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Abstract: In this paper we investigate the Selberg zeta functions and the Ruelle zeta functions associated with
locally homogeneous bundles over compact locally symmetric spaces of rank one. Our basic object will be a
compact locally symmetric Riemannian manifold with negative sectional curvature. In particular, our research will
be restricted to compact, odd-dimensional, real hyperbolic spaces. For this class of spaces, the Titchmarsh-Landau
style approximate formulas for the logarithmic derivative of the aforementioned zeta functions are derived. As
expected in this setting, the obtained formulas are given in terms of zeros of the attached Selberg zeta functions.
Our results follow from the fact that these zeta functions can be represented as quotients of two entire functions of
order not larger than the dimension of the underlying compact, odd-dimensional, locally symmetric space, and the
application of suitably chosen Weyl asymptotic law. The obtained formulas can be further applied in the proof of
the corresponding prime geodesic theorem.
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1 Introduction and preliminaries
In this paper we derive approximate formulas for the
logarithmic derivative of the zeta functions of Selberg
and Ruelle described in [3].

As it is well known, such formulas are very well
applied in proofs of prime geodesic theorems (in vari-
ous settings), especially when it comes to the remain-
der improvement process.

Our object of research will be real hyperbolic
spaces.

Let Y be a compact, d-dimensional (d odd, d
≥ 3), locally symmetric Riemannian manifold with
strictly negative sectional curvature.

Y = Γ \ G / K = Γ \ X , where G is a con-
nected semi-simple Lie group of real rank one, K is
a maximal compact subgroup of G, Γ is a discrete,
co-compact, torsion-free subgroup of G, and X is the
universal covering of Y .

In our case, X is a real hyperbolic space.
We requireG to be linear in order to have the pos-

sibility of complexification.
Also, we shall assume that the metric on Y is nor-

malized to be of sectional curvature −1.
Let g = k ⊕ p be the Cartan decomposition of the

Lie algebra g of G, a a maximal abelian subspace of

p, and M the centralizer of a in K.
The adjoint action of a on g determines the root

system Φ (g, a). By W we denote its Weyl group.
Fix a system of positive roots Φ+ (g, a) ⊂

Φ (g, a).
Define

ρ =
∑

α∈Φ+(g,a)

dim (nα)α,

where nα is the root space that corresponds to α ∈
Φ+ (g, a).

Since d≥ 3 is odd, X is the real hyperbolic space
HRd, where K = Spin (d), M = Spin (d− 1) or K
= SO (d), M = SO (d− 1).

Moreover, ρ = d−1
2 .

The root system Φ+ (g, a) is of the form Φ+ (g, a)
= {α} or Φ+ (g, a) =

{
α
2 , α

}
, where α is the long

root.
Put T1 = |α|.
For s ∈ C, Re (s) > ρ resp. s ∈ C, Re (s) >

2ρ, the Selberg zeta function ZS,χ (s, σ) resp. the Ru-
elle zeta function ZR,χ (s, σ) is defined by the infinite
product given by Definition 3.2 resp. Definition 3.1 in
[3, pp. 96-97].
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Here σ and χ are some finite-dimensional unitary
representations of M and Γ, respectively.

It is well known that the Ruelle zeta function can
be represented as a product of the corresponding Sel-
berg zeta functions (see, e.g., [6]).

Namely, there are sets

Ip =
{

(τ, λ) : τ ∈ M̂, λ ∈ R
}

such that

ZR,χ (s, σ) =

d−1∏
p=0

( ∏
(τ,λ)∈Ip

ZS,χ (s+ ρ− λ, τ ⊗ σ)

)(−1)p

.

Fix some σ ∈ M̂ and χ ∈ Γ̂.
We simplify our notation by omitting σ and χ.
Hence,

ZR (s) =
d−1∏
p=0

( ∏
(τ,λ)∈Ip

ZS (s+ ρ− λ, τ)

)(−1)p

.

