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Abstract: - In this paper we consider the bilinear model in the cell cycle specific cancer chemotherapy. The 
realistic control schemes have to deal with parametric uncertainties, hence, we apply the robust control to 
maximize both the bone marrow mass and the dose over the treatment interval. The robust control for bilinear 
system requires a solution to the state dependent algebraic Riccati equation. The bilinear system is described as 
polytopic parameter varying systems where state vector as parameter varying. The formulation of controller 
synthesis is done with reformulated the bilinear matrix inequalities in linear matrix inequalities for each 
subsystem on a polytope. Feasible solution which satisfies the linear matrix inequalities for design the 
controller is found. From the numerical calculations, we obtain the optimal treatment that prevent excessive 
destruction of the bone marrow based on the specific weights in our objective functional. 
 
Key-Words: - Robust control, bilinear system, cell-cycle-specific, LPV system 
 
1 Introduction 
Many problems in science and engineering can be 
modeled in the bilinear model such as population 
models, nuclear fission, transmission and power 
system, and so on. Bilinear systems have been 
considered since the early 1960s as a gateway 
between the linear and nonlinear systems. 

Designing control for the bilinear systems have 
developed with several approaches such as sliding 
mode control, quadratic feedback, linear state 
feedback, and model reference control. 

 In this paper we consider the bilinear model for 
the dynamic of the cell-cycle of the bone-marrow 
cell transition between the proliferating phase and 
the rest phase. To maximize the quantity of drug 
injected over the treatment period T, we utilize the 
robust control. By using this control, the parametric 
uncertainties can be considered in designing control. 

The robust control for bilinear system requires a 
solution to the state dependent algebraic Riccati 
equation [1]. One approach to solve the Riccati 
equation can be found in [7]. In this paper we use 
that the bilinear system is approached as polytopic 
parameter varying systems where state vector as 
parameter varying. The formulation of controller 
synthesis is done with reformulated the bilinear 
matrix inequalities in linear matrix inequalities for 
each subsystem on a polytope. Feasible solution 
which satisfies the linear matrix inequalities for 
design the controller is found. From the numerical 
calculations, we obtain the optimal treatment that 

prevent excessive destruction of the bone marrow 
based on the specific weights in our objective 
functional. 
 
 
2 Bilinear System Model 

Consider the bilinear system as follow:                 

  �̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵�𝑥𝑥(𝑡𝑡)�𝑢𝑢(𝑡𝑡)                    (1)                              

  𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡) + 𝐷𝐷𝑢𝑢(𝑡𝑡)                    (2)                                            

where 𝑥𝑥 ∈ ℝ𝑛𝑛  is the state vector, 𝑢𝑢 ∈ ℝ𝑚𝑚  is the  
input vector, 𝑦𝑦 ∈ ℝ𝑝𝑝  is the output vector, 𝐴𝐴 ∈
ℝ𝑛𝑛×𝑛𝑛 ,𝐶𝐶 ∈ ℝ𝑝𝑝×𝑛𝑛 ,𝐷𝐷 ∈ ℝ𝑝𝑝×𝑚𝑚 ,      𝐵𝐵(𝑥𝑥) = 𝐵𝐵 +
∑ 𝑁𝑁𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  , 𝐵𝐵,𝑁𝑁𝑖𝑖 ∈ ℝ𝑛𝑛×𝑚𝑚 , 𝑖𝑖 = 1,2, … ,𝑛𝑛   is the 

continuous matrix-valued functions. Assume that 
system (1-2) is stabilizable. Furthermore, the cost 
function is defined by 

  𝑉𝑉(𝑥𝑥) : = sup
𝑢𝑢∈𝐿𝐿2[0,∞],
𝑥𝑥(0)=𝑥𝑥

∫ 𝛾𝛾2‖𝑢𝑢(𝑡𝑡)‖2 − ‖𝑦𝑦(𝑡𝑡)‖2𝑑𝑑𝑡𝑡.∞
0  

In [8], the bilinear system (1-2) asymptotically 
stable and have gain-𝐿𝐿2 ≤ 𝛾𝛾, where 𝑅𝑅 = 𝛾𝛾2𝐼𝐼 −
𝐷𝐷𝑡𝑡𝐷𝐷 ≻ 0. If 𝑉𝑉 differentiable to 𝑥𝑥 ∈ ℝ𝑛𝑛  where 
𝜕𝜕𝑉𝑉
𝜕𝜕𝑥𝑥

(𝑥𝑥) = 2𝑥𝑥𝑡𝑡𝑃𝑃𝑡𝑡(𝑥𝑥), then 
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𝐻𝐻(𝑃𝑃, 𝑥𝑥): = 𝑥𝑥𝑡𝑡(𝐴𝐴𝑡𝑡𝑃𝑃 + 𝑃𝑃𝐴𝐴
+  𝐶𝐶𝑡𝑡𝐶𝐶+(𝐵𝐵(𝑥𝑥)𝑡𝑡𝑃𝑃 + 𝐷𝐷𝑡𝑡𝐶𝐶)𝑡𝑡  

