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Abstract: In this paper, the class of E-differentiable vector optimization problems with both inequality and equal-
ity constraints is considered. For such (not necessarily) differentiable vector optimization problems, The so-called
scalar and vector Wolfe E-dual problems are defined for the considered E-differentiable multiobjective program-
ming problem with both inequality and equality constraints and several E-dual theorems are established also under

(generalized) E-invexity hypotheses.
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1 Introduction

Multiobjective optimization problems or vector op-
timization problems involving more than one objec-
tive function to be optimized simultaneously. Many
real life problems arising in several field of science,
engineering, economics, logistics, etc, are associated
with mathematical optimization problems. The con-
cept of invexity was first introduced by Hanson [13]
as a broad generalization of convexity for differen-
tiable real-valued functions defined on R". Hanson
proved that both Karush-Kuhn-Tucker sufficiency re-
sults and Wolfe weak duality, in differentiable mathe-
matical programming problems, hold with the invex-
ity assumption. Jeyakumar and Mond [14] general-
ized Hansons definition to the vectorial case. They de-
fined V-invexity of differentiable vector-valued func-
tions which preserve the sufficient optimality condi-
tions and duality results as in the scalar case and
avoid the major difficulty of verifying that the inequal-
ity holds for the same function n for invex functions
in multiobjective programming problems. Ben-Isreal
and Mond [5] have defined quasi-invex function as
a generalization of invex functions. Luc and Maliv-
ert [16] have extended the study of invexity to set-
valued maps and vector optimization problems with
set-valued data. Bazaraa et al. [6] have studied nec-
essary conditions for optimality in a nonlinear vector
optimization problem. Jeyakumar [15] defined gener-
alized invexity for nonsmooth scalar-valued functions,
established an equivalence of saddle points and op-
tima, and studied duality results for nonsmooth prob-
lems. The concept of invexity for multiobjective non-
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linear programming problems have been introduced
and studied extensively in the literature (see, for ex-
ample, [5], [8], [9], [12], [16], and others).

Dorn [11] has been formulated dual theorems for
a class of convex programs for the primal problem of
minimizing a convex functions, the duality relation-
ship was established for a class of quadratic programs.
Wolfe [19] has been formulated a dual problem for the
mathematical programming problem of minimizing a
convex function under convex constraints, this con-
cept has been developed in the last decades in both
differentiable and nondifferentiable case. Craven [10]
has been introduced a modified wolfe dual for weak
vector minimization.

Recently, the concepts of E-convex sets and E-
convex functions were introduced by Youness [21].
This kind of generalized convexity is based on the
effect of an operator £ : R" — R" on the sets and
the domains of functions. However, some results and
proofs presented by Youness [21] were incorrect as it
was pointed out by Yang [20]. Further, Megahed et
al. [18] presented the concept of an E-differentiable
convex function which transforms a (not necessarily)
differentiable convex function to a differentiable func-
tion based on the effect of an operator £ : R" — R".

Later, Abdulaleem [1] introduced a new con-
cept of generalized convexity for not necessarily dif-
ferentiable vector optimization problems. For E-
differentiable functions and called them E-invex with
respect to 77. The concept of E-invexity is an extension
of the concept of E-differentiable E-convexity intro-
duced by Youness [21] and Megahed et al. [18] and
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invexity introduced by Hanson [13].

The main purpose of this paper is to use an E-
differentiable E-invexity notion to establish the so-
called Wolfe E-duality results for a new class of E-
differentiable E-invex vector optimization problems.
For the considered nonsmooth vector optimization
problem, we study both a scalar and vector E-duality
in the sense of Wolfe. By utilizing the concept of non-
smooth E-invexity, we prove various E-duality theo-
rems between the nonconvex E-differentiable vector
optimization problem and its E-duals in the sense of
Wolfe.

2 Preliminaries

Let R" be the n-dimensional Euclidean space and R"
be its nonnegative orthant. The following convention
for equalities and inequalities will be used in the pa-
per.

For any vectors x = (xg,xp,..., x,)! and y =
W1,y25 s yn)T in R"*, we define:

(i) x=y ifandonly if x; = y; foralli =1,2,...,n;
(i) x>y ifandonly if x; > y; foralli = 1,2, ..., n;
(iii) x 2y ifandonlyif x; 2 y; foralli =1,2,...,n;
(iv) x>y ifand only if x =2 y and x # y.

Definition 1 [/8] Let E : R* —» R", and f : M —
R be a (not necessarily) differentiable function at a
given point u. It is said that f is an E-differentiable
function at u if and only if f o E is a differentiable
function at u (in the usual sense) and, moreover,

(foE)(x)=(foE)(w) +V(foE))(x—u)
+6 (u, x — u)||x —ul, (1)
where 0 (u,x —u) = 0as x — u.

Definition 2 [/] Let E : R* — R". A set M C R" is
said to be an E-invex set (with respectton : MXM —
R") if and only if there exists a vector-valued function
n: M XM — R" such that the relation

Ew+nEWX,E(w)eM
holds for all x,u € M and any A € [0, 1].