The Poincare duality

Id−1−p = {(τ, 2ρ− λ) : (τ, λ) ∈ Ip} ,

p ∈
{

0, 1, ..., d−1
2 − 1

}
, applied to the last equality

gives us

ZR (s)

=

d−1
2
−1∏

p=0

( ∏
(τ,λ)∈Ip

ZS (s+ ρ− λ, τ) ·

ZS (s− ρ+ λ, τ)

)(−1)p

·

( ∏
(τ,λ)∈I d−1

2

ZS (s+ ρ− λ, τ)

)(−1)
d−1
2

.

Finally, reasoning as in [4, pp. 40-45], we obtain
that

ZR (s)

=

d−1
2
−1∏

p=0

(
ZS

(
s+

d− 1

2
− p, σp

)
·

ZS

(
s− d− 1

2
+ p, σp

))(−1)p

·

(
ZS

(
s, σ d−1

2

))(−1)
d−1
2

.

(1)

Here, σp, p ∈
{

0, 1, ..., d−1
2

}
is the p-th exterior

power of the standard representation of SO (d− 1).
σp is irreducible unless p = d−1

2 .
If p = d−1

2 , then, there exists a splitting σ d−1
2

=

σ+ ⊕ σ− into two irreducible components σ+ and σ−.
Since the metric on Y is normalized to be of sec-

tional curvature −1, it follows that T1 = 1 (see, [3,
p. 150]).

By [3, p. 150, Prop. 5.5], the Selberg zeta func-
tion ZS (s, σp), p ∈

{
0, 1, ..., d−1

2

}
, has the following

singularities:

• a zero at 0 6= s= iλ∈ iR∪
(
−d−1−2p

2 , d−1−2p
2

)
of order

dim
{

∆pω =(
λ2 +

(d− 1− 2p

2

)2)
ω, δω = 0

}
,

• if p 6= d−1
2 , a zero at s = 0 of order

2 dim
{

∆pω =
(d− 1− 2p

2

)2
ω, δω = 0

}
,

• a singularity at s = d−1−2p
2 of order

p∑
k=0

(−1)p−k bk,

• a singularity at s = −d−1−2p
2 of order

p∑
k=0

(−1)p−k bk.

If p = d−1
2 , the latter two singularities coincide, and

the orders add up.
Here, ∆p is the form Laplacian on Y , δ is the co-

differential, and bk is the k-th Betti number of Y .

2 Main Result
Theorem 1. Let ε > 0 and d − 1 ≥ η > 0.

(a) Let p ∈
{

0, 1, ..., d−1
2

}
.

(i) Suppose t � 0 is chosen so that d−1
2 − p

+ i t is not a zero of ZS
(
s− d−1

2 + p, σp
)
.

Then,

Z
′
S

(
s− d−1

2 + p, σp
)

ZS
(
s− d−1

2 + p, σp
)

=O
(
td−1+ε

)
+

∑
|t−γS,p|≤1

1

s− ρS,p
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for s = σ1 + i t, d−1
2 − p ≤ σ1 < 1

4 t +
d−1

2 − p, where ρS,p = d−1
2 − p + i γS,p is

a zero of ZS
(
s− d−1

2 + p, σp
)

on the line
Re (s) = d−1

2 − p.

(ii) Suppose t� 0 is chosen so that −d−1
2 + p

+ i t is not a zero of ZS
(
s+ d−1

2 − p, σp
)
.

Then,

Z
′
S

(
s+ d−1

2 − p, σp
)

ZS
(
s+ d−1

2 − p, σp
)

=O
(
td−1+ε

)
+

∑
|t−γS,p|≤1

1

s− ρS,p

for s = σ1 + i t, −d−1
2 + p ≤ σ1 < 1

4 t

− d−1
2 + p, where ρS,p = −d−1

2 + p +

i γS,p is a zero of ZS
(
s+ d−1

2 − p, σp
)

on
the line Re (s) = −d−1

2 + p.

(iii) Suppose t � 0 is chosen so that d−1
2 − p

+ i t is not a zero of ZS
(
s− d−1

2 + p, σp
)
.

