\}\right. \\
& \left.\min _{\langle u, b\rangle \in V_{2}}\left\{\max _{\langle u, a\rangle \in V_{1}}\left\{S E_{U}(b, a)\right\}\right\}\right\} \\
= & \theta^{\prime}
\end{aligned}
$$

Now, let r be the vague relation instance on $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ given by Table 1.

Table 1:

$X^{+}(\theta, \mathcal{V}, \mathcal{M})$	W_{1}	\ldots	W_{m}
V_{1}, \ldots, V_{1}	V_{1}, \ldots, V_{1}	\ldots	V_{1}, \ldots, V_{1}
V_{1}, \ldots, V_{1}	V_{1}, \ldots, V_{1}	\ldots	V_{2}, \ldots, V_{2}
\vdots	\vdots	\ldots	\vdots
V_{1}, \ldots, V_{1}	V_{2}, \ldots, V_{2}	\ldots	V_{1}, \ldots, V_{1}
V_{1}, \ldots, V_{1}	V_{2}, \ldots, V_{2}	\ldots	V_{2}, \ldots, V_{2}

Table 1 obviously resembles to the Table 2.

Table 2:

W_{1}	W_{2}	\ldots	W_{m-1}	W_{m}
V_{1}	V_{1}	\ldots	V_{1}	V_{1}
V_{1}	V_{1}	\ldots	V_{1}	V_{2}
\vdots	\vdots	\ldots	\vdots	\vdots
V_{2}	V_{2}	\ldots	V_{2}	V_{1}
V_{2}	V_{2}	\ldots	V_{2}	V_{2}

Actually, the tuples of the Table 1 correspond to the m-tuples $\left(V_{1}, V_{1}, \ldots, V_{1}, V_{1}\right)$, $\left(V_{1}, V_{1}, \ldots, V_{1}, V_{2}\right), \ldots,\left(V_{2}, V_{2}, \ldots, V_{2}, V_{1}\right)$, $\left(V_{2}, V_{2}, \ldots, V_{2}, V_{2}\right)$ of the Table 2.

In other words, each m-tuple $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, where $a_{i} \in\left\{V_{1}, V_{2}\right\}$ for $i \in\{1,2, \ldots, m\}$, determines one tuple of the Table 1.

In the obtained tuple, each of the attributes in W_{i} is assigned the value a_{i} for $i \in\{1,2, \ldots, m\}$.

Furthermore, each of the attributes in $X^{+}(\theta, \mathcal{V}, \mathcal{M})$ is assigned the value V_{1}.

Obviously, Table 1 has 2^{m} tuples.
As we already noted, $S E\left(V_{1}, V_{2}\right)=\theta^{\prime}$.
Since $S E\left(V_{1}, V_{1}\right)=S E\left(V_{2}, V_{2}\right)=1$, it follows from

$$
S E_{Z}\left(t_{1}, t_{2}\right)=\min _{A \in Z}\left\{S E\left(t_{1}[A], t_{2}[A]\right)\right\}
$$

that $S E_{Z}\left(t_{1}, t_{2}\right) \geq \theta^{\prime}$ for any $Z \subseteq\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, and any t_{1} and t_{2} in r.

Now, we prove that r satisfies $A \xrightarrow{1^{\theta}}$ V resp. A $\xrightarrow[\rightarrow]{1 \theta}{ }_{V} B$ if $A \xrightarrow{1 \theta}_{V} B$ resp. $A \rightarrow \xrightarrow{\theta}_{V} B$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$, and violates $X \xrightarrow{\theta}_{V} Y$ resp. $X \xrightarrow[\rightarrow]{\rightarrow_{V}} Y$.

Suppose that $A \xrightarrow{1 \theta}_{V} B$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
First, assume that ${ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M})<\theta$.
Then,

$$
{ }_{1} \theta \leq{ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M}) \leq \theta^{\prime \prime}<\theta^{\prime}<\theta
$$

Hence,

$$
S E_{B}\left(t_{1}, t_{2}\right) \geq \theta^{\prime}>_{1} \theta \geq \min \left\{{ }_{1} \theta, S E_{A}\left(t_{1}, t_{2}\right)\right\}
$$

for any t_{1} and t_{2} in r.
Therefore, r satisfies $A \xrightarrow{{ }^{\theta}} V V$.
Now, assume that ${ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M}) \geq \theta$.
It is enough to prove that r satisfies $A \xrightarrow{1 \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V}$ B.

