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Abstract: The smoothness of functions is quite essential in applications. This smoothness can be used in functione
calculations, in the construction of the finite element method, in the approximation of those or other numerical data
etc. The interest in smooth approximate spaces is supported by the desire to have a coincidence of smoothness
exact and approximate solutions. A lot of papers have been devoted to this problem. The continuity of the functior
at a point means equality of the limits on the right and left; the generalization of this situation is the equality

of values of two linear functionals (at the prescribed function) with supports located on opposite sides of the
mentioned point. Such generalization allows us to introduce the concept of generalized smoothness, which give
the ability to cover various cases of singular behavior functions at some point. The generalized smoothness is calle
pseudo-smoothness, although, of course, we can talk about the different types of pseudo-smoothness depend
on the selected functionals mentioned above. Splines are often used for processing numerical information flows;
lot of scientific papers are devoted to these investigations. Sometimes spline treatment implies to the filtration o
the mentioned flows or to their wavelet decomposition. A discrete flow often appears as a result of analog signa
sampling, representing the values of a function, and in this case, the splines of the Lagrange type are used. In sor
cases, there are two interconnected analog signals, one of which represents the values of some function, and
second one represents the values of its derivative. In this case, it is convenient to use the splines of the Hermite ty,
of the first height for processing. In all cases, it is highly desirable that the generalized smoothness of the resultin
spline coincides with the generalized smoothness of the original signal. The concepts, which are introduced in thi
paper, and the theorems, which are proved here, allow us to achieve this result. The paper discusses the existel
and uniqueness of spline spaces of the Hermite type of the first height (under condition of fixing the spline grid
and the type of generalized smoothness). The purpose of this paper is to discuss generalized smoothness of
Hermite type spline space (not necessarily polynomial). In this paper we use the necessary and sufficient criteric
of the generalized smoothness obtained earlier.
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Introduction are incorporated into conventional finite elements and
a smoothed finite element method for 2D elastic prob-

It is important to know about the smoothness of dis- lems is proposed. Paper [10] examines the theoret-
cussed functions. For example, in the simplest variant ical bases for the smoothed finite element method,
of in finite element method (FEM) a construction of  which is formulated by incorporating cell-wise strain

coordinate functions has to be in the energetic space smoothing operation into standard compatible finite
of a suitable self-adjoint operator (see [1]-[8]). element method. The smoothed finite element method

On the other hand, it is often needed to calcu- is discussed in [11]. An edge-based smoothed finite

late some functionals on the solution (for example, the element method is implied to improve the accuracy
value of the solution or its derivatives in a point); for and convergence rate of the standard finite element

that sometimes it needs the additional smoothness of method for elastic solid mechanics problems and ex-
an approximate solution. tended to more general cases (see [12]). The cell-

We note that the exact solution is often so smooth Pased smoothed finite element method [14] is used

that it appears to have the desire to have a coincidence fOr the réfinement of the accuracy and stability of the
of smoothness of exact solution and approximate one Standard finite element method.

(see [9]-{27]). According to what has been said, a certain inves-

In paper [9] cell-wise strain smoothing operations tigation of smoothness of approximate solutions is re-
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quired. There are many research papers devoted to 2  Auxiliary assertions
the construction and investigation of spline spaces.
Polynomial and non-polynomial splines for equidis-
tant and irregular grids were discussed.

Consider a smooth-dimensional (generally speak-

ing, noncompact) manifoldM (i.e. topological

space where each point has a neighborhood which is
In paper [28] the necessary and sufficient condi- diffeomorphic to the open-dimensional ball of Eu-

tions for the smoothness of coordinate functions were clidean spac®").

obtained. Let {U¢ }cecz be a family of opened sets covering

M, and such homeomorphisns, v : E; — U

The smoothness of functions is quite essential in gpened ball,; of the spacd®” that the maps
applications. This smoothness can be used in func-

tional calculations, in the construction of the finite el- G e e (U NU) e b (U N Ur)

ement method, in the approximation of those or other , ]

numerical data, etc. The interest in smooth approxi- (forall¢,¢" € 2, forwhich the mad/; NU¢ 7 0) are

mate spaces is supported by the desire to have a Coin_contlnu_ously dlﬁgrer]tlal (needed a number of times);

cidence of smoothness of exact and approximate solu- N€réZ is a set of indices.