Then,

Z
′
S

(
s− d−1

2 + p, σp
)

ZS
(
s− d−1

2 + p, σp
)

=O

(
1

η
td−1+ε

)
for s = σ1 + i t, d−1

2 − p + η ≤ σ1 < 1
4 t

+ d−1
2 − p.

(iv) Suppose t� 0 is chosen so that −d−1
2 + p

+ i t is not a zero of ZS
(
s+ d−1

2 − p, σp
)
.

Then,

Z
′
S

(
s+ d−1

2 − p, σp
)

ZS
(
s+ d−1

2 − p, σp
)

=O

(
1

η
td−1+ε

)
for s = σ1 + i t, −d−1

2 + p + η ≤ σ1 < 1
4 t

− d−1
2 + p.

(b) Suppose t� 0 is chosen so that i t is not a zero
of ZS (s, σp), p ∈

{
0, 1, ..., d−1

2

}
. Then,

(i)

Z
′
R (s)

ZR (s)

=O
(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

for s = σ1 + i t, d−1
2 ≤ σ

1 < 1
4 t −

d−1
2 .

(ii)

Z
′
R (s)

ZR (s)
= O

(
1

η
td−1+ε

)
for s = σ1 + i t, d−1

2 + η ≤ σ1 < 1
4 t −

d−1
2 .

Proof. (a) (i), (ii)
For the sake of simplicity, we shall consider the

function

ZS

(
s− d− 1

2
, σ0

)
in the representation (1).

Let r = 1
2 t. We choose c such that

d− 1 < c <
1

8
t+

d− 1

2
,

and put s0 = c + i t.
Since

1

8
t+

d− 1

2
− d− 1

2
=

1

8
t,

it follows immediately that the circles |s− s0| ≤ 1
2 t,

|s− s0| ≤ 1
4 t and |s− s0| ≤ 1

8 t cross the line Re (s)

= d−1
2 .
According to the singularity pattern given above,

ZS
(
s− d−1

2 , σ0

)
has no poles in the circle |s− s0|

≤ 1
2 t. This means that ZS

(
s− d−1

2 , σ0

)
is regular in

|s− s0| ≤ 1
2 t.

By [1, p. 306, Th. 2], there exist entire functions
Z1 (s), Z2 (s) of order at most d, such that

ZS (s, σ0) =
Z1 (s)

Z2 (s)
,

where the zeros of Z1 (s) correspond to the zeros of
ZS (s, σ0), and the zeros of Z2 (s) correspond to the
poles of ZS (s, σ0). The orders of the zeros of Z1 (s)
resp. Z2 (s) equal the orders of the corresponding ze-
ros resp. poles of ZS (s, σ0).

According to the very definition of the order of a
function, d is the infimum of numbers ω such that

|Z1 (s)| = O
(
e|s|

ω
)
,

s→∞.
So, we have that

|Z1 (s)| = O
(
e|s|

d+ε
)
,

s→∞, where ε > 0 is fixed at the beginning of The-
orem.

WSEAS TRANSACTIONS on MATHEMATICS Dzenan Gusic

E-ISSN: 2224-2880 178 Volume 18, 2019



Having in mind that s→∞ if and only if s− d−1
2

→∞, we obtain that (substituting s − d−1
2 instead of

s) ∣∣∣∣Z1

(
s− d− 1

2

)∣∣∣∣ = O

(
e|s−

d−1
2 |

d+ε
)
,

s − d−1
2 →∞ (s→∞).

Hence,∣∣∣∣Z1

(
s− d− 1

2

)∣∣∣∣ ≤ Q1e
|s− d−1

2 |
d+ε

,

s→∞, where Q1 is a constant. Now,∣∣∣∣s− d− 1

2

∣∣∣∣ ≤ |s|+ d− 1

2
≤ |s|+Q2 |s| = Q3 |s|

for some constantsQ2 andQ3. Namely, |s| is arbitrar-
ily large, and d−1

2 is a constant, so d−1
2 ≤ Q2 |s|.