Definition 3 [/] Let E : R* — R"and f : M — RF
be an E-differentiable function on a nonempty open
set M C R". It is said that f is E-invex with respect to
natu € M on M if, there existsn : M X M — R" such
that, for all x € M,

JUEQ)=fil(Ew)) 2 V fi E@)n(E(x), Ew)), i =1,....k.
(@)
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If inequalities (2) hold for any u € M, then f is E-
invex with respect to n on M.

Remark 4 From Definition 3, there are special cases:

a) If f is a differentiable function and E(x) = x (E
is an identity map), then the definition of an E-
invex function reduces to the definition of an in-
vex function introduced by Hanson [13] in the
scalar case.

b) Ifn : M x M — R"is defined by n(x,u) =
X — u, then we obtain the definition of an E-
differentiable E-convex vector-valued function
introduced by Megahed et al. [7].

c) If f is differentiable, E(x) = x and n(x,u) = x—u,
then the definition of an E-invex function reduces
to the definition of a differentiable convex vector-
valued function.

d) If f is differentiable and n(x,u) = x — u, then we
obtain the definition of a differentiable E-convex
function introduced by Youness [8].

Definition 5 [/] Let E : R* — R"and f : M — R¥
be an E-differentiable function on a nonempty open
set M C R". It is said that f is strictly E-invex with
respectton atu € M on M if, there existsn : MXM —
R" such that, for all x € M with E(x) # E(u), the
inequalities

JEG)—fi(E@)) > Vfi(E)n(E(x), Ew)), i =1,...k,

(3)
hold. If inequalities (3) are fulfilled for any u €
M (E(x) # E(u)), then f is strictly E-invex with re-
spect ton on M.

Definition 6 [/]/LetE :R" > R"and f : M — RF be
an E-differentiable function on a nonempty open set
M c R". Itis said that f is quasi-E-invex with respect
tonatu € M on M if, there existsn : M X M — R"
such that, forall x e M andi=1,..,k,

JEM) = filEw) £ 0= VfAi(Ew)n(E(x), E(w)) £ 0.

“)
If (4) holds for any u € M, then f is quasi-E-invex
with respect to n on M.

Consider the following (not necessarily differ-
entiable) multiobjective programming problem (VP)
with both inequality and equality constraints:

minimize f(x) = ( G, ... fh (x))
subjecttog;(x) £0, jeJ={1,..,m},
hix)=0, reT ={l,...q},

(VP)

xeX,

Volume 17, 2018



WSEAS TRANSACTIONS on MATHEMATICS

where X is nonempty open convex subset of R", f; :
X—>Riel={l.,plgi: X >R ielh:
X — R, j € J, are real-valued functions defined on
X. We shall write g := (g1,....,gm) : X — R™ and
h = (hl, ...,hq) : X — RY for convenience.

For the purpose of simplifying our presentation,
we will next introduce some notation which will be
used frequently throughout this paper. Let

Q:={xeX:g(x)<0, jeJ h(x)=0, teT}

be the set of all feasible solutions of (VP). Further,
by J (x), the set of inequality constraint indices that
are active at a feasible solution x, that is, J(x) =
{je J:gj(x) 20}.

For such multicriterion optimization problems,
the following concepts of (weak) Pareto optimal so-
lutions are defined as follows:

Definition 7 A feasible point X is said to be a weak
Pareto (weakly efficient) solution for (VP) if and only
if there exists no feasible point x such that

J) < f).

Definition 8 A feasible point X is said to be a Pareto
(efficient) solution for (VP) if and only if there exists
no feasible point x such that

J) < f(0).

Let E : R" — R" be a given one-to-one and onto
operator. Throughout the paper, we shall assume that
the functions constituting the considered multiobjec-
tive programming problem (VP) are E-differentiable
at any feasible solution.

Now, for the considered multiobjective program-
ming problem (VP), we define its associated differen-
tiable vector optimization problem as follows:

minimize f(E(x)) = (A(EQ)), .... f(E(x)))
biect to g(E(x)) <0, jeJ={1,...m},
subject to g;(E(x)) =0, j€ { m} VP,)
h(E(x))=0, teT ={1,...q},
x € X.

We call the problem (VPg) an E-vector optimization
problem. Let

Qp = {xeX 1gi(E(x) £0, jeJ,

h(E(x)) =0, teT}

be the set of all feasible solutions of (VPg). Since
the functions constituting the problem (VP) are as-
sumed to be E-differentiable at any feasible solution
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of (VP), by Definition 1, the functions constituting
the E-vector optimization problem (VPg) are differen-
tiable at any its feasible solution (in the usual sense).
Further, by Jg (x), the set of inequality constraint in-
dices that are active at a feasible solution x, that is,
Je) ={jeJ:(g;0E)x) =0}

Lemma9 [2] Let E : R* — R" be a one-to-one and
onto and

Qp={reX:(gj0E) (<0, jeJ (hoE)(x) =0
, t€T}. Then E (Qp) = Q.