 𝑅𝑅−1(𝐵𝐵(𝑥𝑥)𝑡𝑡𝑃𝑃 + 𝐷𝐷𝑡𝑡𝐶𝐶))𝑥𝑥 ≤ 0.                                (3)  

The optimal control is obtained as 𝑢𝑢∗ =

𝑅𝑅−1𝐷𝐷𝑡𝑡(𝐶𝐶𝑥𝑥)𝑡𝑡 + 1
2
𝑅𝑅−1𝐵𝐵(𝑥𝑥)𝑡𝑡 𝜕𝜕𝑉𝑉

𝜕𝜕𝑥𝑥

𝑡𝑡
.  

Hence, we must find 𝑃𝑃 to obtain the optimal 
controller 𝑢𝑢∗. Furthermore, we will derive the last 
condition into another form that is matrix inequality 
as follow 

  𝐻𝐻(𝑃𝑃, 𝑥𝑥) ≤ 0,𝑅𝑅 = 𝛾𝛾2𝐼𝐼 − 𝐷𝐷𝑡𝑡𝐷𝐷 ≻ 0 

  ⇔ 𝑥𝑥𝑡𝑡(𝐴𝐴𝑡𝑡𝑃𝑃 + 𝑃𝑃𝐴𝐴+𝐶𝐶𝑡𝑡𝐶𝐶 + (𝐵𝐵(𝑥𝑥)𝑡𝑡𝑃𝑃 + 𝐷𝐷𝑡𝑡𝐶𝐶)𝑡𝑡𝑅𝑅−1 

       (𝐵𝐵(𝑥𝑥)𝑡𝑡𝑃𝑃 + 𝐷𝐷𝑡𝑡𝐶𝐶))𝑥𝑥 ≤ 0,𝑅𝑅 ≻ 0 

  ⇔ 𝑥𝑥𝑡𝑡(𝐴𝐴𝑡𝑡𝑃𝑃 + 𝑃𝑃𝐴𝐴+𝐶𝐶𝑡𝑡𝐶𝐶 + (𝐵𝐵(𝑥𝑥)𝑡𝑡𝑃𝑃 + 𝐷𝐷𝑡𝑡𝐶𝐶)𝑡𝑡  

         (𝛾𝛾2𝐼𝐼 − 𝐷𝐷𝑡𝑡𝐷𝐷)−1(𝐵𝐵(𝑥𝑥)𝑡𝑡𝑃𝑃 + 𝐷𝐷𝑡𝑡𝐶𝐶))𝑥𝑥 ≤ 0 

⟺ �𝐴𝐴
𝑡𝑡𝑃𝑃 + 𝑃𝑃𝐴𝐴 𝑃𝑃𝐵𝐵(𝑥𝑥)
𝐵𝐵(𝑥𝑥)𝑡𝑡𝑃𝑃 −𝛾𝛾2𝐼𝐼

�+ �𝐶𝐶
𝑡𝑡

𝐷𝐷𝑡𝑡� 𝐼𝐼[𝐶𝐶 𝐷𝐷] ≼ 0.   (4)   

By multiplying on each side of inequality (4) by 𝛾𝛾−1 
and let 𝑃𝑃1 = 𝛾𝛾−1𝑃𝑃 then we obtain 

�𝑃𝑃1𝐴𝐴 + 𝐴𝐴𝑡𝑡𝑃𝑃1 𝑃𝑃1𝐵𝐵(𝑥𝑥)
𝐵𝐵(𝑥𝑥)𝑡𝑡𝑃𝑃1 −𝛾𝛾𝐼𝐼

� + �𝐶𝐶
𝑡𝑡

𝐷𝐷𝑡𝑡� 𝛾𝛾
−1𝐼𝐼[𝐶𝐶 𝐷𝐷] ≼ 0.

                                                                   (5) 

By Schur complement, inequality (5) can be written 
as 

  �
𝐴𝐴𝑡𝑡𝑃𝑃 + 𝑃𝑃𝐴𝐴 𝑃𝑃𝐵𝐵(𝑥𝑥) 𝐶𝐶𝑡𝑡
𝐵𝐵(𝑥𝑥)𝑡𝑡𝑃𝑃 −𝛾𝛾𝐼𝐼 𝐷𝐷𝑡𝑡

𝐶𝐶 𝐷𝐷 −𝛾𝛾𝐼𝐼
� ≼ 0.                        (6) 

If 𝐵𝐵(𝑥𝑥) is fixed then inequality in (6) becomes a 
sufficient and necessary for bounded real lemma on 
linear system as on [6]. 