tions. A lot of papers have been devoted to this prob- We discuss a mapy : E¢ — U and a se{y :

lem. The continuity of the function at a point means £¢ — U¢ | ¢ € Z}; the last one, called atlas, defines

equality of the limits on the right and left; the gen- the manifoldM. o _ ,

eralization of this situation is the equality of values e say that functiom is defined onM, if there

of two linear functionals (at the prescribed function) S @ family of functions{uc ()} cez seu,, such that

with supports, located on opposite sides of the men- _ _ _

tioned point. Such generalization allows us to intro- “ch (€)= “4(7/’01(5))

d_uce the co'n_cept of generglized smoothn_ess, which VEeUNUy, (¢ €2

gives the ability to cover various cases of singular be-

havior of functions at a fixed point. The generalized andu(§) = u¢ (¢ '(€)) for € € Ue.

smoothness is called pseudo-smoothness, although,  Linear spaces of functions prescribed i are

of course, we can talk about the different types of defined by the atlas with usage of the relevant spaces

pseudo-smoothness depending on the selected func-0f functions defined on ball&,.

tionals mentioned above. Let X(M) be a linear space of (Lebesgue mea-
surable) functions, defined on manifold, where a

Splines are often used for processing numerical symbolX denotegs or L3; thus, the spac (M) is
information flows; a lot of scientific works are devoted  defined by the equality

to these themes. Sometimes the spline treatment im-

plies to the filtration of the mentioned flow or to its XM) ={u|uop € X(E;) V(e Z};
wavelet decomposition. Often a discrete flow appears te thatC's(
as a result of analog signal sampling, representing the
values of a function. In this case, the splines of the La-
grange type are used. In some cases, there are two in-
terconnected analog signals, one of which represents
the values of some function, and the second one rep-
resents the values of its derivative. In this case, for (f,u) = (fe,ue)e,

processing, it is convenient to use splines of the Her- wheref, € (X(E.)* V¢ e Z, and{f }cez is a

mite type of the first height. In all cases, it is highly . . ; .
desirable that the generalized smoothness of the re- fam':}}',{ﬁ;?;}ﬁg?;ﬂ? g?,ﬁ:g?ﬁgggg;g; g?g'&r{g)*

sulting spline coincided with the generalized smooth- is defined by the values of functianon the sef) C
ness of the original signal. The concepts, which are MV e XBEM) then we writesuppf C : and
introduced in this paper, and theorems, which are 1”2 "=~ 0R STl LY T pt%en o sy that
proved here, allow us to achieve this result. The paper functional h’ tp t’ In what f IY
discusses the existence and uniqueness of the spline unctional f has compact support. In what follows,
spaces of the Hermite type (under condition of fixing we discuss functionals with compact support.

LetS = {S;},cs be a covering family for man-

the spline grid and the type of generalized smooth- . A .
ness). The purpose of this paper is to discuss the Her- ifold M, \{vhere. subset§] are_homeomorphic to
openedr-dimensional ball; thus

mite type spline space (not necessarily polynomial).
In this paper we use the necessary and sufficient crite- U S; =M,
rion of the pseudo-smoothness, obtained earlier. jeg

E¢) and Ly(E¢) are the usual spaces
of functions defined o (1 < ¢ < 400, 5 =
0,1,2,...).

Let X* be the dual space to spa¥e it consists
of functionalsf, defined by identity
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whereJ is an ordered set of indices. The s&isare
called the elements of coverify the boundary of set
S; is denotedS;.

Consider set

N s

JjeT, S>3t

Cay =

for each pointt € M\U;c79S;. Identifying co-
incided sets, we see that collecti¢6, } is at most
countable; later on, we denote mentioned setg by
i € KC, where is an ordered set of indices.

