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Abstract: The linear complexity of a sequence is an important parameter in its evaluation as a keystream cipher
for cryptographic applications. Using of cyclotomic classes to construct sequences is an important method for
designing sequences with high linear complexity. In this article, we study the linear complexity of generalized
cyclotomic binary sequences of length 2npm. These sequences were constructed from new generalized cyclotomic
classed prepared by X. Zeng at el. We investigate discrete Fourier transform of these sequences and define the
sufficient conditions for the existence of sequences with high linear complexity.
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1 Introduction
Cyclotomic and generalized cyclotomic classes are
widely adopted in communication, coding and cryp-
tography. They play an important role in the design of
Hopping sequences, the construction of linear codes
and the generation of key streams. In stream cipher,
the typical examples are the Legendre sequences de-
rived from cyclotomic classes modulo an odd prime
and the Jacobi sequences derived from generalized cy-
clotomic classes modulo a product of two odd distinct
primes. The generalized cyclotomic classes modulo
a prime-power or modulo a double of a prime-power
are also paid attention in the literature.

We mention here that, for an odd prime p, we find
a family of binary sequences considered in [7] were
defined from generalized cyclotomic classes modulo
2pm for an integer m ≥ 1. Later they were extended
in [2, 3, 5]. Motivated by these, we will consider
the binary sequences via new generalized cyclotomic
classes modulo 2npm, which are defined in another
way. In fact, the definition of the new generalized
cyclotomic classes was studied in [9, 8] and is re-
lated to Fermat-Euler quotients [14]. In this paper
we will study the linear complexity of the proposed
sequences. The linear complexity of two families of
sequences with period 2pm was partly studied in [13]
with another definition of sequences.

The linear complexity of a sequence is an impor-
tant characteristic of its quality. The linear complex-

ity L is the length of the shortest linear feedback shift
register that is capable of generating the sequence [6].
Knowledge of just 2L consecutive digits of the se-
quence is sufficient to recover the remainder of the
sequence. Thus, it is reasonable to suggest that a se-
quence of period N is ‘good’ if its linear complexity
L > N/2 [1, 6].

We organize the work as follows. In Sect. 2, we
propose the sequences via defining the new general-
ized cyclotomic classes modulo 2npm. In Sect. 3, we
prove a lower bound on the linear complexity of the
proposed sequences of period 2npm for any n > 0. In
Sect. 4, we determine the exact values of the linear
complexity of the proposed sequences of period 2pm,
i.e., the case of n = 1. Finally we draw a conclusion
in Sect. 5.

2 The definition of the new sequences
We denote by ZN = {0, 1, . . . , N − 1} the ring of in-
tegers modulo N and by Z∗N the multiplicative group
consisting of all invertible elements in ZN , where N
is a positive integer.

Throughout this paper, let p be an odd prime and
N = 2npm for integers n ≥ 1 and m ≥ 2. We have
the equivalence ZN ∼= Z2n×Zpm , which is relative to
the isomorphism φ(a) = (a mod 2n, a mod pm)
[4].

Now let p = ef + 1 for positive integers e and f
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and let g be a primitive root modulo p2. Then g is a
primitive root modulo pr for all r ≥ 1, and hence the
order of g modulo pr is ϕ(pr) = pr−1(p − 1), where
ϕ(·) is the Euler’s totient function. Since

Zpm = Z∗pm∪pZ∗pm−1∪p2Z∗pm−2∪· · ·∪pm−1Z∗p∪{0},

we define generalized cyclotomic classes for each
Z∗pr , where 1 ≤ r ≤ m, in the following way

D
(pr,f)
0 , 〈gfpr−1〉 = {gkfpr−1

(mod pr) : 0 ≤ k < e}

and

D
(pr,f)
l , glD

(pr,f)
0 = {gl · gkfpr−1

(mod pr) :

0 ≤ k < e}, 1 ≤ l < fpr−1.