Lemma 10 /2] Let x € Q be a weak Pareto solution
(Pareto solution) of the considered multiobjective pro-
gramming problem (VP). Then, there exists 7 € Qg
such that x = E(z) and 7 is a weak Pareto (Pareto)
solution of the E-vector optimization problem (VPE).

Lemma 11 /2] Let 7 € Qf be a weak Pareto (Pareto)
solution of the E-vector optimization problem (VPg).
Then E (z) is a weak Pareto solution (Pareto solution)

of the considered multiobjective programming prob-
lem (VP).

Remark 12 As it follows from Lemma 11, if 7 € Q
is a weak Pareto (Pareto) solution of the E-vector op-
timization problem (VPg), then E (7) is a weak Pareto
solution (Pareto solution) of the considered multiob-
Jjective programming problem (VP). We call E (z) a
weak E-Pareto (E-Pareto) solution of the problem
(VP).

Now, under E-invexity hypotheses, we prove a
(weak) Pareto optimal solution in problem (VPg)
(and, thus, a (weak) E-Pareto solution of the consid-
ered multiobjective programming problem (VP)).

Theorem 13 Let E : R" — R" be an operator such
that E (x) € Q and the functions fi, i €1, g;, j € J, hy,
teT*, —h;, t € T™, are an E-invex E-differentiable at
X. If there exist Lagrange multipliers A € R?, u € R™,
& € R’ such that

P m K
D AVFEE)+ Y 1,V (E@®)+ ) EVh (E®) =0,
i=1 =1
)
(©)

j=1
Dl (EG) =0, je(E®),
j=1

Then x is a (weak) Pareto optimal solution in problem
(VPg) (and, thus, E (x) be a (weak) E-Pareto solution
of the considered multiobjective programming prob-
lem (VP)).
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Proof: Suppose that X is not an (weak) Pareto optimal
solution of the problem (VPg). Then, by Definition
8, there exists x € Qf such that f(E(x)) < f(E(X)),
A € R” we have

P
DA oE)(x)<ZA fieB)® (D
i=1

holds. Since the functions f;, i € I, g;, j € J, hy,
teT*, —h;, t € T™, are an E-invex E-differentiable at
X, by Proposition 3, the inequalities

Ji(E (X)) = fi(E (%) 2 VA(EQ)n (E(x), EX), i€,

®)
g;(E (x))=g,;(E (x)) 2 Vg;(E ) (E (x),E(X)), j € J,
©)
h(E (0))—h(E (%)) 2 VR(E () (E (x) ,E (X)), t € TT,
(10)
—h(E (X)) + hy(E (%) 2
~Vh(EQn(E(x),E(X), teT (E(x), (11)

hold, respectively. Multiplying inequalities (8)-(11)
by the corresponding Lagrange multipliers, respec-
tively, we obtain

fio B)(x) - ZuﬁoE>(x>>

7 M"u

fiocEYX)n(E(x),E(Xx),iel, 12)

oE(x)>

)4
i joE)(x) - Zu,

M=

V(9,0 E)®n(E@.E®). jeJ(E®).

(13)

m

~.
Il
—_

&hoE)(x)= ) & oE)(®)2
=1 =1

EV (h o EY®1(E(),E®), 1€ T (E(®),
) (14)
~ Y En o))+ Y E (o YD 2
=1 =1

= > EV (o EY®n(E (), E®), 1€ T (E®),
- (15)
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Adding both sides of the above inequalities, we obtain
that the following inequality

P Ai(fioE)() =X, i (fio E)®)
+ X (90 E) ) = 2 i (970 E) @
+ 30 E (o EY() - 32, & (hy o E) @)
2| 5L, AV (o EY® + X, (970 E) )
+ S EV o B |1 (B (), E @)

(16)
Thus, by (5), (6), we have the following inequality

oE><x>>ZA<floE><x>

3

P
2 ) AfieHH® (D)

—
Il
—_

j=

holds, contradicting the inequality (7). Thus, x is an
(weak) Pareto optimal solution of the problem (VPg).
Further, by 10, it follows that E (¥) is a weak E-Pareto
solution of the problem (VP). |

Theorem 14 [1] (E-Karush-Kuhn-Tucker necessary
optimality conditions). Let x € Q be a weak Pareto
solution of the E-vector optimization problem (VPg)
(and, thus, E(x) be a weak E-Pareto solution of
the considered multiobjective programming problem
(VP)). Further, f, g, h are E-differentiable at x and the
E-Guignard constraint qualification be satisfied at X.
Then there exist Lagrange multipliers A€RP, i eR™
& € R’ such that

(E(_))+Z A,V (E<x>>+z EVh (E() =

j=1 =1
(18)
D g (E®) =0, jeJE®), (19
j=1
1>0,120. (20)