We haveC = {C; | i € K}, and the next relations
are right:

CoNCin =10 for i #£4" i €k,

Cl (S;) = Cl ( U c)
CiCS;
Cl (U Cl->: Cl (M); 1)

iek
here(l is the closure in the topology of manifolet.
Thus, the aggregate's! andS; are split in setg;,
so that the covering is associated with collectiof;

the rule of association described above is denoted by

F: C = F(S). CollectionC is calledthe subdivision
of the coveringsS.

Definition 1. If all setsC; from F(S) are homeo-
morphic to an opened ball thehis called a covering
of a simple structure; in this case sét is named a
cell.

Later on we will discuss the covering of a simple
structure.

Definition 2. Lett € M be fixed point; a number
k¢(S) of elements of the collectiofy | t € S;} is
called a multiplicity of the covering of poirtby the
family S.

Definition 3. Suppose natural number exists,
such that an identity

kie(S) = q (2)

holds almost everywhere fore M; thenS is called a
g-covering family (fotM), and the numbey is named
a multiplicity of covering of manifold1 by the family
S.

Definition 4. Suppose point belongs to the in-
tersectionCi(C;) N Cl(Cy), i # ¢, and a neigh-
borhood U (t) of the pointt belongs to the union
Cl(C;) U CI(Cy); in this case the cell§; andC;s are
named adjacent cells.

Definition 5. Let S be ag-covered family, le€C;
andC;: be arbitrary adjacent cells (in subdivisi@hof
family S). If difference

{718 2C\{J" [ Sjr > Ci}
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containsp elementsy is a fixed positive integer) then
S is called ap-graduated;-covering family for mani-
fold M.

Consider familyA = {a;}c s of ¢g-dimensional
vectorsa;. Family A is called an equipment of the
manifold coveringS; thus each sef; of the covering
S coincides with vectoa; of spaceR.

In what follows equipmentl of family S is some-
times denoted byl s), and the vectoa;, coinciding
with the setS;, is denoted byA]Sj (thus in the dis-
cussed casd|s = ay).

Definition 6. Lett be a point of manifold\, and

letS = {S;} ez be ag-covered family forM. If the
vector system

Ay ={aj|je€ T, Sj>t} (3)

is the basis of spadB? almost everywhere fare M
then we say thatl s is the complete equipment of
manifold covering.

By (1)—(2), (3) it follows that if A is the com-
plete equipment of familyS, C is equal toF(S)
and: is a fixed number; € K, then the relations
A(t’) = A(t”} for Vt/, = Ci,are fulfilled.

By definition, putd; = A,y for teC;.

Itis easy to see that§ is ap-graduated manifold
covering and’;, C;; are adjacent cells, then quantities
of vectors in sets{;\ A;; are equal tg (for all 7,7’ €
K).

3 Spaces of minimal splines

Consider vector functiop : M — R™H! with
components from spac&(M) (herem > 0).

In this section we discusgcovering families of
sets, where = m + 1.

The proofs of the theorems in this section and the
applications to splines of the Lagrange type can be
found in paper [28].

Theorem 1. LetS bem + 1-covering family
(for manifold M), and letA = {a;};cs be a system
of column vectors, forming a complete equipment of
the familyS. Then there exists an unique vector func-
tion (column)w(t) = (w;(t));cs, Which satisfies the
relations below

Aw(t) = (),  wi(t)=0 Vt&S;; (4)

here and later on, the symbadl is used also for the
notation of a matrix consisting of column vectars

A= (aj)jeg- _ )
Corollary 1. The next relations are right:

det({as |as € Aj, s # 5} |7 SO(t))
w]‘ t) =
det({aS | as € Ai})
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forvteC, CS;, wj(t)=0 Vt¢S; to be valid are the relations below hold:

here the columns in the determinants in numerator

. . I = for ; A \AL 1
and in denominator have the same order, and the kwj =0 for a; € Ap\dgp,

symboIH_’j ©(t) indicates that column vectas(t) is Frprwjr=0 for a;r€ Ap\App. (7)
needed in place of column vectoy. .
Let S,.(S, A, ¢) be a linear space obtained by Under condition (5) we put

closing the linear span of sét; } jc 7 in the topology

of pointwise convergence. The spagg (S, A, ¢) is Fienne = Fep = L.