Namely, in this case, the inference rule $V F 1$ will yield that r also satisfies $A \xrightarrow{1^{\theta}} V$.

In order to prove that r satisfies $A \xrightarrow{\theta_{l}(\mathcal{V}, \mathcal{M})} V B$, it is enough to prove that r satisfies $A \xrightarrow{1 \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B_{1}$, where $B_{1} \in B$ is a single attribute.

Hence, VF5 (soundness of VF5), will imply that r also satisfies $A \xrightarrow{1_{l} \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B$.

First, suppose that $B_{1} \in X^{+}(\theta, \mathcal{V}, \mathcal{M})$.
We obtain,

$$
\begin{aligned}
& S E_{B_{1}}\left(t_{1}, t_{2}\right) \\
= & 1 \geq \min \left\{{ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M}), S E_{A}\left(t_{1}, t_{2}\right)\right\}
\end{aligned}
$$

for any t_{1} and t_{2} in r.
Consequently, r satisfies $A \xrightarrow{1 \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B_{1}$, i.e., r satisfies $A \xrightarrow{1_{l} \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B$, i.e., r satisfies $A \xrightarrow{1^{\theta}} V$.

Second, suppose that $B_{1} \notin X^{+}(\theta, \mathcal{V}, \mathcal{M})$.
Then, $B_{1} \in W_{i}$ for some $i \in\{1,2, \ldots, m\}$.
Suppose that $A \cap W_{i}=\varnothing$.
By Theorem 2, $X \rightarrow \rightarrow_{V} Y_{j}$ for $j \in\{1,2, \ldots, k\}$. Therefore, $X \xrightarrow{\theta} \rightarrow_{V} W_{j}$ for $j \in\{1,2, \ldots, m\}$. Thus, $X \xrightarrow{\theta} \rightarrow_{V} W_{i}$.

As it can be seen from the proof of Theorem 2, the dependency $X \xrightarrow{\theta} \rightarrow_{V} W_{i}$ is obtained by application of the inference rules. Therefore, $X \xrightarrow{\theta} \rightarrow_{V} W_{i}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

By the very definition of the limit strength, we know that $A \xrightarrow{\theta_{l} \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$. Therefore, by $V M 7, A \xrightarrow{1 \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B_{1}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Now, since $X \xrightarrow{\theta} \rightarrow_{V} W_{i}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$, and $A \xrightarrow{1 \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B_{1}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$, it follows by VM6 and $A \cap W_{i}=\varnothing$, that $X \xrightarrow{\min \left(1 \theta_{l}(\mathcal{\nu}, \mathcal{M}), \theta\right)}{ }_{V}$ B_{1}, i.e., $X \xrightarrow{\theta_{V}} B_{1}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

By Theorem 1, this means that $B_{1} \in X^{+}(\theta, \mathcal{V}, \mathcal{M})$.

This is a contradiction.
We conclude, $A \cap W_{i} \neq \varnothing$.
Thus, we want to prove that r satisfies
$A \xrightarrow{1 \theta_{l}(\mathcal{\mathcal { V }}, \mathcal{M})}{ }_{V} B_{1}$, where $B_{1} \in W_{i}, A \cap W_{i} \neq \varnothing$, and ${ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M}) \geq \theta$.

In order to prove this, we shall prove the following, more general statement:

Let $P{\xrightarrow{\theta_{1}}}_{V} Q$ be a vague functional dependency, such that $\theta_{1} \geq \theta$, and $Q \subseteq W_{i}$ for some i $\in\{1,2, \ldots, m\}$. Then, r satisfies $P{ }^{\theta_{1}} V Q$ if and only if $P \cap W_{i} \neq \varnothing$.

Suppose that r satisfies $P{ }^{\theta_{1}}{ }_{V} Q$.
Moreover, suppose that $P \cap W_{i}=\varnothing$.
Let t_{1} resp. t_{2} be the tuple in r that corresponds to the m-tuple $\left(V_{1}, V_{1}, \ldots, V_{1}\right)$ resp. $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, where $a_{i}=V_{2}$, and $a_{j}=V_{1}$ for $j \in\{1,2, \ldots, m\} \backslash$ $\{i\}$.