3 Scalar E-Wolfe duality result

In this section, a scalar dual problem in the sense of
Wolfe is considered for the class of E-differentiable
E-invex vector optimization problems with inequality
and equality constraints. Let E : R" — R" be a given
operator. Consider the following dual problem in the
sense of Wolfe related to the considered vector opti-
mization problem (VP):
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lpE (%/Lll,f) = 5):1 /li (fl OE) (y)"‘
X" 1j(g9j0 E) () + B, & (hy 0 E) (y) — max

st X7 AV (fio E)Y(y)+ 2 1V (90 E) )+
,S:1 &V (hoE)(y) =0,

AERP,A>0,ueR", uz0,€R’.

where all functions are defined in the similar way
as for the considered vector optimization problem
(VP). Further, let

I'e = {(y,l,ﬂ,f)eR”xR”xR’"qu;

p m
DAVie EYW) + ) 1V(g; o E)y)+
i=1

J=1

q

D&V o E)y) =0, 4> 0,51 20}

=1
be the set of all feasible solutions of the problem
(WDg). Further, Y = {y € X : (5,4, u,&) € Tg}.
We call the scaler dual problem (WDg) Wolfe scaler
E-dual problem or scaler E-dual problem in the sense
of Wolfe.

Now, under E-invexity hypotheses, we prove du-
ality results between the E-vector problems (VPg) and
(WDg) and, thus, E-duality results between the prob-
lems (VP) and (WDg).

Theorem 15 (Weak duality between (VPg) and
(WDg) and also weak E-duality between (VP) and
(WDEg)). Let z and (y, A, u, ) be any feasible solutions
of the problems (VPg) and (WDg), respectively. As-
sume, moreover, that each objective function f;, i € I,
is E-invex at y on QpUYE, each constraint function g,
j € J, is an E-invex function at y on Qg U Yg, the func-
tions hy, t € T* (y) and the functions —h;, t € T~ (y),
are E-invex at y on Qg U Yg. Then

(foE)(2) 2¥E (Y, A, 1,8).

In other words, E-weak duality holds between the
problems (VP) and (WDg), that is, for any feasible
solutions x and (y, A, u, &) of the problems (VP) and
(WDg), respectively, the following relation

2y

J(x) 2 ¥E W, 4,1, 8) (22)

is true.

Proof: f;, i € I(y), are an E-invex function at y on
Qp U Y, the constraint functions g;, j € J(y), are an
E-invex function at y on Qf U Yg, the functions #,,
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t € T" (y) and the function —A;, t € T~ (y), are an E-
invex functions at y on Qg U Yg. Then, by Definition
3, the following inequalities

(fiocE)(2) = (ficE)(y) 2

V(fio EYy)n(ER),E @), i€lE®y),
(9°E)@—(g,°E) ) 2

V(9;0E))n(E@.E@).jeJ(E@). @4
(hy 0 E)(2) — (hy 0 E) (4) 2
V(o EYW)n(E@,EW).1€T" (EW)),
~(h o E)@) + (0 E) () 2
~V(h o EY)n(E@.E@). 1€ T (E@) (26)

hold, respectively. Multiplying both sides of the above
inequalities by the associated Lagrange multipliers,
respectively, we obtain

(23)

(25)

Ai(fioE)(@) - Ai(ficE)(y) 2
AV (fiocE)n(EQ@),E®W),ic(E(y), (27)
I (gj ° E) (2) — (gj ° E) () 2

1V (g; 0 E))n(E@).EW).je(E®W). (28)
& (o E)(@) = ét(h 0 E) (y) 2
EV (o EY)n(E@).EW).1 €T (E@). (29)
& (hy 0 E) (2) + & (hy 0 E) (4) 2
~&V (o EY) 1 (E @), EW) .1 € T (E ).

(30)
We denote by
2= 4
Y A+ Y gt Y &- X &
i€el(E(y)) JEJ(E®WY)) teT*(E(y)) €T~ (E(y))
(3D
f; = Hj
R N T R N
i€l(E(y)) JEJ(E®Y)) t€T*(E(y)) €T~ (E(y))
(32)
pr _ &
! 2 A+ X ouit+ Y &— X &’
i€l(E(y)) JEJ(E®WY)) teT*(E(y)) €T~ (E(y))
(33)
&= i
! > At X o+ Y &E- X &
i€l(E(y)) JEJ(E®WY)) teT*(E(y)) €T~ (E(y))
(34)

Note that 0 < A; < l,ieI(E(y)),butatleastone;l,- >
Oforsomei € I(E(y),0=p; =1, )€ J(E®Y),

333 Volume 17, 2018



WSEAS TRANSACTIONS on MATHEMATICS

0S&S1L1eT (EW).02& <1, 1eT (EW),
and, moreover

(I ES
JEJ(E®WY)) €T+ (E(y))

& =1

icl(E(y)) €T~ (E(y))

(35)
Taking into account Equations (31)-(34) in the in-
equalities (27)-(30), we get, respectively,