We obtain,∣∣∣∣Z1

(
s− d− 1

2

)∣∣∣∣ ≤ Q1e
Qd+ε

3 |s|d+ε

,

s → ∞. Since Q1 ≤ eQ4|s|d+ε

for a constant Q4, it
follows that∣∣∣∣Z1

(
s− d− 1

2

)∣∣∣∣ ≤ eQ5|s|d+ε

, (2)

s→∞, where Q5 is some constant.
Let’s pay our attention to the half-strip c − 1

2 t ≤
σ1 ≤ c + 1

2 t, t
1 ≥ α, where α > 0 is large, and s =

σ1 + i t1. We may assume that α� 1
2 t.

So, notice that σ1 = Re (s), t1 = Im (s). For such
s= σ1 + i t1, (2) yields that (note that |s| is large now)∣∣∣∣Z1

(
s− d− 1

2

)∣∣∣∣ ≤ eQ5|σ1+i t1|d+ε

.

We have,
∣∣σ1 + i t1

∣∣ ≤ ∣∣σ1
∣∣ + t1.

Clearly,
∣∣c− 1

2 t
∣∣ ≤ c + 1

2 t.
This means that the lower bound of the half-strip

c − 1
2 t ≤ σ1 ≤ c + 1

2 t, t
1 ≥ α is not larger than the

upper bound (taken in absolute sense). Note that the
absolute value of the upper bound is exactly c + 1

2 t.
Namely,

d− 1 < c <
1

8
t+

d− 1

2
,

i.e., c is positive.
Consequently, it follows that

∣∣σ1
∣∣ ≤ c + 1

2 t.

Now,∣∣σ1 + i t1
∣∣ ≤ ∣∣σ1

∣∣+ t1 ≤ c+
1

2
t+ t1

<
1

8
t+

d− 1

2
+

1

2
t+ t1

=Q6t+Q7 + t1.

Clearly, Q7 ≤ Q8t for some Q8. Namely, t is
large.

We have,∣∣σ1 + i t1
∣∣ ≤ Q6t+Q8t+ t1 = Q9t+ t1

for some constant Q9.
Furthermore, Q9, 1 ≤ Q10 for a Q10 (Q10 =

max (Q9, 1) for example). Therefore,∣∣σ1 + i t1
∣∣ ≤Q10t+Q10t

1 = Q10

(
t+ t1

)
=Q10 (t+ Im (s)) .

We conclude,∣∣σ1 + i t1
∣∣d+ε ≤ Qd+ε

10 (t+ Im (s))d+ε ,

i.e., ∣∣∣∣Z1

(
s− d− 1

2

)∣∣∣∣ ≤ eQ5Q
d+ε
10 (t+Im(s))d+ε

,

i.e., ∣∣∣∣Z1

(
s− d− 1

2

)∣∣∣∣ = eO((t+Im(s))d+ε),

for s = σ1 + i t1, c − 1
2 t ≤ σ

1 ≤ c + 1
2 t, t

1 ≥ α.
Reasoning in the same way, we obtain that∣∣∣∣Z2

(
s− d− 1

2

)∣∣∣∣ = eO((t+Im(s))d+ε),

for s = σ1 + i t1, c − 1
2 t ≤ σ

1 ≤ c + 1
2 t, t

1 ≥ α.
Therefore,∣∣∣∣ZS (s− d− 1

2
, σ0

)∣∣∣∣
=

∣∣Z1

(
s− d−1

2

)∣∣∣∣Z2

(
s− d−1

2

)∣∣
=eO((t+Im(s))d+ε)−O((t+Im(s))d+ε)

=eO((t+Im(s))d+ε),

for s = σ1 + i t1, c − 1
2 t ≤ σ

1 ≤ c + 1
2 t, t

1 ≥ α.
Hence,∣∣∣∣ZS (s− d− 1

2
, σ0

)∣∣∣∣ = eO((t+Im(s))d+ε),
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for s = σ1 + i t1, |s− s0| ≤ 1
2 t.