calleda space of minimalS, A, ¢)-splines(of order Theorem 5. Suppose the conditions of Theorem
m) on manifoldM, 4 are fulfilled. Then relation (6) is equivalent to the
Sim(S, A, ) = Cly{u | u(t) = relation
=Y cjwj(t) Vte M Ve € R} Fipny € Llag|as € Agp}.
€T

(symbolC1, denotes closure in the mentioned topol-
ogy). Triple(S, A, ) is nameda generator of space
S (S, A, ¢), and functionsy; are calleccoordinate
functionsof the spaces,,, (X, A, ¢). Correlations (4)
are callecapproximation relations
If the family S is r + 1-graduated covering (here 4 The Hermite type splines
is a positive integer) then we say thHi&t A, ¢)-splines
have helghb" If » = 0 then the Sp|ineS are named 4.1 The Herm”:e type Spllnes Of the flrst
splines of the Lagrange typ# » > 0 then the splines height
are calledsplines of the Hermite typelt is easy to _ I
see that these definitions correspond to the concepts L€t M be the intervala, 5) of real axisR ", let S
introduced in the first section. be a collection of sets);, j € Z, whereSy,—1 =
Theorem 2. Under the conditions of Theorem 1,  (Zs; Ts+2), S2s = (s, Zs12). We see that the collec-

linear independence of the components of vector func- ion of open intenvalg; = (i, i11), @ € Z, is a cell
tion () on cell ¢; is equivalent to linear indepen- subdivision. The last one is generated by the grid

Corollary 2. The first relation of formula (7)
and the second relation of the mentioned formula are
equivalent.

Sng.Ce of the function systefw;(¢) | C; € S;} on the X - <z <TL<Ty< ...
Theorem 3. Suppose the conditions of Theorem 1 Thus,S is a two-step four-times covering of the

are fulfilled. If the components of vector functip(r) interval (av, ).

are linear independent on each céll i € K, then the Suppose that vectar; € R4 corresponds to the

system of functionfu;(t)} e is linear independent  setS;, j € Z. In the discussed case the system—

on manifoldM. {ag;_3,a2; 2,22 _1,ay;} is the equipment of the cell
Let F}; be alinear functionak), € (X(M))* with Ci = (i, xi41), if the system is linear independent;

support in cellCx, suppFj, C Cy. If cells C, andCy. the last one is equivalent to the condition

are adjacent then by definition pdj, - = {a;|a; € (Hy)

AN Ayg}. Inwhat follows, we fix an order of column

vectorsa; in the setA4; ;.. Sometimes we discuss det(ag;—3,a2;_2,a2-1,a2) #0 Vi € Z.

the setA,, . as a matrix with a mentioned order of ,

columns. Itis clear that the cell),: k' =k + 1: Cpyq =
Consider a condition (r41,T142) IS adjacent to the celly; we have
(A) relation ikﬂ = {32k71732k732k+t1ha 8;2k+2}1 and Ay =

Fip = Forp (5) kk+1 = {a2r—1,a2;}, SO tha
is true. A\Ag g = {agr_3, 82,2},

The next assertions are fulfilled (for the proofs of
the theorems in this section see paper [28]).
Theorem 4. Let C;, and Cy.» be adjacent cells. ‘The Hermite type splines of the first height are
Suppose the conditiofd) is fulfilled. Then, the nec-  defined by the relations
essary and sufficient conditions for the equalities
Y agiwwajo(f) + agwa;(t) = o(t),  (8)

kaj:Fk/wj Vjej, (6) JEZ

A1\ Ar k= {a2k41, ao42}-
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9)

Supp waj—1,supp wg; C [l‘j, 93j+2]7
wherep : (a,8) — R*, ¢ € X(a, 3).
Fort € (z, xr4+1) We definej such that
[z, Tj2] N (T, Try1) # 0,

and we findj = k — 1, k. Now by (8) — (9) we have

gk _gwak—3(t) + agg—_owar—2(t)+
(10)
(11)

Suppos€ € (z,xr+1). According to condition
(H7) from relations (10) — (11) we obtain

+agy_wak—1(t) + aggwar (t) = ()
Vt € (@h, Tpy1)-

det(p(t), agk—2, ask—1, azy)