Since $Q \subseteq W_{i}, \theta_{1} \geq \theta$, and $P \cap W_{i}=\varnothing$, the construction of the instance r yields that

$$
\begin{aligned}
S E_{Q}\left(t_{1}, t_{2}\right) & =\theta^{\prime}<\theta \leq \theta_{1}=\min \left\{\theta_{1}, 1\right\} \\
& =\min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\} .
\end{aligned}
$$

This contradicts the fact that r satisfies $P{ }^{\theta_{1}} V Q$.
Therefore, $P \cap W_{i} \neq \varnothing$.
Now, suppose that $P \cap W_{i} \neq \varnothing$.
Let A be any attribute in $P \cap W_{i}$.
Since $Q \subseteq W_{i}$, and $A \in W_{i}$, the construction of the instance r implies that

$$
S E_{W_{i}}\left(t_{1}, t_{2}\right)=S E_{Q}\left(t_{1}, t_{2}\right)=S E_{A}\left(t_{1}, t_{2}\right)
$$

for any t_{1} and t_{2} in r.
Moreover, $\{A\} \subseteq P$ yields that $S E_{A}\left(t_{1}, t_{2}\right) \geq$ $S E_{P}\left(t_{1}, t_{2}\right)$ for any t_{1} and t_{2} in r.

Thus,

$$
\begin{aligned}
S E_{Q}\left(t_{1}, t_{2}\right) & =S E_{A}\left(t_{1}, t_{2}\right) \geq S E_{P}\left(t_{1}, t_{2}\right) \\
& \geq \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\}
\end{aligned}
$$

for any t_{1} and t_{2} in r.
Consequently, r satisfies $P{\stackrel{\theta_{G}}{V}}_{V}$.
We conclude, r satisfies $A^{1 \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B_{1}$.
Reasoning as earlier, we obtain that r satisfies A $\xrightarrow{1 \theta} V$.

Now, we prove that r satisfies $A \xrightarrow{{ }^{\theta}}{ }_{V} B$ if A $\xrightarrow[\rightarrow]{{ }^{1 \theta}}{ }_{V} B$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Suppose that $A \rightarrow \rightarrow^{1 \theta}{ }_{V} B$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
First, assume that ${ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M})<\theta$.
Then,

$$
{ }_{1} \theta \leq{ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M}) \leq \theta^{\prime \prime}<\theta^{\prime}<\theta .
$$

Let $t_{1}, t_{2} \in r$.
Now, there exists a tuple t_{3} in $r, t_{3}=t_{1}$, such that

$$
\begin{aligned}
S E_{A}\left(t_{3}, t_{1}\right)= & 1 \geq \min \left\{1_{1} \theta, S E_{A}\left(t_{1}, t_{2}\right)\right\}, \\
S E_{B}\left(t_{3}, t_{1}\right)= & 1 \geq \min \left\{1_{1} \theta, S E_{A}\left(t_{1}, t_{2}\right)\right\}, \\
& S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash(A \cup B)}\left(t_{3}, t_{2}\right) \\
\geq & \theta^{\prime}>_{1} \theta \geq \min \left\{1 \theta, S E_{A}\left(t_{1}, t_{2}\right)\right\} .
\end{aligned}
$$

This means that r satisfies $A \xrightarrow{{ }^{\theta}} \rightarrow_{V} B$.
Suppose that ${ }_{1} \theta_{l}(\mathcal{V}, \mathcal{M}) \geq \theta$.
It is enough to prove that r satisfies $A \xrightarrow{1_{l}(\mathcal{V}, \mathcal{M})}{ }_{V}$ B.

Then, the soundness of $V M 1$ will imply that r also satisfies $A \xrightarrow{1^{\theta}}{ }_{V} B$.

By construction of r, it follows that

$$
\begin{aligned}
& S E_{B \cap X^{+}(\theta, \mathcal{V}, \mathcal{M})}\left(t_{1}, t_{2}\right) \\
= & 1 \geq \min \left\{1, S E_{A}\left(t_{1}, t_{2}\right)\right\}
\end{aligned}
$$

for any t_{1} and t_{2} in r.
This means that r satisfies the vague functional dependency $A \rightarrow_{V} B \cap X^{+}(\theta, \mathcal{V}, \mathcal{M})$.