Lemma [8]: If system (1-2) satisfy 
1. there is matrix valued function 𝑃𝑃(𝑥𝑥) ≻ 0 

such that  ∀𝑥𝑥 ∈ ℝ𝑛𝑛  satisfy the inequality 
(6),  

2. there is a function 𝑉𝑉(𝑥𝑥) ≻ 0,𝑉𝑉 ∈ 𝐶𝐶1  such 
that 

𝜕𝜕𝑉𝑉(𝑥𝑥)
𝜕𝜕𝑥𝑥

= 2𝑥𝑥𝑡𝑡𝑃𝑃(𝑥𝑥)𝑡𝑡 , 

then system (1-2) have 𝐿𝐿2-gain≤ 𝛾𝛾, 𝛾𝛾 ≥ 0 and 
asymptotically stable. 

For designing control system, we consider the 
bilinear model as the linear time varying (LPV). The 
designing control for the LPV with minimum order 
can be found in [5]. Consider 
𝔽𝔽𝜌𝜌 = {𝜌𝜌(𝑡𝑡)|𝜌𝜌:ℝ → 𝒫𝒫 ⊂ ℝ𝑛𝑛} denotes the set of all 
piecewise continuous mapping from ℝ to 𝒫𝒫 where 
𝒫𝒫 is compact set, 𝜌𝜌ℎ𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝜌𝜌ℎ ≤ 𝜌𝜌ℎ𝑚𝑚𝑎𝑎𝑥𝑥 , ℎ =
1,2, … ,𝑛𝑛 and there is a finite number of 
discontinuity in any interval. The linear parameter 
varying systems can be presented by state space 
𝒫𝒫(𝜌𝜌) as follow 

  �̇�𝑥(𝑡𝑡) = 𝐴𝐴(𝜌𝜌(𝑡𝑡))𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝜌𝜌(𝑡𝑡))𝑢𝑢(𝑡𝑡), 𝜌𝜌 ∈ 𝔽𝔽𝜌𝜌 ,     (7) 

  𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡) + 𝐷𝐷𝑢𝑢(𝑡𝑡).                                  (8)
              

The dependence of 𝐴𝐴(. ),𝐵𝐵(. ),𝐶𝐶,𝐷𝐷 on 𝜌𝜌  is affine. 
The matrix polytopes are defined as convex hull of a 
finite number of matrices, that is 

𝐶𝐶𝑜𝑜{𝑆𝑆𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑝𝑝}

= ��𝛼𝛼𝑖𝑖𝑆𝑆𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�𝛼𝛼𝑖𝑖 ≥ 0,�𝛼𝛼𝑖𝑖 = 1
𝑝𝑝

𝑖𝑖=1

�. 

Suppose polytope 𝒫𝒫 ⊂ ℝ𝑛𝑛 , 

  𝒫𝒫 = conv�𝜌𝜌1,𝜌𝜌2, … ,𝜌𝜌𝑝𝑝� 

    = conv�𝑥𝑥(1),𝑥𝑥(2), … , 𝑥𝑥(𝑝𝑝)�,𝑝𝑝 = 2𝑛𝑛 ,               (9)          
where 𝑝𝑝 are integer number, 𝑥𝑥(𝑖𝑖) is i-th vertex of 𝒫𝒫 
polytope, conv{. } is convexhull of argument. 
 
 
3 Design Control Via LPV 

Suppose the generalized LPV system 𝐺𝐺(𝜌𝜌)is 
described as follows   

�̇�𝑥(𝑡𝑡) = 𝐴𝐴(𝜌𝜌(𝑡𝑡))𝑥𝑥(𝑡𝑡) + 𝐵𝐵1𝑤𝑤(𝑡𝑡) + 𝐵𝐵2�𝜌𝜌(𝑡𝑡)�𝑢𝑢(𝑡𝑡)(10) 

𝑧𝑧(𝑡𝑡) = 𝐶𝐶1𝑥𝑥(𝑡𝑡) + 𝐷𝐷11𝑤𝑤(𝑡𝑡) + 𝐷𝐷12𝑢𝑢(𝑡𝑡),             (11) 
𝑦𝑦(𝑡𝑡) = 𝐶𝐶2𝑥𝑥(𝑡𝑡) + 𝐷𝐷21𝑤𝑤(𝑡𝑡) + 𝐷𝐷22𝑢𝑢(𝑡𝑡),𝜌𝜌 ∈ 𝔽𝔽𝜌𝜌 ,   (12) 
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where 𝑤𝑤 ∈ ℝ𝑞𝑞  is the exogenous inputs, 𝑢𝑢 ∈ ℝ𝑚𝑚  is 
the control inputs, 𝑦𝑦 ∈ ℝ𝑝𝑝  is the measured outputs 
and 𝑧𝑧 ∈ ℝ𝑟𝑟  is the controlled outputs also 
𝐴𝐴,𝐵𝐵1,𝐵𝐵2,𝐶𝐶1,𝐶𝐶2,𝐷𝐷11,𝐷𝐷12,𝐷𝐷21  are matrices of 
suitable dimensions. We assume the system is 
stricly proper from 𝑢𝑢 to 𝑦𝑦, i.e. 𝐷𝐷22 = 0. The 
generalized plant 𝐺𝐺(𝜌𝜌) in polytopic form as follow 