)= 12

Wag 3( ) det(a%_37a%_2,azk_ha%)’ ( )
det(ag—3, ¢(t), agk—1, azk)

_9(t) = =

wak—2(1) det(agy_3, agk_2, agp—1,a2;)’ 49
det(agg 3, agk—2, p(t), azk)

i 14

war—1(?) det(agy—3, agk—2, aok—1, agk)’ 4

o (1) = det(agy—3,a2,—2, 821, (1)) (15)

det(agy—3, agx—2, Agk—1,A2k)
The functionsw; are called coordinate splines
of the Hermite type of the first heighthe closure of
their linear span in pointwise topology is hameitie
Hermite type spline space of the first height
The last space is denoted with' (X, A, ).

4.2 The Hermite type splines of the second
height

As before we putM = (a,8) C R!. LetS be a
collection of setsSss_o = S35-1 = S35 = (x5, Ts42)

Vs € Z. We see that the collection of open intervals
Ci = (x;,2i41), 1 € Z, is a cell subdivision.

Thus, S is a 3th-step 6th-times covering of the
interval (a, 3).

Suppose that vectat; € R corresponds to the
setS;, j € Z. In the discussed case the systdm=
{asgk_5,a3k—4,...,as,} is the equipment of the cell
Cr = (zk,xp41) if the system is linear independent;
the last one is equivalent to the condition

(H2)

.,a3i)750 Vi € Z.

ForthecelCy: k' = k+1: Cxy1 = (Tgs1, Thao)
we haveA,,1 = {asr_2,a34-1,...,a343}, and
Ak = Ap k1 = {asp—2, a3k—1, azk }, SO that

det(as;_s5,a3;—4, ..

Ap\Ag k= {agk—5, a3k—4, 83,3},
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A1\ Ak k' = {a3k+1, a3k12, A3k43}-

The Hermite type splines of the second order are
defined by the relations

Z agj_gu}g,j_g(t) + 33]‘—1W3j—1(t)+

JjEZ
+agjws;(t) = (t), (16)

Supp wsj—2,SUpp w3;—1,
suppws; C [z}, Tj42], (17)

wherep : (o, 8) — RS, ¢ € X(a, B).
Now by (16) — (17) we have
3k

> awi(t) = o(t),

j=3k—5

Vit € (l’k,karl). (18)

Thus according to conditiofiH2) and relations
(18) we obtain

w;(t) =
det (a5, Az 4, &z |V (1))
= , (19)
det (a3k—57 A3k 4y - a3k>
wheret € (l’k,xk+1) C [(Ej,$j+2], wj(t’) =0

Vt' & [, w1

The closure (in pointwise topology) of linear span
of system{w;};cz is named the Hermite type
spline space of the second heigittis denoted with
H*(X, A, ¢).

4.3 The Hermite type splines of the third
height

The Hermite type splines of the third height are con-
structed analogously. In that case we introduce a next
notion: M = (a,8) € RY, S = {S;}jez, Where
Sus—3 = Sis—2 = Sas—1 = Sis = (Ts,Ts42)

Vs € Z. As before we obtain the collection of open
intervalsC; = (z;,z;+1), ¢ € Z, which give subdivi-
sion of M. Now we have a covering of the interval
(a, B) by he collectionS, whereq = 8 andp = 4.

Discuss vectora; € R® with property

(Hs)

.,a4i)7é0 Vi € Z.

In the discussed case the systedy, =
{a4k—7,a4%—6, - - . , a4} is the equipment of the cell
Cr = (Tky Tht1)-

For the adjacent celly 1 = (vgi1,Trr2) WE
have

det(a4i,7, A4;—6,y - -

Apr1 = {aup—3, a4k-2, ..., Aakya},
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andAy p4+1 = {aak—3, A4k—2, a1k—1,a4x }, SO that

A\A ke = {aup—7, ..., au_4a}, (20)

Apri\ A = {a4kt1, - Aapsa}-

The Hermite type splines of the third height are
defined by the approximate relations