In particular,∣∣∣∣ZS (s0 −
d− 1

2
, σ0

)∣∣∣∣ = eO((t+t)d+ε) = eO(td+ε).

Note that t1 ≤ 3
2 t for s= σ1 + i t1, |s− s0| ≤ 1

2 t.
Consequently,∣∣∣∣∣ ZS

(
s− d−1

2 , σ0

)
ZS
(
s0 − d−1

2 , σ0

)∣∣∣∣∣ = eO(td+ε).

for s = σ1 + i t1, |s− s0| ≤ 1
2 t.

Thus, there exists a constant C such that∣∣∣∣∣ ZS
(
s− d−1

2 , σ0

)
ZS
(
s0 − d−1

2 , σ0

)∣∣∣∣∣ < eCt
d+ε

for s = σ1 + i t1, |s− s0| ≤ 1
2 t.

Put M = Ctd+ε.
Since ZS

(
s− d−1

2 , σ0

)
is regular in the circle

|s− s0| ≤ 1
2 t, and∣∣∣∣∣ ZS

(
s− d−1

2 , σ0

)
ZS
(
s0 − d−1

2 , σ0

)∣∣∣∣∣ < eM

for s = σ1 + i t1, |s− s0| ≤ 1
2 t, it follows by Lemma

α in [11] that

Z
′
S

(
s− d−1

2 , σ0

)
ZS
(
s− d−1

2 , σ0

)
=O

(
td−1+ε

)
+
∑

ρS,0∈P

1

s− ρS,0

for s = σ1 + i t1, |s− s0| ≤ 1
8 t, where P denotes

the set of zeros of ZS
(
s− d−1

2 , σ0

)
lying in the circle

|s− s0| ≤ 1
4 t.

Since s = σ1 + i t1, |s− s0| ≤ 1
8 t, and the circle

|s− s0| ≤ 1
8 t crosses the line Re (s) = d−1

2 , it follows
that the last equality remains valid for s = σ1 + i t,
d−1

2 ≤ σ
1 ≤ c + 1

8 t. Thus,

Z
′
S

(
s− d−1

2 , σ0

)
ZS
(
s− d−1

2 , σ0

)
=O

(
td−1+ε

)
+
∑

ρS,0∈P

1

s− ρS,0

(3)

for s = σ1 + i t, d−1
2 ≤ σ

1 ≤ c + 1
8 t.

As we already noted, ρS,0 = d−1
2 + i γS,0.

Now,

|ρS,0 − s0| ≤
1

4
t

if and only if

t−

√
1

16
t2 −

(
c− d− 1

2

)2

≤γS,0 ≤ t+

√
1

16
t2 −

(
c− d− 1

2

)2

.

Since

d− 1 < c <
1

8
t+

d− 1

2
,

it follows that√
1

16
t2 −

(
d− 1

2

)2

>

√
1

16
t2 −

(
c− d− 1

2

)2

>

√
3

8
t.

Thus, t� 0 implies that√
1

16
t2 −

(
c− d− 1

2

)2

> 1.

The equation (3) becomes,

Z
′
S

(
s− d−1

2 , σ0

)
ZS
(
s− d−1

2 , σ0

)
=O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0
+

∑
t+1<γS,0≤t+

√
1
16
t2−(c− d−1

2 )
2

1

s− ρS,0
+

∑
t−

√
1
16
t2−(c− d−1

2 )
2≤γS,0<t−1

1

s− ρS,0

for s = σ1 + i t, d−1
2 ≤ σ

1 ≤ c + 1
8 t.

Note that |s− ρS,0| ≥ γS,0 − t for s = σ1 + i t,
d−1

2 ≤ σ1 ≤ c + 1
8 t, where ρS,0 = d−1

2 + i γS,0 ∈ P
is such that

t+ 1 < γS,0 ≤ t+

√
1

16
t2 −

(
c− d− 1

2

)2

.