  �
𝐴𝐴(𝜌𝜌(𝑡𝑡)) 𝐵𝐵1 𝐵𝐵2(𝜌𝜌(𝑡𝑡))
𝐶𝐶1 𝐷𝐷11 𝐷𝐷12
𝐶𝐶2 𝐷𝐷21 𝐷𝐷22

� ∈ 

  𝐶𝐶𝑜𝑜 ��
𝐴𝐴𝑖𝑖 𝐵𝐵1𝑖𝑖 𝐵𝐵2𝑖𝑖
𝐶𝐶1𝑖𝑖 𝐷𝐷11𝑖𝑖 𝐷𝐷12𝑖𝑖
𝐶𝐶2𝑖𝑖 𝐷𝐷21𝑖𝑖 𝐷𝐷22𝑖𝑖

��
𝑖𝑖=1

𝑝𝑝

.                            (13) 

We will find a full order controller 

  𝒦𝒦(𝜌𝜌) = {�̂�𝐴(𝜌𝜌),𝐵𝐵�(𝜌𝜌), �̂�𝐶(𝜌𝜌),𝐷𝐷�(𝜌𝜌)} 

of generalized plant 𝐺𝐺(𝜌𝜌) with state space 
realizations is 

  �̇�𝜉(𝑡𝑡) = �̂�𝐴(𝜌𝜌(𝑡𝑡))𝜉𝜉(𝑡𝑡) + 𝐵𝐵�(𝜌𝜌(𝑡𝑡))𝑦𝑦(𝑡𝑡),               (14) 

  𝑢𝑢(𝑡𝑡) = �̂�𝐶�𝜌𝜌(𝑡𝑡)�𝜉𝜉(𝑡𝑡) + 𝐷𝐷��𝜌𝜌(𝑡𝑡)�𝑦𝑦(𝑡𝑡),𝜌𝜌 ∈ 𝔽𝔽𝜌𝜌 ,   (15)  

where 𝜉𝜉 ∈ ℝ𝑘𝑘 ,𝑘𝑘 ≤ 𝑛𝑛 is a compact open set which 
contain the origin point. If 𝑘𝑘 = 𝑛𝑛  then it is called a 
full order controller. From (10-12) and (14-15) will 
be obtained closed loop system as follow 

  �̇�𝑥𝑐𝑐(𝑡𝑡) = 𝐴𝐴𝑐𝑐(𝜌𝜌(𝑡𝑡))𝑥𝑥𝑐𝑐(𝑡𝑡) + 𝐵𝐵𝑐𝑐(𝜌𝜌(𝑡𝑡))𝑤𝑤(𝑡𝑡),         (16) 

  𝑧𝑧(𝑡𝑡) = 𝐶𝐶𝑐𝑐�𝜌𝜌(𝑡𝑡)�𝑥𝑥𝑐𝑐(𝑡𝑡) + 𝐷𝐷𝑐𝑐�𝜌𝜌(𝑡𝑡)�𝑤𝑤(𝑡𝑡),𝜌𝜌 ∈ 𝔽𝔽𝜌𝜌 ,
                                                                 (17) 

where 𝑥𝑥𝑐𝑐 = �
𝑥𝑥
𝜉𝜉�, 

  𝐴𝐴𝑐𝑐 = �𝐴𝐴
(𝜌𝜌) + 𝐵𝐵2(𝜌𝜌)𝐷𝐷�(𝜌𝜌)𝐶𝐶2 𝐵𝐵2(𝜌𝜌)�̂�𝐶(𝜌𝜌)

𝐵𝐵�(𝜌𝜌)𝐶𝐶2 �̂�𝐴(𝜌𝜌)
�,   

  𝐵𝐵𝑐𝑐 = �𝐵𝐵1 + 𝐵𝐵2(𝜌𝜌)𝐷𝐷�(𝜌𝜌)𝐷𝐷21
𝐵𝐵�(𝜌𝜌)𝐷𝐷21

�,  

  𝐶𝐶𝑐𝑐 = [𝐶𝐶1 + 𝐷𝐷12𝐷𝐷�(𝜌𝜌)𝐶𝐶2 𝐷𝐷21�̂�𝐶(𝜌𝜌)],  

and 

  𝐷𝐷𝑐𝑐 = �𝐷𝐷11 + 𝐷𝐷12𝐷𝐷�(𝜌𝜌)𝐷𝐷21�. 