Ai(ficE)@-Ai(fioE)(y) 2
AV (fio Y n(EQ@).EW).i€ (EW). (36)
2i(9/°E)@-p(9;0 E) ) 2
2V (90 ) n(E@.E@).je J(E®W). 37)
& (o E)@)~& (o E)(y) 2
EV (ho E)y)n(E@.E@).1€ T (E®). (38)
~& (o E)Q)+& (o E)(y) 2

~& V(o EYW)n(E@,EW), 1€ T (EW)).
(39)
Adding both sides of the inequalities (36)-(39), and
then adding both sides of the obtained inequalities, we
get

D Ao BYD = > Ai(fio )+

i€l(y) i€l(y)
> ai(9i0E)@ - > (g0 E) )+
JeI ) =)
D EWE) - Y & hoE) -
€T+ (y) t€T*(y)
S EUoB@+ Y EhoE) w2
1€T~(y) 1€T~(y)
D AV fie W (E@,E @)+
i€l(y)
> 09 (g9; 0 E))n(E @), E @) +
JjeJ )
D EV (o E)y)n(E @), E @) -
1€T*(y)
D EVoEYy)n(E@,E@).  (40)
€T~ (y)

Using Equations (31)-(34) in the above inequality , we
get

D AfieB@+ > (90 E) @+

i€l(y) JEJ(y)
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D E oD@+ Y & hoE) @)z

teT*(y) €T~ (y)

D Afie B+ Y (g0 E) )+
i€l(y) JEJ(y)
D EMmEy+ Y HEhoE)y @D
teT*(y) teT~(y)
From the feasibility of x in problem (VP), it follows
that

DA Bz ), Lo E)y)+

i€l(y) iel(y)
Z £ (90 E) () + Z & (o E)(y) +
JeJ(y) €T+ (y)
D E o). @2)
€T~ (y)

Taking into account the Lagrange multipliers equal to
0, we obtain

p P
DAfio )@z ) Ai(fio B) )+
i=1 i=1

D ui(gioE)w+ > & thoEYy).  (43)
J=1 t=1

By the definition of the scalar Lagrange function ¢,
we have that the inequality

/l(f o E) (Z) 2 wE (!/, /l’/l9§) .

holds, this means that the proof of weak duality the-
orem between the E-vector optimization problems
(VPg) and (WDg) is completed. Then, the weak
E-duality theorem between the problems (VP) and
(WDg), that is, the relation (22) follows directly from
Lemma 9. Thus, the proof of this theorem is com-
pleted. |

Theorem 16 (Strong duality between (VPg) and
(WDg) and also strong E-duality between (VP) and
(WDEg)). Let x € Qp be a (weak) Pareto solution of
the E-vector optimization problem (VPg) and the E-
Guignard constraint qualification (GCQE) be satisfied
at X. Then there exist 1 € R?, HeR™ E € RY such that
(X, A, 11, &) is feasible for the problem (WDg) and the
objective functions of (VPg) and (WDg) are equal at
these points. If also all hypotheses of the weak duality
theorem (Theorem 15 ) are satisfied, then (x,A,u, &)
is a (weak) efficient solution of maximum type for the
problem (WDg).

In other words, in such a case, E (x) € Q is a (weak)
E-Pareto solution of the multiobjective programming
problem (VP) and the strong E-duality holds between
the problems (VP) and (WDg).
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Proof: By assumption, x € QF is a (weak) Pareto op-
timal solution of problem (VPg) and the E-Guignard
constraint qualification (GCQg) is satisfied at x. Then,
there exist Lagrange multiplier 1 € R”, 71 € R, & € R
such that the E-Karush-Kuhn-Tucker necessary opti-
mality conditions (18)-(20) are satisfied at x. Thus,
the feasibility of (¥, A, iz, £) in problem (WD) follows
directly from these conditions. By the weak duality
theorem (Theorem 15), it follows that the inequality
A(foE)X) 2 v (y, A, 1, &) is satisfied for any fea-
sible point (y, 4, 1, £) in dual problem (WDg). Using
the E-Karush-Kuhn-Tucker necessary optimality con-
dition (19) together with the feasibility of x in problem
(VPE), we get the inequality

Lidi(fio EY®) + 20 ;90 E) )
+3 L E o EY®Z I Li(fioE)y)  (44)
+ 3" 1 (9j 0 E) ) + 2, & (hy 0 E) ()

is satisfied for any feasible point (y, 4, u, &) in dual
problem (WDg). Hence, by (44), it follows that
()_c,z,ﬁ,g) is a weak efficient point of maximum
type for Wolfe scaler E-dual problem (WDg). The
strong E-duality holds between the problems (VP)
and (WDg) follows directly from Lemma 10. Namely,
E (%) is a (weak) E-Pareto solution of the vector opti-
mization problem (VP) and then (%, A, A, E) is a (weak)
efficient solution of maximum type for the problem
(WDg). O

Theorem 17 (Converse duality between (VPg) and
(WDg) and also converse E-duality between (VP) and
(WDg)). Let (E, Z, 4, E) be a (weak) efficient solution
of a maximum type in E-Wolfe dual problem (WDg)
such that x € Qp. Moreover, assume that the objec-
tive functions f;, i € I, are (strictly) E-invex at X on
Qg U Yg, the constraint functions g;j, j € J, are E-
invex at x on Q U Yg, the functions h,, t € T* (E (X))
and the functions —h;, t € T~ (E (X)), are E-invex at x
on Qp U Yg. Then X is a (weak) Pareto solution of the
problem (VPg) and, thus, E (X) is a (weak) E-Pareto
solution of the problem (VP).