LetNS,0 (y) be the number of zeros ρS,0 = d−1
2 +

i γS,0 of ZS
(
s− d−1

2 , σ0

)
on the interval d−1

2 + ix, 0
< x ≤ y.
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As it is known (see, e.g., [5, p. 89, Th. 9.1.]),

NS,0 (y) = C1y
d +O

(
yd−1 (log y)−1

)
for some explicitly known constant C1.

In this paper, however, the factor (log y)−1 does
not improve the result. Therefore, we assume that

NS,0 (y) = C1y
d +O

(
yd−1

)
.

Now, we estimate∣∣∣∣∣ ∑
t+1<γS,0≤t+

√
1
16
t2−(c− d−1

2 )
2

1

s− ρS,0

∣∣∣∣∣
≤

∑
t+1<γS,0≤t+

√
1
16
t2−(c− d−1

2 )
2

1

|s− ρS,0|

≤
∑

t+1<γS,0≤t+
√

1
16
t2−(c− d−1

2 )
2

1

γS,0 − t

=

t+
√

1
16
t2−(c− d−1

2 )
2∫

t+1

dNS,0 (y)

y − t

=

t+
√

1
16
t2−(c− d−1

2 )
2∫

t+1

d
(
NS,0 (y)− C1t

d
)

y − t

for s = σ1 + i t, d−1
2 ≤ σ

1 ≤ c + 1
8 t.

Integration by parts applied to the last integral
gives us

t+
√

1
16
t2−(c− d−1

2 )
2∫

t+1

d
(
NS,0 (y)− C1t

d
)

y − t

=
NS,0 (y)− C1t

d

y − t

∣∣∣∣∣
t+

√
1
16
t2−(c− d−1

2 )
2

t+1

+

t+
√

1
16
t2−(c− d−1

2 )
2∫

t+1

NS,0 (y)− C1t
d

(y − t)2 dy.

Note that

NS,0 (y)− C1t
d

y − t

∣∣∣∣∣
t+

√
1
16
t2−(c− d−1

2 )
2

t+1

=

NS,0

(
t+

√
1
16 t

2 −
(
c− d−1

2

)2)− C1t
d√

1
16 t

2 −
(
c− d−1

2

)2
−NS,0 (t+ 1) + C1t

d

=

C1

(
t+

√
1
16 t

2 −
(
c− d−1

2

)2)d − C1t
d√

1
16 t

2 −
(
c− d−1

2

)2

+

O

((
t+

√
1
16 t

2 −
(
c− d−1

2

)2)d−1
)

√
1
16 t

2 −
(
c− d−1

2

)2
− C1 (t+ 1)d + C1t

d.

Obviously,

C1

(
t+

√
1
16 t

2 −
(
c− d−1

2

)2)d − C1t
d√

1
16 t

2 −
(
c− d−1

2

)2
=O

(
td−1

)
,

O

((
t+

√
1
16 t

2 −
(
c− d−1

2

)2)d−1
)

√
1
16 t

2 −
(
c− d−1

2

)2
=O

(
td−2

)
,

− C1 (t+ 1)d + C1t
d

=O
(
td−1

)
.

Therefore,

t+
√

1
16
t2−(c− d−1

2 )
2∫

t+1

d
(
NS,0 (y)− C1t

d
)

y − t

=O
(
td−1

)
+

t+
√

1
16
t2−(c− d−1

2 )
2∫

t+1

NS,0 (y)− C1t
d

(y − t)2 dy.

Putting y − t = v,we obtain that

t+
√

1
16
t2−(c− d−1

2 )
2∫

t+1

d
(
NS,0 (y)− C1t

d
)

y − t

=O
(
td−1

)
+
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√
1
16
t2−(c− d−1

2 )
2∫

1

NS,0 (v + t)− C1t
d

v2
dv

=O
(
td−1

)
+√

1
16
t2−(c− d−1

2 )
2∫

1

C1 (v + t)d − C1t
d

v2
dv+

√
1
16
t2−(c− d−1

2 )
2∫

1

O
(

(v + t)d−1
)

v2
dv.