 

  Furthermore, we present the definition of strong 
robust 𝐻𝐻∞-performance of a system. System (9-10) 
is said to have strong robust 𝐻𝐻∞- performance if 
there exists 𝑃𝑃𝑐𝑐 ≻ 0 such that  

  ∀𝑥𝑥𝑐𝑐 ∈ ℝ𝑛𝑛 , �
𝐴𝐴𝑐𝑐𝑡𝑡 𝑃𝑃𝑐𝑐 + 𝑃𝑃𝑐𝑐𝐴𝐴𝑐𝑐 𝑃𝑃𝑐𝑐𝐵𝐵𝑐𝑐 𝐶𝐶𝑐𝑐𝑡𝑡

𝐵𝐵𝑐𝑐𝑡𝑡𝑃𝑃𝑐𝑐 −𝛾𝛾𝐼𝐼 𝐷𝐷𝑐𝑐𝑡𝑡
𝐶𝐶𝑐𝑐 𝐷𝐷𝑐𝑐 −𝛾𝛾𝐼𝐼

� ≼ 0,    (18) 

and 

  𝜕𝜕𝑉𝑉𝑐𝑐(𝑥𝑥𝑐𝑐)
𝜕𝜕𝑥𝑥𝑐𝑐

= 2𝑥𝑥𝑐𝑐𝑡𝑡𝑃𝑃𝑐𝑐 ,∀𝑥𝑥𝑐𝑐 ∈ ℝ𝑛𝑛 × ℝ𝑘𝑘 ,             (19) 

for some definite positive function 𝑉𝑉𝑐𝑐 ∈ 𝐶𝐶1.  

Let Lyapunov function for closed loop system as 
follow 

  𝑉𝑉𝑐𝑐(𝑥𝑥𝑐𝑐): = 𝑥𝑥𝑐𝑐𝑡𝑡𝑃𝑃𝑐𝑐𝑥𝑥𝑐𝑐  

             = [𝑥𝑥𝑡𝑡 𝜉𝜉𝑡𝑡] � 𝑃𝑃(𝑥𝑥) 𝑃𝑃1
𝑡𝑡(𝑥𝑥)

𝑃𝑃1(𝑥𝑥) 𝑃𝑃0(𝑥𝑥)� �
𝑥𝑥
𝜉𝜉� 

             = 𝑥𝑥𝑡𝑡𝑃𝑃(𝑥𝑥)𝑥𝑥 + 𝜉𝜉𝑡𝑡𝑃𝑃1(𝑥𝑥)𝑥𝑥 + 𝑥𝑥𝑡𝑡𝑃𝑃1
𝑡𝑡(𝑥𝑥)𝜉𝜉 +

                  𝜉𝜉𝑡𝑡𝑃𝑃0(𝑥𝑥)𝜉𝜉 

             = 𝑉𝑉(𝑥𝑥) + 𝑈𝑈(𝜉𝜉 − 𝜙𝜙(𝑥𝑥)) 

where 𝑉𝑉 is Lyapunov function for state feedback, 
𝜕𝜕𝑉𝑉(𝑥𝑥)
𝜕𝜕𝑥𝑥

= 2𝑥𝑥𝑡𝑡𝑃𝑃(𝑥𝑥)and 𝑈𝑈is Lyapunov function for 
observer. We assume that there exist function 
𝜙𝜙: 𝑥𝑥 → 𝜉𝜉, 𝜙𝜙(0) = 0, 𝑒𝑒 = 𝜉𝜉 − 𝜙𝜙(𝑥𝑥) such that 

  �𝜕𝜕𝑉𝑉𝑐𝑐
𝜕𝜕𝜉𝜉

(𝑥𝑥, 𝜉𝜉)�
𝜉𝜉=𝜙𝜙(𝑥𝑥)

= �𝜕𝜕𝑈𝑈
𝜕𝜕𝑒𝑒

(𝑒𝑒)�
𝑒𝑒=0

= 0. 

Hence 

  𝜕𝜕𝑉𝑉𝑐𝑐(𝑥𝑥𝑐𝑐)
𝜕𝜕𝑥𝑥𝑐𝑐

= �𝜕𝜕𝑉𝑉𝑐𝑐𝜕𝜕𝑥𝑥
(𝑥𝑥, 𝜉𝜉) 𝜕𝜕𝑉𝑉𝑐𝑐

𝜕𝜕𝜉𝜉
(𝑥𝑥, 𝜉𝜉)� 

   = [2𝑥𝑥𝑡𝑡𝑃𝑃(𝑥𝑥) + 2𝜉𝜉𝑡𝑡𝑃𝑃1(𝑥𝑥) 2𝑥𝑥𝑡𝑡𝑃𝑃1
𝑡𝑡(𝑥𝑥) + 2𝜉𝜉𝑡𝑡𝑃𝑃0(𝑥𝑥)] 

   = 2[𝑥𝑥𝑡𝑡 𝜉𝜉𝑡𝑡] � 𝑃𝑃(𝑥𝑥) 𝑃𝑃1
𝑡𝑡(𝑥𝑥)

𝑃𝑃1(𝑥𝑥) 𝑃𝑃0(𝑥𝑥)� 

    = 2𝑥𝑥𝑐𝑐𝑡𝑡  𝑃𝑃𝑐𝑐 . 