Indeed D
(pr,f)
0 , D

(pr,f)
1 , . . . , D

(pr,f)
fpr−1−1 give a parti-

tion of Z∗pr . We note that the definition is related to
Fermat-Euler quotients if f = 1, see [10]. If f is
even, we define for some integer b

B(p
r)

0 =

pr−1f/2−1⋃
i=0

D
(pr)
i+b (mod pr−1f)

,

B(p
r)

1 =

pr−1f−1⋃
i=pr−1f/2

D
(pr)
i+b (mod pr−1f)

, (1)

which have been discussed in [8, 11, 12]. It is clear
that Z∗pr = B(p

r)
0 ∪ B(p

r)
1 and

|B(p
r)

0 | = |B(p
r)

1 | = |Z∗pr |/2 = pr−1(p− 1)/2.

Then we select 2n many subsets Cj ⊆ Zpm , 0 ≤
j < 2n, defined as

Cj = B(p
m)

ij,m
∪pB(p

m−1)
ij,m−1

∪p2B(p
m−2)

ij,m−2
∪· · ·∪pm−1B(p)ij,1 ,

where ij,1, ij,2, . . . , ij,m ∈ {0, 1}. We see that

2n−1⋃
j=0

{j} × Cj ⊆ Z2n × Zpm

and hence
2n−1⋃
j=0

φ−1({j} × Cj) ⊆ Z2npm .

Now put

C = {0, 2pm, . . . , (2n−2)pm}∪
2n−1⋃
j=0

φ−1({j}×Cj)

⊆ Z2npm ,

which implies |C| = 2n−1pm = N/2. Then we define
a balanced binary sequence (su) of period N = 2npm

in the following

su =

{
1, if u (mod N) ∈ C,
0, otherwise.

(2)

Below we will consider the linear complexity of (su).
Let

S(X) = s0 + s1X + s2X
2 + . . .+ sN−1X

N−1,

which is in fact the generating polynomial of (su).
Then by Eq.(2), we have

S(X) =
2n−1−1∑
j=0

X2jpm +
2n−1∑
j=0

Xφ−1({j}×Cj)

=
2n−1−1∑
j=0

X2jpm +
2n−1∑
j=0

m∑
r=1

X
φ−1({j}×pm−rB(p

r)
ij,r

)
.

(3)
It is well known (see, for example [1]) that the linear
complexity of (su), denoted by L((su)), can be com-
puted by

L((su)) = N − deg
(
gcd(XN − 1,S(X))

)
. (4)

3 A lower bound on the linear com-
plexity of (su) of length 2npm

In the case of N = 2npm, we have

XN − 1 = X2npm − 1 =
(
Xpm − 1

)2n
,

hence we only to consider the common divisor

gcd(Xpm − 1,S(X))

in the ring F2[X], where F2 is the split field of F2, So
to compute the linear complexity of (su) by (4), it is
sufficient to find the zeros of S(X) in the set {αv, v =
0, 1, . . . , pm − 1}, where α ∈ F2 is a pm-th primitive
root of unity.

We introduce the auxiliary polynomials for r =
1, 2, . . . ,m

T (r)(X) =
∑

w∈pm−rB(p
r)

0

Xw.

In the sequel we always let dr = pr−1f/2.

Lemma 1 Let B(p
r)

0 and B(p
r)

1 be defined as in Eq.(1)
with r ≥ 1 and even f . Then in Zpm we have

B(p
r)

1 = gp
r−1f/2B(p

r)
0 = gdrB(p

r)
0 .
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Lemma 2 Let α ∈ F2 be a pm-th primitive root of
unity. Let v ∈ Z and l ∈ {0, 1}. Then we have∑

u∈φ−1({j}×pm−rB(p
r)

l )

αvu = T (r)(αvg
ldr

)

for all 0 ≤ j ≤ 2n − 1 and 1 ≤ r ≤ m.