Proof: Proof of this theorem follows directly from
Theorem 15. |

4 Vector Wolfe E-duality results

In this section, a vector dual problem in the sense of
Wolfe is considered for the class of E-invex vector op-
timization problems with inequality and equality con-
straints. Let E : R* — R" be a given one-to-one and
onto operator. Consider the following dual problem
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in the sense of Wolfe related to the considered vector
optimization problem (VP):

maximize Yg (y, 1, &) = (f o E) (y)

n q
+[ Zﬂj (gj ° E) (y) + Z & (hoE) (y)]e
Jj=1 t=1

AV (fio EY(y) + D 1V (9,0 E) ()

1 =1

P
S.t.

1

q
+ 2 EV (o E)(y) =0, (WD)
t=1

AERP,1>0,de=1,e=(1,1,...,1) eR”,
UER" u=20,6€RY,

where all functions are defined in the similar way as
for the considered vector optimization problem (VP)
and e = (1,...,1) € RP. Further, let

't = {(y,/l,u,.f)eR"xRpmequ:

P m

DAV e EYy) + ) uV(g; 0 )W)

i=1 j=1

q
+Z€tV(ht0E)(y) =0,120,e=1,uz 0},

t=1

be the set of all feasible solutions of the problem
(WDg). Further, Yr = {y € X : (y,4,u,&) € Tg}.
We call the vector dual problem (WDg) Wolfe vector
E-dual problem or vector E-dual problem in the sense
of Wolfe.

Now, under E-invexity hypotheses, we prove du-
ality results between the E-vector problems (VPg) and
(WDg) and, thus, E-duality results between the prob-
lems (VP) and (WDg).

Theorem 18 (Weak duality between (VPg) and
(WDg) and also weak E-duality between (VP) and
(WDEg)). Let z and (y, A, u, €) be any feasible solutions
of the problems (VPg) and (WDg), respectively. As-
sume, moreover, that each objective function f;, i € I,
is E-invex at y on Qp U Yg, each constraint function
gj, j € J, is an E-invex function at y on Qp U Y,
the functions h;, t € T* (E (y)) and the functions —h,
t e T (E(y)), are E-invex at y on Q U Yg. Then

(foE)@ £ yYr Wy, u8). (45)

In other words, E-weak duality holds between the
problems (VP) and (WDg), that is, for any feasible
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solutions x and (y, A, u, &) of the problems (VP) and
(WDE), respectively, the following relation

VGRS JAUNTRS) (46)

is true.

Proof: Suppose, contrary to the result, that

(fo E)(2) <¥E(y.p.6)

Thus,
(fioE)(@) < (fio E)(y)

u q
+[ ZH/ (9;°E) ) + Z& (hi o E) (y)]e, iel
j=1 t=1

Multiplying by A; and then adding both sides of the
above inequalities and taking that Zle A =1, we get
the inequality

Za (fie E)(2) < Za f: oE)(y)+Zm

q
+ )& (o E) (y)
t=1

holds. From the feasibility of z for the problem (VPg),
it follows that

p m
D Afio EY@+ ) i (g
i=1 j=1

q
0 E)@+) & (0 E)(2)
t=1

<Z/l(floE)(y)+Zu]

q
D& (o B) ().

=1

j o E (y)+

(47)

By assumption, z and (y, A, u,&) are feasible solu-
tions for the problems (VPg) and (WDg), respectively.
Since the functions f;,i€ I, g, j€ J, hyt €T, —hy,
t € T™, are E-invex on Qf U Yg, by Definition 3, the
inequalities

(fiecE)@ = (ficE)(y) 2

V(o BYpn(EQR,E@),icl,  (48)
(9°E)@~(9j°E) ) 2

V(gj o E)pn(EQ@.EW).jels). (49
(h 0 E)(2) — (h; 0 E) (y) 2

V(h o EY)n(E@),EW).1€T* (E@), (50)
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—(hoE) (@) + (h o E)(y) 2
Vo EYn(EQ@,E), teT (E®) (51)

hold, respectively. Multiplying inequalities (48)-(51)
by the corresponding Lagrange multiplier and then
adding both sides of the resulting inequalities, we ob-
tain that the inequality