Synthesis problem: 

Given the generalized plant (13. The problem of 
control design is find 𝒦𝒦(𝜌𝜌) such that closed loop 
system (16-17) asymptotically stable and minimizes 
𝛾𝛾.  
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 Formulation (18) is a bilinear matrix 
inequality of the variables 𝑃𝑃𝑐𝑐  and 𝒦𝒦(𝜌𝜌). The 
condition 𝐻𝐻∞-norm of closed loop system less than 
𝛾𝛾 is robustness problem of bilinear system. 
Therefore, robust control synthesis problem is 
minimize 𝛾𝛾 such that (18-19). Because (18) is 
bilinear matrix inequality form then it is a difficult 
problem to solved. Furthermore, we will derive an 
LMI condition equivalent to (18). BMI (18) 
equivalent to following BMI: 

 

  �
−𝐴𝐴𝑐𝑐𝑡𝑡 𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑐𝑐𝐴𝐴𝑐𝑐 𝑃𝑃𝑐𝑐𝐵𝐵𝑐𝑐 𝐶𝐶𝑐𝑐𝑡𝑡

𝐵𝐵𝑐𝑐𝑡𝑡𝑃𝑃𝑐𝑐 𝛾𝛾𝐼𝐼 −𝐷𝐷𝑐𝑐𝑡𝑡
𝐶𝐶𝑐𝑐 −𝐷𝐷𝑐𝑐 𝛾𝛾𝐼𝐼

� ≽ 0.                 (20) 

  The formulation of full order controller for bilinear 
system is presented on Theorem 1.  It will be 
derived the basic characterization of the full order 
parameter varying controller. 

Theorem: Consider a subsystem of bilinear system 
that is 
𝐺𝐺𝑖𝑖 = {𝐴𝐴𝑖𝑖 ,𝐵𝐵1𝑖𝑖 ,𝐵𝐵2𝑖𝑖 ,𝐶𝐶1𝑖𝑖 ,𝐷𝐷11𝑖𝑖 ,𝐷𝐷12𝑖𝑖 ,𝐶𝐶2𝑖𝑖 ,𝐷𝐷21𝑖𝑖 ,𝐷𝐷22𝑖𝑖} and 
a local controller 𝒦𝒦𝑖𝑖 = ��̂�𝐴𝑖𝑖 ,𝐵𝐵�𝑖𝑖 , �̂�𝐶𝑖𝑖 ,𝐷𝐷�𝑖𝑖�. The 
inequality (20) hold for some (𝑃𝑃𝑐𝑐𝑖𝑖 ,𝒦𝒦𝑖𝑖), if only if 
LMIs (21-22) hold for some 
𝑃𝑃𝑖𝑖 = {𝑉𝑉𝑖𝑖 ,𝑊𝑊𝑖𝑖 ,𝐹𝐹𝑖𝑖 ,𝐺𝐺𝑖𝑖 ,𝐻𝐻𝑖𝑖 ,𝐿𝐿𝑖𝑖}, where  

  �𝑉𝑉𝑖𝑖 𝐼𝐼
𝐼𝐼 𝑊𝑊𝑖𝑖

� ≻ 0, 𝑉𝑉𝑖𝑖 ,𝑊𝑊𝑖𝑖 ≻ 0                          (21) 

  �

𝜑𝜑11 ∗
𝜑𝜑21 𝜑𝜑22

∗ ∗
∗ ∗

𝜑𝜑31 𝜑𝜑32
𝜑𝜑41 𝜑𝜑42

𝛾𝛾𝐼𝐼 ∗
𝜑𝜑43 𝛾𝛾𝐼𝐼

� ≽ 0,                          (22) 

where * present this matrix is symmetric, 

  𝜑𝜑11 = −(𝐴𝐴𝑖𝑖𝑉𝑉𝑖𝑖 + 𝐵𝐵2𝑖𝑖𝐹𝐹𝑖𝑖) − (𝐴𝐴𝑖𝑖𝑉𝑉𝑖𝑖 + 𝐵𝐵2𝑖𝑖𝐹𝐹𝑖𝑖)𝑡𝑡 , 

  𝜑𝜑21 = −𝐿𝐿𝑖𝑖 − (𝐴𝐴𝑖𝑖 + 𝐵𝐵2𝑖𝑖𝐻𝐻𝑖𝑖𝐶𝐶2𝑖𝑖)𝑡𝑡 , 

  𝜑𝜑22 = −(𝑊𝑊𝑖𝑖𝐴𝐴𝑖𝑖 + 𝐺𝐺𝑖𝑖𝐶𝐶2𝑖𝑖) − (𝑊𝑊𝑖𝑖𝐴𝐴𝑖𝑖 + 𝐺𝐺𝑖𝑖𝐶𝐶2𝑖𝑖)𝑡𝑡 , 

  𝜑𝜑31 = (𝐵𝐵1𝑖𝑖 + 𝐵𝐵2𝑖𝑖𝐻𝐻𝑖𝑖𝐷𝐷21𝑖𝑖)𝑡𝑡  

  𝜑𝜑32 = (𝑊𝑊𝑖𝑖𝐵𝐵1𝑖𝑖 + 𝐺𝐺𝑖𝑖𝐷𝐷21𝑖𝑖)𝑡𝑡  

  𝜑𝜑41 = 𝐶𝐶1𝑖𝑖𝑉𝑉𝑖𝑖 + 𝐷𝐷12𝑖𝑖𝐹𝐹𝑖𝑖 , 

  𝜑𝜑42 = 𝐶𝐶1𝑖𝑖 + 𝐷𝐷12𝑖𝑖𝐻𝐻𝑖𝑖𝐶𝐶2𝑖𝑖 , 

and 

  𝜑𝜑43 = −(𝐷𝐷11𝑖𝑖 + 𝐷𝐷12𝑖𝑖𝐻𝐻𝑖𝑖𝐷𝐷21𝑖𝑖). 