Proof: From{
u mod pm | u ∈ φ−1

(
{j} × pm−rB(p

r)
l

)}
=

pm−rB(p
r)

l

and B(p
r)

l = gldrB(p
r)

0 by Lemma 1, we derive the
desired result. ut

Lemma 3 Let α ∈ F2 be a pm-th primitive root of
unity. Let v ∈ Z with ph||v for some integer 0 ≤ h ≤
m− 11. Then we have

T (r)(αv) + T (r)(αvg
dr
) =

{
1, if h = r − 1,

0, otherwise,

for 1 ≤ r ≤ m.

Proof: Write v = phv1 for some v1 with gcd(v1, p) =

1. From the definition of T (r)(X) above, we have

T (r)(αv) + T (r)(αvg
dr
) =∑

w∈pm−rZ∗pr

αvw =
∑
w∈Z∗pr

αv1wp
m−r+h

.

It is clear that

T (r)(αv) + T (r)(αvg
dr
) = |Z∗pr | = pr−1(p− 1) = 0

if h ≥ r. Now we consider the case h < r.
Case (1). If r = 1 then h = 0, we get that∑

w∈Z∗p α
v1wpm−1

= 1.
Case (2). If r > 1, we see that

∑
j∈Z∗pr

αjp
m−r+h

=
∑
j∈Zpr

αjp
m−r+h −

∑
j∈pZpr

αjp
m−r+h

=
∑
j∈Zpr

αjp
m−r+h −

∑
j∈Zpr−1

αjp
m−r+h+1

=



αpm+h−1
αpm−r+h−1

− αpm+h−1
αpm−r+h+1−1

= 0,

if h < r − 1,

αpm+h−1
αpm−r+h−1

+ 1 = 1,

if h = r − 1.

1ph||v means that ph|v but ph+1 - v.

We complete the proof. ut
In Sect.2, we use the numbers ij,1, ij,2, . . . , ij,m ∈

{0, 1} to define Cj for 0 ≤ j ≤ 2n − 1. Now let

R =

1 ≤ r ≤ m
∣∣∣∣ 2n−1∑
j=0

ij,r ≡ 1 (mod 2)

 ,

R∗ = {1, . . . ,m} \R.

We have the following main result.

Theorem 4 Let (su) be the binary sequence of pe-
riod 2npm defined by (2). Then its linear complexity
L((su)) satisfies

L((su)) ≥


2npm −

∑
r∈R

2npm−r(p− 1), if n = 1,∑
r∈R

2npm−r(p− 1), if n > 1.

Proof: Let α ∈ F2 be a pm-th primitive root of unity
and v ∈ {0, 1, . . . , pm−1}. From the definition of the
sequence (su) in (2), we have by Eq.(3) and Lemma 2

S(αv) = 2n−1 +

2n−1∑
j=0

m∑
r=1

T (r)(αvg
dr ·ij,r

). (5)

Due to the fact that T (r)(αvg
dr ·ij1,r ) +

T (r)(αvg
dr ·ij2,r ) = 0 if ij1,r = ij2,r for a fixed

r, we derive from (5)

S(αv) = 2n−1 +
∑
r∈R

(
T (r)(αv) + T (r)(αvg

dr
)
)

by the choice of R. Now we check whether S(αv) =
0 or not.

For v ∈ {1, 2, . . . , pm − 1} and r, r′ ∈
{1, 2, . . . ,m}, if pr−1||v we see that T (r)(αv) +

T (r)(αvg
dr
) = 1 but T (r′)(αv)+T (r′)(αvg

dr′ ) = 0 for
r′ 6= r by Lemma 3. Then we have

∑
r∈R

pm−r(p − 1)

many v such that∑
r∈R

(
T (r)(αv) + T (r)(αvg

dr
)
)
= 1

but pm − 1−
∑
r∈R

pm−r(p− 1) many v such that

∑
r∈R

(
T (r)(αv) + T (r)(αvg

dr
)
)
= 0.