Z a4j_3w4j_3 (t)+a4j_2w4j_2 (t)+a4j_1w4j_1 (t)+
JjEZ

+agjwa(t) = o(t)  Vte (o, B), (21)
Supp wyq;—3,SUpp Wq;—2,
SUpp wyj—1, suppwaj C [, Tj42], (22)
wherep : (a,8) — RS, ¢ € X(a, 3).
Now by (21) — (22) we have
4k
o awi(t) =@(t)  VEE (g mpr). (23)
j=4k—T

Thus according to conditiofiH3) and relations
(23) we obtain

w;(t) =
det( ayk—7, 8ak—6, - - ., A |7 w(t))
: (24)
det (a4k—77 a6, - 7a4k~>
wheret € (zy,2k+1) C [2j,2542], wi(t) = 0

Vt' ¢ [, 240].

The functionsy; are called coordinate splines of
the Hermite type of the third heighand the closure of
their linear span in pointwise topology?(X, 4, ¢)
is named the Hermite type spline space of the third
height.

5 Pseudo-smoothness of the Hermite
type splines

5.1 Pseudo-smoothness of the Hermite type

splines of the first height

If ¢t € (xg41,zr42) then analogously to formulas
(12)—(15) we have (see subsection 4.1)

o () = det(¢(t), agk, agk+1, a2k+2)
- det(agy—1, a2, Agk 41, A2k+2)

det(a2k717 agk, a2k 11, a2k+2) )
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_ det(agy—1,as, p(t), azk42)
det(agy—_1, Ak, Agk+1, A2k42)

Wok Q(t) _ det(an:—l y A2k, A2k+1, Sp(t))
- det(agy—_1, Aok, A2k+1, A2k42)

Consider the linear spacé§(z;,z;+1), which
consist of functionsu(t), t € (xj,x;41). For exam-
ple, we can assume th&f(z;, z;4+1) = C*(xj, xj41),
or X(zj,xj41) = W, (x5, 7541), wherel < p, pis
real numbers is nonnegative integer.

Let X be a direct production of the spaces:

wak+1(1) , (25)

(26)

X=... XX(ZL‘,l,xo) XX(I‘o,xl) XX(:L‘l,I‘Q) X,

Let Fj, and Fj.; be linear functionals int
with supports in adjacent cel, = (zx, zx+1) and

Chv1 = (Tp41, Tpt2).
We introduce a condition

(D1)
Fro = Fi19.

Under condition D, ) we define
Py = Frp = Fit1. (27)

According to Theorem 4, conditions (6) and (7)

are equivalent. In the discussed case, the last one can

be written in the form

Frw; =0 fora; € {ag,_3,a,_2}, (28)

F wjr = 0 for ajr € {agk+1,a2k+2}. (29)

By (12) — (13) and (27) — (28) we have
Frwop—3 =0 <= det(agy_2, a1, a2, Px) =0,

Frwop—9 =0 <= det(ag;_3,as—1,agk, i) = 0;

now we deduce

®y, € L{agy 1, a0} (30)
By (25) — (26) and (27) — (29) analogously we
obtain
Frpiwopy1 =0 <

<= det(agy_1, agk, azk+1, Px) =0,
Fririwopro =0
< det(agy_1, a2, ask+1, Px) = 0.

It is clear to see that we obtain the implication
(30) again.

In addition, we assume that functiondls, and
F_., have supports in adjacent cells andCy; ac-
cordingly.

Suppose that the next condition is true
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(DY) o
Firo=Fii10.
Later we take into account the notation

O =Fip=Flue (31)

Using the previous discussion, we obtain
D) € L{agy 1,2}

Suppose the next condition is fulfilled

(E1) the conditiong D) and(D) are true, and
vectors defined by relations (27) and (31) are linear
independent (for each fixdde Z).

Under condition £7) the next relation is true

L{Py, D} = L{agk—_1, a2}

Let ®(;) be a sequence of pai(®;, ®}) so that
Dy = {(Pg, ©}) brez-

If the conditions(H;) and(E;) are true, then the
spaceH (X, A, ) is named a space of the Hermite
type splines with psuedo-smoothnésgs .

The previous discussion proves the next assertion.