If the LMIs (14-15) has a solution 𝑃𝑃𝑖𝑖 , one of the 
solutions to the LMIs is given by 
  �̂�𝐴𝑖𝑖 = 𝑊𝑊𝑖𝑖

−1𝐺𝐺𝑖𝑖𝐶𝐶2𝑖𝑖𝑉𝑉𝑖𝑖𝑆𝑆𝑖𝑖−1 − 𝐵𝐵2𝑖𝑖𝐻𝐻𝑖𝑖𝐶𝐶2𝑖𝑖𝑉𝑉𝑖𝑖𝑆𝑆𝑖𝑖−1 +
             𝐵𝐵2𝑖𝑖𝐹𝐹𝑖𝑖𝑆𝑆𝑖𝑖−1 −𝑊𝑊𝑖𝑖

−1𝐿𝐿𝑖𝑖𝑆𝑆𝑖𝑖−1 + 𝐴𝐴𝑖𝑖𝑉𝑉𝑖𝑖𝑆𝑆𝑖𝑖−1, 

  𝐵𝐵�𝑖𝑖 = 𝐵𝐵2𝑖𝑖𝐻𝐻𝑖𝑖 −𝑊𝑊𝑖𝑖
−1𝐺𝐺𝑖𝑖 , 

  �̂�𝐶𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑆𝑆𝑖𝑖−1 −𝐻𝐻𝑖𝑖𝐶𝐶2𝑖𝑖𝑉𝑉𝑖𝑖𝑆𝑆𝑖𝑖−1, and 

  𝐷𝐷�𝑖𝑖 = 𝐻𝐻𝑖𝑖 . 

Corollary: Consider the generalized LPV system 
𝐺𝐺(𝜌𝜌) where polytopic form (13). There exists a 
polytopic LPV controller 𝒦𝒦 = ��̂�𝐴,𝐵𝐵� , �̂�𝐶,𝐷𝐷�� such that 
polytopic of closed loop system will asymptotically 
stable and have 𝐿𝐿2- gain ≤ 𝛾𝛾, 𝛾𝛾 > 0, where 

  ��̂�𝐴 𝐵𝐵�
�̂�𝐶 𝐷𝐷�

� ≔ ∑ 𝛼𝛼𝑖𝑖(𝑡𝑡)
𝑝𝑝
𝑖𝑖=1 ��̂�𝐴𝑖𝑖 𝐵𝐵�𝑖𝑖

�̂�𝐶𝑖𝑖 𝐷𝐷�𝑖𝑖
� ,𝛼𝛼𝑖𝑖(𝑡𝑡) ≥

0,∑ 𝛼𝛼𝑖𝑖
𝑝𝑝
𝑖𝑖=1 = 1, 

𝒦𝒦𝑖𝑖 = ��̂�𝐴𝑖𝑖 ,𝐵𝐵�𝑖𝑖 , �̂�𝐶𝑖𝑖 ,𝐷𝐷�𝑖𝑖�, 𝑖𝑖 = 1,2, … ,𝑝𝑝 are suboptimal 
solution of Theorem. 

Furthermore, we propose the algorithms to obtain 
the robust 𝐻𝐻∞  controller for bilinear system. 

Input: Generalized bilinear system consist of 
𝐴𝐴,𝐵𝐵1,𝐵𝐵2(𝑥𝑥),𝐶𝐶1,𝐷𝐷11,𝐷𝐷12,𝐶𝐶2,𝐷𝐷21,𝐷𝐷22, polytope 
𝒫𝒫 ⊂ ℝ𝑛𝑛  where vertcices 𝑥𝑥(1),𝑥𝑥(2),𝑥𝑥(3), … , 𝑥𝑥(𝑝𝑝)  and 
𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, … ,𝛼𝛼𝑝𝑝 ,𝛼𝛼𝑖𝑖(𝑡𝑡) ≥ 0,∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 = 1.  

Process:  
1. Determine a subsystem of bilinear system 

by using the vertices 𝑥𝑥(1),𝑥𝑥(2),𝑥𝑥(3), … , 𝑥𝑥(𝑝𝑝). 

2. Design the local controller on each 
subsystem by using the above Theorem. 

Output: The total controller is stated in above 
Corollary.  