Hence when n = 1, we have
∑
r∈R

pm−r(p − 1)

many v such that S(αv) = 0. And when n > 1, we
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have pm − 1 −
∑
r∈R

pm−r(p − 1) many v such that

S(αv) = 0 and here S(1) = 0. Considering the
multiplicity of the zeros of S(X), we prove the lower
bound on the linear complexity. ut

Corollary 5 Let (su) be the binary sequence of pe-
riod 2npm defined by (2). If R = ∅ and n = 1, then
LC((su)) = 2pm. Also, if R = {1, 2, . . . ,m} and
n > 1, then LC((su)) ≥ 2npm − 2n.

All sequences satisfying the conditions of Corol-
lary 5 have high linear complexity. Moreover, if {ij,r}
are such thatm 6∈ R for n = 1 then

∑
r∈R p

r(p−1) ≤
pm−1 − 1 and

LC((su)) ≥ 2npm − 2npm−1.

Also, if m ∈ R for n > 1, then
∑

r∈R p
r(p − 1) ≥

pm−1(p− 1) and

LC((su)) ≥ 2npm−1(p− 1).

In both cases, we see that L > N/2.
For n > 1 we can refine the estimate of the linear

complexity studying the multiplicity of the zeros αv
of S(X). For this purpose let us examine the formal
derivative S ′(X) of the polynomial S(X) . Since ∑

i∈φ−1({j}×B(p
r)

ij,r
)

Xi


′

= 0

when j is even, then

S ′(αv) =

α−v
m∑
r=1

2n−1−1∑
t=0

∑
i∈φ−1({2t+1}×pm−rB(p

r)
i2t+1,r

)

αvig
dri2t+1,r

or by Lemma 2

S ′(αv) = α−v
m∑
r=1

2n−1−1∑
t=0

T (r)(αvg
dri2t+1,r

) (6)

It is obvious from (6) that the analysis of S ′(αv) sub-
stantially differs in cases n = 1 and n > 1.

Let n > 1 and let

J =

1 ≤ r ≤ m
∣∣∣∣ 2n−1−1∑

t=0

i2t+1,r ≡ 1 (mod 2)

 ,

J∗ = {1, . . . ,m} \ J.

Lemma 6 If n > 1 and αv is a zero of S(X),
then αv is a multiple zero if and only if v ∈⋃
r∈R∗∩J∗ p

r−1Z∗pm .

Proof: By Theorem 4 we see that if v ∈ pr−1Z∗pm
and S(αv) = 0 then r ∈ R∗. Further, by (6) and the
definition of J , we obtain

S ′(αv) = α−v
∑
r∈J

(
T (r)(αv) + T (r)(αvg

dr
)
)
,

similar as in Theorem 4. Then by Lemma 3, it follows
that S ′(αv) = 0 for v ∈ pr−1Z∗pm if and only if r ∈
J∗. So, the statement of Lemma 6 follows from the
latter note. ut

From Theorem 4 and Lemma 6, we get the fol-
lowing bound:

LC((su)) ≥ 2npm−∑
r∈R∗\J∗

pm−r(p−1)−2n
∑

r∈R∗∩J∗
pm−r(p−1)−2n.

Hence, if n > 1, then it is easy to find out for which
{ij,r} the sequence (su) has high linear complexity.

4 Exact values of the linear complex-
ity of (su) of length 2pm

In this section we determinate the exact values of the
linear complexity of (su) of length 2pm (n = 1) under
a number of conditions for p.

For n = 1 we have R = {r | i0,r + i1,r = 1, r =
1, . . . ,m}. Further, by (6) we get that

S
′
(αv) = α−v

m−1∑
r=0

T (r)(αvg
dri1,r

) (7)

Let (wu) be a binary sequence of length pm defined
by

wu =

{
1, if i (mod pn) ∈ C1,
0, otherwise.