Zﬂ(ﬁoE)(z) Zﬁ(fzoE)(yHZm 0 E)(2)

i=1

m q q
= > i(g; 0 E) @)+ ). & (h o E) ()= ) & (hi 0 E) (9)
Jj=1 =1 t=1

m

[ZAV(ﬁoE)(yHZu,

oE (y)+

q
D&V o BY) [1(E@.Ew)
t=1

holds. Thus, by (47), it follows that the inequality

[ZN<ﬁoE><y)+Zu,

oE (y)

q
+ D EV (o EY) [n(E @, E®) <0

t=1

holds, contradicting the first constraint of the Wolfe
vector E-dual problem (WDg). This means that the
proof of weak duality theorem between the E-vector
optimization problems (VPg) and (WDg) is com-
pleted. Then, the weak E-duality theorem between
the problems (VP) and (WDg), that is, the relation
(46) follows directly from Lemma 9. Thus, the proof
of this theorem is completed. |

If stronger E-invexity hypotheses are imposed on
the functions constituting the considered vector opti-
mization problems, then the stronger weak duality re-
sult is satisfied.

Theorem 19 (Weak duality between (VPg) and
(WDg) and also weak E-duality between (VP) and
(WDEg)). Let z and (y, A, u, €) be any feasible solutions
of the problems (VPg) and (WDg), respectively. As-
sume, moreover, that each objective function f;, i € I,
is strictly E-invex at y on Qg U Yg, each constraint
function gj, j € J, is an E-invex function at y on
Qg U Yg, the functions h;, t € T (E (y)) and the func-
tions —h;, t € T~ (E (y)), are E-invex aty on Qg U Y.
Then

(foE)@) L yYE Wy, u8). (52)
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In other words, weak E-duality holds between the
problems (VP) and (WDg), that is, for any feasible
solutions x and (y, A, u, &) of the problems (VP) and
(WDE), respectively,

VGRS 7AUNIRIR (33)

Remark 20 As it follows from the proofs of Theorems
18 and 19, the assumption of E-invexity of constraints
functions can be weakened. Indeed, these results can
be established if each constraint functions g;, j € J,
hy, t € T* (y) and the functions —h;, t € T~ (y), are
assumed to be quasi E-invex at y on Qg U Y.

Theorem 21 (Strong duality between (VPg) and
(WDg) and also strong E-duality between (VP) and
(WDg)). Let x € Qp be a (weak) Pareto solution of
the E-vector optimization problem (VP) and the E-
Guignard constraint qualification (GCQg) be satisfied
at . Then there exist 1 € R?, i € R™, & € RY such that
(%, A, 11, &) is feasible for the problem (WDg) and the
objective functions of (VPg) and (WDg) are equal at
these points. If also all hypotheses of the weak dual-
ity theorem (Theorem 18 or Theorem 19) are satisfied,
then (x, A, 1, &) is a (weak) efficient solution of maxi-
mum type for the problem (WDg).

In other words, in such a case, E (x) € Q is a (weak)
E-Pareto solution of the multiobjective programming
problem (VP) and the strong E-duality holds between
the problems (VP) and (WDg).

Proof: By assumption, x € QF is a weak Pareto solu-
tion for the problem (VPg) and the E-Guignard con-
straint qualification (GCQg) is satisfied at x. Then,
there exist Lagrange multiplier 1 € RP, i € R™,
& € RY such that the E-Karush-Kuhn-Tucker neces-
sary optimality conditions (18)-(20) are satisfied at
X. Thus, the feasibility of (¥, 1,1z, &) in the problem
(WDg) follows directly from these conditions. There-
fore, the objective functions for the problems (VPg)
and (WDp) are equal at X and (%, A, [, £), respectively.
By the weak duality theorem (Theorem 18 or Theo-
rem 19), it follows that the inequality (f o E) (x) £
YE (1, &) (or (f o E)(X) £ ¢ (y,p,8)) is satisfied
for any feasible point (y, 4, u, &) of Wolfe vector E-
dual problem (WDg). Using the E-Karush-Kuhn-
Tucker necessary optimality conditions (19) and (20)
we get, for any feasible point (y, A, , &) of the prob-
lem (WDg), that

m q
(foE)® + [Zﬂj(gj o E)®+ ) & (o E)(?c)]e
j=1 t=1

m

q
£ (oYW Y i (910 E) )+ ) & (o YW
j=1 t=1

(54)
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Hence, by (54), it follows that (X, A, z, ) is a weak effi-
cient point of maximum type for Wolfe vector E-dual
problem (WDg). The strong E-duality holds between
the problems (VP) and (WDg) follows directly from
Lemma 10. Namely, E (%) is a (weak) E-Pareto solu-
tion of the vector optimization problem (VP) and then
(x, A, i, E) is a (weak) efficient solution of maximum
type for the problem (WDg). |

Theorem 22 (Converse duality between (VPg) and
(WDg) and also converse E-duality between (VP) and
(WDg)). Let (E, A, 4, E) be a (weak) efficient solution
of a maximum type in the vector E-Wolfe dual problem
(WDg) such that X € Q. Moreover, assume that the
objective functions f;, i € I, are (strictly) E-invex at X
on Qg U Y, the constraint functions g;, j € J, are E-
invex at x on Qg U Yg, the functions h,, t € T* (E (X))
and the functions —h;, t € T~ (E (X)), are E-invex at x
on Qg U Yg. Then X is a (weak) Pareto solution of the
problem (VPg) and, thus, E (X) is a (weak) E-Pareto
solution of the problem (VP).