The process is repeated until the total controller 
will resulting the closed-loop system (16-17) which 
is asymptotically stable. While the 𝐿𝐿2-gain of 
closed-loop system (16-17) is maximum of 𝐿𝐿2-gains 
at local closed-loop systems.  
 
 
4 Simulation Results 

The dynamic model of cell-cycle-specific cancer 
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chemotherapy in the bilinear model as follows [4]: 
 
𝑑𝑑𝑃𝑃(𝑡𝑡)
𝑑𝑑𝑡𝑡

= �𝛾𝛾 − 𝛿𝛿 − 𝛼𝛼 − 𝑠𝑠𝑓𝑓(𝑡𝑡)�𝑃𝑃(𝑡𝑡) + 𝛽𝛽𝑄𝑄(𝑡𝑡) 
𝑑𝑑𝑄𝑄(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛼𝛼𝑃𝑃(𝑡𝑡) − (𝜆𝜆 + 𝛽𝛽)𝑄𝑄(𝑡𝑡) 

where 𝑃𝑃(0) = 𝑃𝑃0 and 𝑄𝑄(0) = 𝑄𝑄0. 𝑃𝑃 is the 
proliferating cell mass and 𝑄𝑄 is the quiescent cell 
mass in the bone marrow. The parameters are all 
considered constant, positive, and are defined as 
follows: 𝛾𝛾, cycling cells’ growth rate; 𝛼𝛼, transition 
rate from proliferating to resting; 𝛿𝛿, natural cell 
death; 𝛽𝛽, transition rate from resting to proliferating; 
𝜆𝜆, cell differentiation—mature bone marrow cell 
leaving the bone mar- row and entering the blood 
stream as various types of blood cells; and s, the 
strength or effectiveness of the treatment. The 
function 𝑓𝑓(𝑡𝑡) is the control describing the effects of 
the chemotherapeutic treatment only on the 
proliferating cells.  

Table 1 Bone marrow parameters 

Mean (Range) Units = days-1 

𝛾𝛾 = 1.47, (0.6667− 2) 𝛿𝛿 = 0 

∝= 5.643, (4.92 − 6.12) 𝛽𝛽 = 0.48 

𝜆𝜆 = 0.164  

 
We can see from the Figure 1, without 
chemotherapy, the 𝑃𝑃(𝑡𝑡),𝑄𝑄(𝑡𝑡),𝑃𝑃(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) will 
converge to the equilibrium point: 𝑃𝑃(𝑇𝑇) =
0.1206,𝑄𝑄(𝑇𝑇) = 1.0493,𝑃𝑃(𝑇𝑇) + 𝑄𝑄(𝑇𝑇) = 1.1699. It 
means that in the normal tissue that the proliferating 
cells fewer than the quiescent cells.   

 
Figure 1. Bone Marrow without control 

 
Meanwhile, if the chemotherapy is given, as 

shown in Figure 2, the bone marrow is decreased. 
Amount of the 𝑃𝑃(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) = 0.7376 in the final 
period 𝑇𝑇. The optimal results is obtained if the drug 
is given at 𝑡𝑡 = 14. 

 
Figure 2. Bone marrow with chemotherapy 

 
For interval 𝑇𝑇 = 7, it is obtained that the cost 

function is minimum comparing to the other interval 
period, but having shortest waiting time and 
decreasing bone marrow is fewest. Hence, if we 
want to maximize the dose drug, it is better that the 
chemotherapy is given in the short period, as shown 
in Figure 3. 
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Figure 3. Bone Marrow with the variation of T 

 

 

Figure 4. Bone Marrow with the variation of 
weighting 

We can alter the optimal treatment by changing the 
weighting function. By increasing the weight 𝑏𝑏 
while fixing 𝑎𝑎 we obtain the maximum dose and 
more drug is used. In a similar result, increasing 𝑎𝑎 
with 𝑏𝑏 fixed signifies that to maximize the bone 
marrow mass rather than the dose. We can also see 
from the Figure 4, 5, 6, and 7 the effects variation of 
𝑠𝑠. If we fix all the parameters except 𝑠𝑠 we can 
observe how changes in the drug strength affects the 
optimal treatment.  

 

 
Figure 5. The variation of weighting function 

 

Figure 6. The variation of weighting function 

 

Figure 7. The variation of the weighting function 
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4   Conclusions 

In this paper, we proposed design control system for 
the bilinear model via LPV. The LPV approach may 
provide complementary and profit in control design 
because LPV systems may describe nonlinear 
phenomena. The formulation of robust 𝐻𝐻∞  control 
design based on LMIs to solve the Riccati 
equations. The robust 𝐻𝐻∞  controller for bilinear 
system can be obtained by designing the local 
controllers for each subsystems. The local 
controllers are obtained by solving the set of LMIs. 
Furthermore, the robust 𝐻𝐻∞  controller for bilinear 
system is a convex linear combination of local 
controllers. A numerical example is given to verify 
the proposed method for design the robust 𝐻𝐻∞  
controller of bilinear system. 
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