Hence, by $V M 5, r$ satisfies the vague multivalued dependency $A \rightarrow \rightarrow_{V} B \cap X^{+}(\theta, \mathcal{V}, \mathcal{M})$.

If we prove that r satisfies $A \rightarrow \rightarrow_{V} B \cap W_{i}$ for every $i \in\{1,2, \ldots, m\}$ such that $B \cap W_{i} \neq \varnothing$, then, $V M 7$ will yield that r also satisfies $A \rightarrow \rightarrow_{V} B$.

Suppose that $i \in\{1,2, \ldots, m\}$ is such that $B \cap W_{i}$ $\neq \varnothing$.

First, suppose that $B \cap W_{i}=W_{i}$.
We have to prove that r satisfies $A \rightarrow_{V} W_{i}$.
In order to prove this, we shall prove the following, more general statement:

Let $i \in\{1,2, \ldots, m\}$. Then, r satisfies $P \xrightarrow{\theta_{1}} V$ W_{i} for any $P \subseteq\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, and any $\theta_{1} \in[0,1]$.

Indeed, let $t_{1}, t_{2} \in r$.
Suppose that $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$, where $a_{i}, b_{i} \in\left\{V_{1}, V_{2}\right\}$ for $i \in\{1,2, \ldots, m\}$, are the m-tuples that determine t_{1} and t_{2}, respectively.

Let $t_{3} \in r$ be the tuple that corresponds to the m tuple $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$, such that $c_{i}=a_{i}$, and $c_{j}=b_{j}$ for $j \in\{1,2, \ldots, m\} \backslash\{i\}$.

It follows by construction of r that

$$
\begin{aligned}
S E_{W_{i}}\left(t_{3}, t_{1}\right)= & 1 \geq \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\}, \\
& S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash\left(P \cup W_{i}\right)}\left(t_{3}, t_{2}\right) \\
= & 1 \geq \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\} .
\end{aligned}
$$

Since $S E_{W_{i}}\left(t_{3}, t_{1}\right)=1$ and $S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}}\left(t_{3}, t_{2}\right)=1$, it follows from P $\cap W_{i} \subseteq W_{i}$ and $P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right) \subseteq$ $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}$, that

$$
S E_{P \cap W_{i}}\left(t_{3}, t_{1}\right) \geq S E_{W_{i}}\left(t_{3}, t_{1}\right)=1
$$

and

$$
\begin{aligned}
& S E_{P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right)}\left(t_{3}, t_{2}\right) \\
\geq & S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}}\left(t_{3}, t_{2}\right)=1 .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& S E_{P \cap W_{i}}\left(t_{3}, t_{1}\right)=1, \\
& S E_{P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right)}\left(t_{3}, t_{2}\right)=1 .
\end{aligned}
$$

Furthermore, $P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right) \subseteq P$. Hence,

$$
S E_{P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right)}\left(t_{1}, t_{2}\right) \geq S E_{P}\left(t_{1}, t_{2}\right)
$$

Now,

$$
S E_{P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right)}\left(t_{3}, t_{2}\right)=1 \geq S E_{P}\left(t_{1}, t_{2}\right)
$$

and

$$
S E_{P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right)}\left(t_{1}, t_{2}\right) \geq S E_{P}\left(t_{1}, t_{2}\right)
$$

yield that

$$
S E_{P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right)}\left(t_{3}, t_{1}\right) \geq S E_{P}\left(t_{1}, t_{2}\right)
$$

Finally,

$$
S E_{P \cap W_{i}}\left(t_{3}, t_{1}\right)=1 \geq S E_{P}\left(t_{1}, t_{2}\right)
$$

and

$$
S E_{P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right)}\left(t_{3}, t_{1}\right) \geq S E_{P}\left(t_{1}, t_{2}\right)
$$

imply that

$$
\begin{aligned}
& S E_{P}\left(t_{3}, t_{1}\right) \\
= & \min _{A \in P}\left\{S E\left(t_{3}[A], t_{1}[A]\right)\right\} \\
= & \min \left(\min _{A \in P \cap W_{i}}\left\{S E\left(t_{3}[A], t_{1}[A]\right)\right\},\right. \\
& \left.\min _{A \in P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right)}\left\{S E\left(t_{3}[A], t_{1}[A]\right)\right\}\right) \\
= & \min \left(S E_{P \cap W_{i}}\left(t_{3}, t_{1}\right),\right. \\
& \left.S E_{P \cap\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right)}\left(t_{3}, t_{1}\right)\right) \\
\geq & \min \left(S E_{P}\left(t_{1}, t_{2}\right), S E_{P}\left(t_{1}, t_{2}\right)\right) \\
= & S E_{P}\left(t_{1}, t_{2}\right) \geq \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\} .
\end{aligned}
$$