Theorem 6. If grid X and vector functionp(t)
are fixed, then the space of the Hermite type splines
with psuedo-smoothnesdg, is unique.

Proof. Taking into account condition (32), we
have

VkeZ. (32)

agr-3 = ap 1P+ )1 Ph_y,  (33)
agp—2 = Fr—1Pp—1+ B 1P%_1,  (34)
agy_1 = ap®p + ) P, (35)
agp—2 = FrPr + 61D} (36)

Using formulas (33) — (36) in (10) we get the sys-
tem of equations

o~ / ~
Dp_qwop—3 + Pp_Wap_o+

+ i1 + D Lok = (1), (37)
where
Wok—3 = Op—1wak—3 + Pr—1wak—2,  (38)
Wok—2 = afy_qwok—3 + Bh_wok—2, (39)
Wok—1 = Qpwag—1 + Brwak, (40)
Dok = ajwap—1 + [ wak- (41)

According to suppositior{E;), vectors®; and &,
are linear independent. By conditions (32) it follows
that the vectors belong to hyperplafi¢ass_1, asy }.
Analogously vector®,_, and®,_, are linear inde-
pendent, and belong to hyperplafi¢as;_3, as;_2}-
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Taking into account suppositioff{;) for i = k, the
two hyperplanes have trivial intersection. Therefore
vectors®y_q, @ _,, @i, ) are linear independent.

It is clear that system (37) has unique solution
w;(t), andsuppw; = suppw;, i = 2k — 3, 2k — 2,
2k — 1, 2k.

Previuous discussion demonstrates that the coor-
dinate spliness; coincide to coordinate splines by
relations (38) — (41) for arbitrary system of vectors
satisfying conditiongH;) and (31).

Thus, coinciding hulls of the mentioned spline
systems be the same. This completes the proof.

It is clear to see that the space mentioned in The-
orem 6 is defined by grid\, vector functiony(t)
and by the family®); this space we denote by

Hl(X7 2 q)(l))
5.2

Pseudo-smoothness of the Hermite type
splines of the second height

Let Fy, F'}, Fi and Fipq, Fp .y, F1i, be linear
functionals inX’ with supports in adjacent celfy, =
(g, Tk11) @NdCry1 = (41, Txr2) accordingly.

Discussing the situation of subsection 4.2, we in-
troduce a condition

(D2)

Frpo = Fri19, Firo=Fiae, Flro=Fj e

Under condition D) we define

O = Frpo = Fri1p, r=Fro=Fi,

p=Fro=Fie (42)

We are interested in relations
kaj = Fk+1wj7 F;CWj = F;€+1wj7 (43)
ij' = Fg_HWj Vj e Z. (44)

If condition (D-) is fulfilled then according to The-
orem 4 and Corollary 2 relation (43) is equivalent to
equalities
kaj =0 Vaj S Ak\Ak—i-l- (45)
By formula (19) we see that (45) is equivalent to rela-
tions
Frwsp_5 =0 <

<= det(®y,azp—4,a3k—3,...,a3;) = 0, (46)
Frusp_ 4 =0 <—
— d@t(agk_5, (I)k7 AZf—3y .- -y a3k) = 07 (47)

Frwsip_3 =0 <—
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< det(agr_s5,a3;_4,

O, ask—2,...,a3;) = 0. (48)
According to formulas (46) — (48) we have
Oy € L{agk—2,a3,1,a3k ) (49)
Analogously by (44) we obtain
O, 07 € L{asy_2,a3,_1,a3,} (50)

Suppose the next condition is fulfilled

(E2) the conditiong Dy) is true, and vectors, de-
fined by relations (42), are linear independent (for
each fixedk € Z).

If condition (E52) is true then by (49) — (50) we
have
ﬁ{‘bk,q);g,q)/k, = ﬁ{agk,Q,agk,hagk} Vk € Z.

Let @5y be a sequence of tripled;,, @, @) so
that<I>(2) = {((I)k, P ?c? P /k/)}kGZ-

If the conditions(H3) and(E,) are true, then the
spaceH?(X, A, ) is named a space of the Hermite
type splines with psuedo-smoothnéss,.