Now,√
1
16
t2−(c− d−1

2 )
2∫

1

C1 (v + t)d − C1t
d

v2
dv

=

√
1
16
t2−(c− d−1

2 )
2∫

1

C1v
d−2dv+

√
1
16
t2−(c− d−1

2 )
2∫

1

C
′
1v
d−3tdv + ...

+

√
1
16
t2−(c− d−1

2 )
2∫

1

C
′
d−3vt

d−3dv+

√
1
16
t2−(c− d−1

2 )
2∫

1

C
′
d−2t

d−2dv+

√
1
16
t2−(c− d−1

2 )
2∫

1

C
′
d−1

td−1

v
dv

=O
(
td−1

)
+O

(
td−1

)
+ ...+O

(
td−1

)
+O

(
td−1

)
+O

(
td−1 log t

)
= O

(
td−1 log t

)
for explicitly known constants C

′
1, C

′
2,..., C

′
d−1.

Similarly,√
1
16
t2−(c− d−1

2 )
2∫

1

O
(

(v + t)d−1
)

v2
dv

=O
(
td−2 log t

)
.

Therefore,

t+
√

1
16
t2−(c− d−1

2 )
2∫

t+1

d
(
NS,0 (y)− C1t

d
)

y − t

=O
(
td−1

)
+O

(
td−1 log t

)
+O

(
td−2 log t

)
=O

(
td−1 log t

)
.

Consequently, ∑
t+1<γS,0≤t+

√
1
16
t2−(c− d−1

2 )
2

1

s− ρS,0

=O
(
td−1 log t

)
for s = σ1 + i t, d−1

2 ≤ σ
1 ≤ c + 1

8 t.
Reasoning in the same way, we obtain that∑

t−
√

1
16
t2−(c− d−1

2 )
2≤γS,0<t+1

1

s− ρS,0

=O
(
td−1 log t

)
for s = σ1 + i t, d−1

2 ≤ σ
1 ≤ c + 1

8 t.
We end up with

Z
′
S

(
s− d−1

2 , σ0

)
ZS
(
s− d−1

2 , σ0

)
=O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0
+

O
(
td−1 log t

)
+O

(
td−1 log t

)
=O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

for s = σ1 + i t, d−1
2 ≤ σ

1 ≤ c + 1
8 t.

However, c < 1
8 t + d−1

2 . Hence,

Z
′
S

(
s− d−1

2 , σ0

)
ZS
(
s− d−1

2 , σ0

)
=O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

for s = σ1 + i t, d−1
2 ≤ σ

1 < 1
4 t + d−1

2 .
(iii), (iv)

Once again, for the sake of simplicity, we shall
consider the function

ZS

(
s− d− 1

2
, σ0

)

WSEAS TRANSACTIONS on MATHEMATICS Dzenan Gusic

E-ISSN: 2224-2880 182 Volume 18, 2019



in the representation (1).
By (i),

Z
′
S

(
s− d−1

2 , σ0

)
ZS
(
s− d−1

2 , σ0

)
=O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

for s = σ1 + i t, d−1
2 ≤ σ

1 < 1
4 t + d−1

2 .
Suppose that s = σ1 + i t, d−1

2 + η ≤ σ1 < 1
4 t +

d−1
2 .

We obtain,∣∣∣∣∣∣∣
∑

|t−γS,0|≤1

1

s− ρS,0

∣∣∣∣∣∣∣
≤

∑
|t−γS,0|≤1

1

|s− ρS,0|
<

1

η

∑
|t−γS,0|≤1

1

=O

(
1

η
(NS,0 (t+ 1)−NS,0 (t− 1))

)
=O

(
1

η

(
C1 (t+ 1)d +O

(
(t+ 1)d−1

)
− C1 (t− 1)d −O

(
(t− 1)d−1

)))

=O

(
1

η
td−1

)
.