Thus, for t_{1} and t_{2} in r, there exists the tuple $t_{3} \in$ r, such that

$$
\begin{aligned}
S E_{P}\left(t_{3}, t_{1}\right) \geq & \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\}, \\
S E_{W_{i}}\left(t_{3}, t_{1}\right) \geq & \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\}, \\
& S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash\left(P \cup W_{i}\right)}\left(t_{3}, t_{2}\right) \\
\geq & \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\} .
\end{aligned}
$$

Therefore, r satisfies $P \xrightarrow{\theta_{1}}{ }_{V} W_{i}$.
Consequently, r satisfies $A \rightarrow \rightarrow_{V} W_{i}$, i.e., A $\rightarrow_{V} B \cap W_{i}$.

Now, suppose that $B \cap W_{i} \subset W_{i}$.
Suppose that $A \cap W_{i}=\varnothing$.
By Theorem 2, $X \xrightarrow[\rightarrow]{\theta} \rightarrow_{V} Y_{j}$ for $j \in\{1,2, \ldots, k\}$.
Therefore, $X \xrightarrow{\theta} \rightarrow_{V} W_{j}$ for $j \in\{1,2, \ldots, m\}$. Thus, $X \xrightarrow[\rightarrow]{\theta}{ }_{V} W_{i}$.

The dependencies $X \xrightarrow{\theta} \rightarrow_{V} Y_{j}, j \in\{1,2, \ldots, k\}$ (and hence the dependencies $X \xrightarrow{\theta} \rightarrow_{V} W_{j}, j \in$ $\{1,2, \ldots, m\}$) are obtained by application of the inference rules. Therefore, $X \xrightarrow{\theta} \rightarrow_{V} Y_{j}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$for $j \in\{1,2, \ldots, k\}$.

In particular, $X \xrightarrow{\theta} \rightarrow_{V} W_{i}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
Since $X \xrightarrow{\theta} \rightarrow_{V} Y_{j}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$for $j \in$ $\{1,2, \ldots, k\}$, it follows by $V M 7$ that

$$
X \xrightarrow[\rightarrow]{\theta}{ }_{V}\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}
$$

also belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
Hence, $V M 9$ and the fact that $X \xrightarrow{\theta} \rightarrow_{V} W_{i}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$, imply that

$$
X \xrightarrow{\theta}{ }_{V}\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}
$$

belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
By the very definition of the limit strength, we know that $A \xrightarrow{1 \theta_{l}(\mathcal{Y}, \mathcal{M})}{ }_{V} B$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Hence, VM3 and the fact that

$$
\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i} \supseteq B \backslash W_{i},
$$

yield that

$$
\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i} \xrightarrow{1 \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B
$$

belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
Now,

$$
X \xrightarrow{\theta} \rightarrow_{V}\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}
$$

belongs to $(\mathcal{V}, \mathcal{M})^{+}$,

$$
\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i} \xrightarrow{1 \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B
$$

belongs to $(\mathcal{V}, \mathcal{M})^{+}$, and $V M 4$, imply that

$$
X \xrightarrow{\min \left(\theta_{1} \theta_{l}(\mathcal{V}, \mathcal{M})\right)}{ }_{V} B \backslash\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash W_{i}\right),
$$

i.e.,

$$
X \xrightarrow{\theta} \rightarrow_{V} B \cap W_{i}
$$

belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
Thus, the dependency $X \xrightarrow{\theta}{ }_{V} B \cap W_{i}$ exists.
As we noted at the beginning of the proof, this means that $B \cap W_{i}$ is the union of a subset of $X^{+}(\theta, \mathcal{V}, \mathcal{M})$, and some of the sets $W_{1}, W_{2}, \ldots, W_{m}$.

This is a contradiction, however, since $B \cap W_{i} \subset$ W_{i}.