Proof: Proof of this theorem follows directly from
Theorem 18 (or Theorem 19). |

Theorem 23 (Restricted converse duality between
(VPg) and (WDg) and also restricted converse E-
duality between (VP) and (WDg)). Let x and
(y,lﬁ,é) be feasible solutions for the problems
(VPg) and (WDE), respectively, such that

(foE>®<<foE><y)+[Z g0 E) )+
q —
Y e B ) (55)
t=1

Moreover, assume that the objective functions f;, i € I,
are (strictly) E-invex at y on Q U Y, the constraint
functions g;, j € J, are E-invex at y on Qg U Y,
the functions h;, t € T*(E(y)) and functions —h,,
t € T (E(y)), are E-invex at y on Qp U Yg. Then
X =y, that is, X is a (weak) Pareto solution of the prob-
lem (VPg) and (17, AT, E) is a (weak) efficient point
of maximum type for the problem (WDg). In other
words, E (%) is a weak E-Pareto (E-Pareto) solution of
the problem (VP) and (y, A1, E) is a (weak) efficient
solution of maximum type for the problem (WDg).

Proof: Note that, by (55), it follows that

(fio EY® < (fio EYB)+ ) H;(g

J=1

j o E) @)+
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q
DE M oE)@.icl. (56)
t=1

Multiplying each inequality (56) by A;, i € I, and then
adding both sides of the resulting inequalities, we get

p f—
a
i=1

p
o E)(®) < ) X (f o E) B+

i=1

Ms

|

Since Y., 4; = 1, (57) implies

q P
A0 )@+ Y EtoB@| Y. A (57
=1 i=1

1

J

p
A (fio EY(® < ) Ai(fi o E) G)+

i=1

M-

1l
—_

1

m q
NE (g0 E) D+ Y EhoB@. (9
=1

t=1

Now, we proceed by contradiction. Suppose, contrary
to the result, that x # y. By assumption, the functions
fini €1, gj j € JEG), bt € T (E @), and ~,
t € T7(E(y)) are E-invex at y on Qf U Y. Then, by
Definition 3, the inequalities

(fio EY®) -~ (o E)(H) 2

V(o EYPE®D.E@).iel.  (59)
(9)°E)®-(9j°E)®) 2

V(g o E)@n(E®.EG).jeJ(E@), (60)
(hy 0 E)(®) — (hy 0 E) @)

V(o EYn(E®,E@), 1€ T (E@), (61)

—(h o E)() + (o E)(y) 2

V(o E)Yn(EX),E®@), teT (E(y) (62)

hold, respectively. Multiplying inequalities (59)-(62)
by the corresponding Lagrange multipliers and then
adding both sides of the resulting inequalities, we get

fio E) (M- Za (fio E) (y)+Z/u, 0 E)®

i=

q
=Y Hi(9i o E)@) + D & (h o E) () -
t=1

J=1

q
D EMoE) )z
t=1
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<

(9)°E) @) +

[ZiiV(ﬁoE)@Hiﬁ,-V

py =
q p—
YET D@ I E®.EG) (63
t=1

By (63) and the first constraint of (WDg), it follows
that

q
jo E) 0+ ) & (0 E) (%)

t=1

A (fio EY®+) T (g

J=1

M=

=1

P
2 ) 4
i=1

Hence, by x € QF, we get that the following inequality

q
joE) (y)+ZE, (he o E) ().

t=1

ioE) (y)+z 1ilg

j=1

p
D oE)<x>>Za (ﬁoE)(y)+Zuj 0 E) @)+
i=1 j=1
q —
> (h o E) ). (64)
=1

holds, contradicting (58). Then, x = y and this means,
by weak duality (Theorem 18) that x is a weak Pareto
solution of the problem (VPg) and (y, AT, E) is a weak
efficient solution of maximum type for the problem
(WDg). Further, by Lemma 10, it follows that E () is
a weak E-Pareto solution of the problem (VPg) and
(y, AT, E) is a weak efficient solution of maximum
type for the problem (WDg). Thus, the proof of this
theorem is completed. |

S Concluding remarks

In this paper, the class of E-differentiable vector op-
timization problems with both inequality and equal-
ity constraints has been considered. For such (not
necessarily) differentiable vector optimization prob-
lems. The so-called scalar and vector Wolfe E-dual
problems have been defined for the considered E-
differentiable E-invexity multiobjective programming
problem with both inequality and equality constraints
and several E-dual theorems have been established
also under (generalized) E-invexity hypotheses.

However, some interesting topics for further re-
search remain. It would be of interest to investigate
whether it is possible to prove similar results for other
classes of E-differentiable vector optimization prob-
lems. We shall investigate these questions in subse-
quent papers.
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