Therefore,

Z
′
S

(
s− d−1

2 , σ0

)
ZS
(
s− d−1

2 , σ0

)
=O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

=O
(
td−1+ε

)
+O

(
1

η
td−1

)
= O

(
1

η
td−1+ε

)
for s = σ1 + i t, d−1

2 + η ≤ σ1 < 1
4 t + d−1

2 .
(b), (i)

By (1),

Z
′
R (s)

ZR (s)
=

d−1
2
−1∑

p=0

(−1)p
Z
′
S

(
s+ d−1

2 − p, σp
)

ZS
(
s+ d−1

2 − p, σp
)+

d−1
2
−1∑

p=0

(−1)p
Z
′
S

(
s− d−1

2 + p, σp
)

ZS
(
s− d−1

2 + p, σp
)+

(−1)
d−1
2

Z
′
S

(
s, σ d−1

2

)
ZS

(
s, σ d−1

2

)

=

d−1
2
−1∑

p=0

(−1)p
Z
′
S

(
s+ d−1

2 − p, σp
)

ZS
(
s+ d−1

2 − p, σp
)+

Z
′
S

(
s− d−1

2 , σ0

)
ZS
(
s− d−1

2 , σ0

)+

d−1
2
−1∑

p=1

(−1)p
Z
′
S

(
s− d−1

2 + p, σp
)

ZS
(
s− d−1

2 + p, σp
)+

(−1)
d−1
2

Z
′
S

(
s, σ d−1

2

)
ZS

(
s, σ d−1

2

) .
Since s = σ1 + i t, d−1

2 ≤ σ1 < 1
4 t −

d−1
2 , it

follows from (a) that

Z
′
R (s)

ZR (s)
=

d−1
2
−1∑

p=0

1

d− 1− p
O
(
td−1+ε

)
+O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

+

d−1
2
−1∑

p=1

1

p
O
(
td−1+ε

)
+

1
d−1

2

O
(
td−1+ε

)
=O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0
.

Thus,

Z
′
R (s)

ZR (s)
= O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

for s = σ1 + i t, d−1
2 ≤ σ

1 < 1
4 t −

d−1
2 .

(ii)
By (b) (i),

Z
′
R (s)

ZR (s)
= O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

for s = σ1 + i t, d−1
2 ≤ σ

1 < 1
4 t −

d−1
2 .

Let s = σ1 + i t, d−1
2 + η ≤ σ1 < 1

4 t −
d−1

2 .
We deduce,∣∣∣∣∣∣∣

∑
|t−γS,0|≤1

1

s− ρS,0

∣∣∣∣∣∣∣
≤

∑
|t−γS,0|≤1

1

|s− ρS,0|
<

1

η

∑
|t−γS,0|≤1

1

=O

(
1

η
td−1

)
.
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Therefore,

Z
′
R (s)

ZR (s)
=O

(
td−1+ε

)
+

∑
|t−γS,0|≤1

1

s− ρS,0

=O
(
td−1+ε

)
+O

(
1

η
td−1

)
=O

(
1

η
td−1+ε

)
for s = σ1 + i t, d−1

2 + η ≤ σ1 < 1
4 t −

d−1
2 .

This completes the proof.

3 Remarks
Note that an analogue of Theorem 1 is derived in [2].
There, the authors derived approximate formulas for
the logarithmic derivative of the Selberg and the Ru-
elle zeta functions over compact, even-dimensional,
locally symmetric spaces of real rank one. Thus, the
present paper represents a natural continuation of [2].

Approximate formulas of the form derived in this
paper are very well applied in [7], [9], [8] and [10].
There, they are applied in the case of compact even-
dimensional locally symmetric Riemannian manifolds
of strictly negative sectional curvature, hyperbolic
manifolds with cusps, and compact Riemann surfaces,
respectively.
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spectrum for compact locally symmetric spaces
of real rank one, WSEAS Trans. on Math. 16,
2017, pp. 303–321.
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