We conclude, $A \cap W_{i} \neq \varnothing$.
Thus, it remains to prove that r satisfies $A \rightarrow \rightarrow_{V}$ $B \cap W_{i}$, where $B \cap W_{i} \subset W_{i}$, and $A \cap W_{i} \neq \varnothing$.

In order to prove this, we shall prove the following, more general statement:

Let $P \xrightarrow{\theta_{1}}{ }_{V} Q$ be a vague multivalued dependency such that $\theta_{1} \geq \theta$, and $Q \subset W_{i}$ for some $i \in$
$\{1,2, \ldots, m\}$. Then, r satisfies $P \xrightarrow{\theta_{1}} V Q$ if and only if $P \cap W_{i} \neq \varnothing$.

Suppose that r satisfies $P \xrightarrow{\theta_{1}} V$.
Moreover, suppose that $P \cap W_{i}=\varnothing$.
Note that $Q \subset W_{i}$. Hence, $W_{i} \backslash Q \neq \varnothing$.
Let t_{1} resp. t_{2} be the tuple in r that corresponds to the m-tuple $\left(V_{1}, V_{1}, \ldots, V_{1}\right)$ resp. $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, where $a_{i}=V_{2}$, and $a_{j}=V_{1}$ for $j \in\{1,2, \ldots, m\} \backslash$ $\{i\}$.

Since $P \cap W_{i}=\varnothing$, it immediately follows that $S E_{P}\left(t_{1}, t_{2}\right)=1$.

Since r satisfies $P \xrightarrow{\theta_{1}} V Q$, and $t_{1}, t_{2} \in r$, we have that there exists a tuple $t_{3} \in r$, such that

$$
\begin{aligned}
S E_{P}\left(t_{3}, t_{1}\right) \geq & \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\}, \\
= & \min \left\{\theta_{1}, 1\right\}=\theta_{1}, \\
S E_{Q}\left(t_{3}, t_{1}\right) \geq & \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\}=\theta_{1}, \\
& S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash(P \cup Q)}\left(t_{3}, t_{2}\right) \\
\geq & \min \left\{\theta_{1}, S E_{P}\left(t_{1}, t_{2}\right)\right\}=\theta_{1} .
\end{aligned}
$$

Note that $\theta_{1} \geq \theta>\theta^{\prime}$.
Hence,

$$
S E_{Q}\left(t_{3}, t_{1}\right) \geq \theta_{1}>\theta^{\prime}
$$

and

$$
S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash(P \cup Q)}\left(t_{3}, t_{2}\right) \geq \theta_{1}>\theta^{\prime}
$$

yield that

$$
S E_{Q}\left(t_{3}, t_{1}\right)=1
$$

and

$$
S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash(P \cup Q)}\left(t_{3}, t_{2}\right)=1 .
$$

Since $S E_{Q}\left(t_{3}, t_{1}\right)=1$, and in the tuple t_{1} each of the attributes is assigned the value V_{1}, it follows that in the tuple t_{3} each of the attributes in Q is assigned the value V_{1}.

Similarly, $S E_{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash(P \cup Q)}\left(t_{3}, t_{2}\right)=1 \mathrm{im}-$ plies that in the tuples t_{2} and t_{3} each of the attributes in $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash(P \cup Q)$ has the same value.

In particular, this means that in the tuple t_{3} each of the attributes in $W_{i} \backslash Q$ is assigned the value V_{2}, and each of the attributes in

$$
\left(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \backslash(P \cup Q)\right) \backslash\left(W_{i} \backslash Q\right)
$$

is assigned the value V_{1}.
Thus, in the tuple t_{3}, each of the attributes in Q is assigned the value V_{1}, while, at the same time, each of the attributes in $W_{i} \backslash Q$ is assigned the value V_{2}.

This, however, is a contradiction.
Namely, according to the construction of the instance r, in each tuple of r, each of the attributes in $W_{i}, i \in\{1,2, \ldots, m\}$ has the same value.

We conclude, $P \cap W_{i} \neq \varnothing$.
Now, suppose that $P \cap W_{i} \neq \varnothing$.
We have: $\theta_{1} \geq \theta, Q \subset W_{i}$, and $P \cap W_{i} \neq \varnothing$.
Hence, the first additional statement (derived in the proof of theorem) yields that r satisfies the vague functional dependency $P \xrightarrow{\theta_{1}} Q$.