Theorem 7. If grid X and vector functiorp(¢)
are fixed, then the space of the Hermite type splines
with psuedo-smoothnesdg,) is unique.

Proof of Theorem 7 is similar to proof of Theo-
rem 6.

The space mentioned in Theorem 7 is defined by
grid X, vector functiony(t) and by the family® ,);

this space we denote By*(X, ¢, ®5)).
5.3 On smoothness of the Hermite type
splines of the third height

Here we give a short discussion of the Hermite splines
of the third height (see subsection 4.3).

Let Fy, Fi, F/, F{ and Fy1, F.y, FllLy,
F" | belinear functionals irt’ with supports in adja-
cent cellsCy, = (x, xg4+1) andCri1 = (Tpt1, Tht2)

accordingly.
Now we discuss a condition
(D3)
Fro = Fyy1p, Flre=Fi e,
Fip=Fiae, Fio=Fiae

and define vectors
Oy = Frpo = Fiy10, ‘I)Z = F?&P = F§c+1> (51)

Oy =Flo=Fi,p,

n

K =Fie=File (52)
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We are interested in relations

Frw; = Frpiwj, (53)

/ ! 1 /i
Fiwj=Fjwj, Frwj=Fjpwj,

n

kaj':F/k//Jrlw]' Vj € Z.

If condition (Ds3) is fulfilled then according to Theo-
rem 4 and Corollary 2, relation (53) is equivalent to
equalities

kaj =0 Vaj S Ak\Ak—i-l‘ (54)
Taking into account formula (24), we see that by (20)
and (54) we have

Oy, € L{ag—3,a4p—2,a46—1,a4%}.  (55)

Analogously by (24) we obtain
D, Py, ) € L{ay,—3, asp—2,a4p—1, 841} (56)

Suppose the next condition is fulfilled

(E3) the conditiong D3) are true, and vectors de-
fined by relations (51) — (52) are linear independent
(for each fixedk € Z).

If condition (E3) is true then by (55) — (56) we
have

! 1) 1)
L{P}, P, P, L} = L{aur—_3, a4p—2, 8451, 845}

Vk € Z.
Let &3 be a sequence of quadru-
ple (O, @, @), ®}) so that d =

{(®f, @ ;{:? ¢ /k,? o glv P %,)}kez-

If the conditions(H3) and(Es) are true, then the
spaceH?(X, A, ) is named a space of the Hermite
type splines with psuedo-smoothnéss,.

The previous discussion proves the next assertion
(see also the proof of Theorem 6).

Theorem 8. If grid X and vector functionp(t)
are fixed, then the space of the Hermite type splines
of the third height with psuedo-smoothneBg, is
unique.

The space mentioned in Theorem 8 is defined by
grid X, vector functiony(t) and by the family® ;

this space we denote By (X, ¢, ®3)).
6 Conclusion
Returning to the definition of basic splines, we note

that the approximate relations consist of identities that
include a priori given vector sequende= {a; | a; €
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R™*1} andm + 1-dimensional vector-valued func- More complicated example is
tion () (that is named generating vector function)
defined on the intervdky, 3):

> ajw;(t) = (t);

0
Fru= lim [ (u(zg+1 + §)dE,

T——0

T

herem is a nonnegative integer. In addition, location i TIEEO 0 VOul@rr +E)dt,

of coordinate spline supports (relatively to the gkig where () is a weight function; now the equality

is indicated at the mentioned interval. Fyu = Fyou illustrates "weighted smoothness” (see
The smoothness of coordinate functions inside of 3|50 [28] - [29]).

cells are defined by the smoothness of generating vec- Here we have only discussed the spaces of the

tor function in approximate relations, but the smooth-  Hermite type spline with the first, second and third

ness of coordinate functions on the boundary of adja- heights. The obtained result gives the opportunity to

cent cells required additional discussion. prove the uniqueness of the Hermite spline spaces of
The location of supports determines the type of - the highest smoothness with arbitrary height.

splines: for example, if the supports are "ladder”,

suppw; C [xj, Zj+m+1), then splines of the Lagrange ~ Acknowledgements: This research was partially

type are obtained. The case of nested supports leadssupported by RFBR Grant 15-01-008847.
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