Here

C1 = B(p
m)

i1,m
∪pB(p

m−1)
i1,m−1

∪p2B(p
m−2)

i1,m−2
∪· · ·∪pm−1B(p)i1,1

as earlier. Then

Sw(αv) =
m∑
r=1

T (r)(αvg
dr ·i1,r

). (8)

and Sw(αv) = αvS
′
(αv) where Sw(X) =∑pm

i=0wiX
i. So, in this case the values of S ′(αv) can

be studied in the same way that Sw(αv).
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The linear complexity of the sequence (wu) was
studied in [12] under the condition that 2 is a primitive
root modulo pm and 2p−1 6≡ 1 (mod p2). Here we
consider a slightly more general case. We begin with
some simple properties of T (r)(X) and Sw(X).

Lemma 7 Let f be even and let dr = pr−1f/2, r =
1, . . . ,m. Then:

1) T (r)(αg
2dr

) = T (r)(α);
2) T (r)(αg

dm
) = T (r)(αg

dr
).

Proof: The first statement follows immediately from
the definitions of the generalized cyclotomic classes,
auxiliary polynomials and Lemma 2.

Further, since gdm−dr = gp
r−1(pm−r−1)f/2, it

follows that gdm ≡ gdr (mod pr) or pm−rgdm ≡
pm−rgdr (mod pm). To conclude the proof, it re-
mains to note that T (r)(X) =

∑
i∈pm−rB(p

r)
0

Xi. ut

Lemma 8 Let v = 1, 2, . . . , pm − 1. Then

Sw(αv) + Sw(αvg
dm

) = 1.

Proof: By (7) and Lemma 7 we have

Sw(αvg
dm

) =
m−1∑
r=0

T (r)(αvg
dmgdri1,r ) =

=
m−1∑
r=0

T (r)(αvg
drgdri1,r ).

So,

Sw(αv) + Sw(αvg
dm

)

=
m−1∑
r=0

(
T (r)(αvg

dri1,r
) + T (r)(αvg

drgdri1,r )
)
.

The conclusion of this lemma then follows from
Lemma 3. ut

Let ordp2 be the order of 2 modulo p. The follow-
ing theorem is a goal of the section.

Theorem 9 Let (su) be the binary sequence of period
N = 2pm defined by (2). If gcd( p−1ordp2 , f) divides f/2,
then we have

LC((su)) = 2pm −
∑

r:i0,r+i1,r=1

pm−r(p− 1).

Proof: To prove this theorem, it suffices to show
Sw(αv) 6= 0, v = 1, 2, . . . , pm − 1 since S ′(αv) =
Sw(αv).

Suppose there exists v : Sw(αv) = 0. Denote
p−1

ordp2 by d. Then we see that 2 ≡ gtd (mod p) for

t : gcd(t, p − 1) = 1. By the condition gcd(d, f) di-
vides f/2. Hence gcd(td, f) also divides f/2. From
this we can establish that there exist integers a, b such
that atd + bf = f/2. Therefore, we can write
2a ≡ gatd ≡ gf/2−bf (mod p). Then we get that
2p

m−1a ≡ gp
m−1f/2−bpm−1f (mod pm) or 2p

m−1a ≡
gdm−2bdm (mod pm). Since by Lemma 7

T (r)(αv)2
pm−1a

= T (r)(αv2
pm−1a

) =

T (r)(αvg
dm−2bdm

) = T (r)(αvg
dm

),

it follows that

0 = Sw(αv)2
pm−1a

= Sw(αvg
dm

).

We obtain a contradiction with Lemma 8. ut
If 2 is a primitive root modulo pm then

gcd( p−1ordp2 , f) = 1 and the condition of Theorem 9 is
satisfied.

5 Conclusion
We studied the linear complexity of generalized cy-
clotomic binary sequences of length 2npm. These
sequences are constructed by new generalized cyclo-
tomic classed prepared by X. Zeng at el. We de-
fined the sufficient conditions for the existence of se-
quences with high linear complexity. Pseudo-random
sequences used for stream ciphers are required to have
the property of unpredictability. Linear complexity is
one of the main components that indicate this feature.
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