Consequently, VM5 yields that r also satisfies the vague multivalued dependency $P \xrightarrow{\theta_{1}} V Q$.

We obtain, r satisfies $A \rightarrow \rightarrow_{V} B \cap W_{i}$.
Thus, r satisfies $A \rightarrow \rightarrow_{V} B \cap X^{+}(\theta, \mathcal{V}, \mathcal{M})$ and $A \rightarrow \rightarrow_{V} B \cap W_{i}$ for $i \in\{1,2, \ldots, m\}$ such that $B \cap$ $W_{i} \neq \varnothing$.

By $V M 7, r$ satisfies $A \rightarrow_{V} B$.
Finally, by $V M 1, r$ satisfies $A \xrightarrow{1 \theta_{l}(\mathcal{V}, \mathcal{M})}{ }_{V} B$, i.e., $A \xrightarrow{1 \theta} \rightarrow_{V} B$.

It remains to prove that r violates $X{ }^{\theta}{ }_{V} Y$ resp. $X \xrightarrow{\theta} \rightarrow_{V} Y$.

First, we prove that r violates $X \xrightarrow{\theta}_{V} Y$.
Suppose that $Y \subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$.
Then, by Theorem 1, it follows that $X \xrightarrow{\theta}_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

This is a contradiction.
Hence, $Y \backslash X^{+}(\theta, \mathcal{V}, \mathcal{M}) \neq \varnothing$.
This means that there exists $i \in\{1,2, \ldots, m\}$ such that $Y \cap W_{i} \neq \varnothing$.

Suppose that r satisfies $X \xrightarrow{\theta}_{V} Y$.
Hence, by $V F 7, r$ satisfies $X \xrightarrow{\theta}_{V} Y \cap W_{i}$.
Now, $\theta \geq \theta$, and $Y \cap W_{i} \subseteq W_{i}$ yield that $X \cap W_{i}$ $\neq \varnothing$.

This, however, is a contradiction since $X \subseteq$ $X^{+}(\theta, \mathcal{V}, \mathcal{M})$, and $X^{+}(\theta, \mathcal{V}, \mathcal{M}) \cap W_{j}=\varnothing$ for all $j \in\{1,2, \ldots, m\}$.

We obtain, r violates $X \xrightarrow{\theta}_{V} Y$.
Now, we prove that r violates $X \xrightarrow{\theta} \rightarrow_{V} Y$.
Suppose that $Y \subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$.
It follows by Theorem 1 that $X{ }^{\theta} V Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Then, by $V M 5, X \rightarrow{ }^{\theta} \rightarrow_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

This is a contradiction.
Therefore, $Y \backslash X^{+}(\theta, \mathcal{V}, \mathcal{M}) \neq \varnothing$.
This means that there is $k \in\{1,2, \ldots, m\}$ such that $Y \cap W_{k} \neq \varnothing$.

Suppose that $Y \cap W_{i}=W_{i}$ for each $i \in\{1,2, \ldots, m\}$ such that $Y \cap W_{i} \neq \varnothing$.

Thus, either $Y \cap W_{i}=W_{i}$ or $Y \cap W_{i}=\varnothing$ for all $i \in\{1,2, \ldots, m\}$.

Suppose that $Y \cap W_{i}=W_{i}$ for some $i \in\{1,2, \ldots, m\}$.

As noted earlier, $X \xrightarrow{\theta} \rightarrow_{V} W_{j}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$for all $j \in\{1,2, \ldots, m\}$. In particular, $X \xrightarrow[\rightarrow]{\theta} V W_{i}$, i.e., $X \xrightarrow[\rightarrow]{\theta}{ }_{V} Y \cap W_{i}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Since $X^{+}(\theta, \mathcal{V}, \mathcal{M}) \subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$, it follows by Theorem 1 that $X \xrightarrow{\theta}_{V} X^{+}(\theta, \mathcal{V}, \mathcal{M})$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

Hence, $V F 7$ and the fact that $Y \cap X^{+}(\theta, \mathcal{V}, \mathcal{M})$ $\subseteq X^{+}(\theta, \mathcal{V}, \mathcal{M})$ yield that

$$
X \stackrel{\theta}{\rightarrow}_{V} Y \cap X^{+}(\theta, \mathcal{V}, \mathcal{M})
$$

belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
Hence, by $V M 5$,

$$
X \xrightarrow[\rightarrow]{\theta} \rightarrow_{V} Y \cap X^{+}(\theta, \mathcal{V}, \mathcal{M})
$$

belongs to $(\mathcal{V}, \mathcal{M})^{+}$.
Now, $X \xrightarrow[\rightarrow]{\theta} \rightarrow_{V} Y \cap X^{+}(\theta, \mathcal{V}, \mathcal{M})$ belongs to $(\mathcal{V}, \mathcal{M})^{+}, X \xrightarrow{\theta} \rightarrow_{V} Y \cap W_{i}$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$for every $i \in\{1,2, \ldots, m\}$ such that $Y \cap W_{i} \neq \varnothing$, and $V M 7$, yield that $X \xrightarrow{\theta} \rightarrow_{V} Y$ belongs to $(\mathcal{V}, \mathcal{M})^{+}$.

This is a contradiction.
We conclude, $Y \cap W_{i} \subset W_{i}$ for some $i \in$ $\{1,2, \ldots, m\}$ such that $Y \cap W_{i} \neq \varnothing$.

Let $i \in\{1,2, \ldots, m\}$ be such that $Y \cap W_{i} \subset W_{i}$.
Suppose that r satisfies $X \xrightarrow{\theta} \rightarrow_{V} Y \cap W_{i}$.
Since $\theta \geq \theta$, and $Y \cap W_{i} \subset W_{i}$, it follows that X $\cap W_{i} \neq \varnothing$.

Reasoning as in the previous case, we conclude that this is a contradiction.

We conclude, r violates $X \xrightarrow{\theta} \rightarrow_{V} Y \cap W_{i}$.
As we proved above, r satisfies any vague multivalued dependency that has $W_{j}, j \in\{1,2, \ldots, m\}$ as its right side.

Hence, r satisfies $X \rightarrow \rightarrow_{V} W_{i}$.

Suppose that r satisfies $X \xrightarrow[\rightarrow]{\theta} \rightarrow_{V} Y$.
By $V M 9, r$ satisfies $X \xrightarrow[\rightarrow]{\theta} V \cap W_{i}$.
This is a contradiction.
Therefore, r violates $X \rightarrow \rightarrow_{V}^{\theta} Y$.
This completes the proof.

References:

[1] S.-M. Chen, Measures of Similarity Between Vague Sets, Fuzzy Sets and Systems 74, 1995, pp. 217-223.
[2] S.-M. Chen, Similarity Measures Between Vague Sets and Between Elements, IEEE Transactions on Systems, Man and Cybernetics 27, 1997, pp. 153-159.
[3] Dž. Gušić, Soundness and Completeness of Inference Rules for New Vague Functional Dependencies, MATEC Web of Conferences, to appear.
[4] Dž. Gušíć, Soundness of Inference Rules for New Vague Multivalued Dependencies, MATEC Web of Conferences, to appear.
[5] D.-H. Hong and C. Kim, A note on Similarity Measures Between Vague Sets and Between Elements, Information Sciences 115, 1999, pp. 8396.
[6] F. Li and Z. Xu, Measures of Similarity Between Vague Sets, Journal of Software 12, 2001, pp. 922-927.
[7] A. Lu and W. Ng, Managing Merged Data by Vague Functional Dependencies, in: P. Atzeni, W. Chu, H. Lu, S. Zhou, T.-W. Ling (eds.), ER 2004 LNCS, vol. 3288, Springer-Verlag, Berlin Heidelberg 2004, pp. 259-272.
[8] J. Mishra and S. Ghosh, A New Functional Dependency in a Vague Relational Database Model, International Journal of Computer Applications 39, 2012, pp. 29-36.
[9] J. Mishra and S. Ghosh, A Vague Multivalued Data Dependency, Fuzzy Inf. Eng. 4, 2013, pp. 459-473.
[10] M. Sozat and A. Yazici, A complete axiomatization for fuzzy functional and multivalued dependencies in fuzzy database relations, Fuzzy Sets and System 117, 2001, pp. 161-181.
[11] F. Zhao and Z.-M. Ma, Functional Dependencies in Vague Relational Databases, in: IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, Taipei 2006, pp. 4006-4010.

