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Abstract: - Hybrid Boundary Value Methods (HyBVMs) are a new class of Boundary Value Methods (BVMs) 
proposed recently for the approximation of Ordinary Differential Equations (ODEs). These new schemes 
behave just like the BVMs as the HyBVMs are also based on the Linear Multistep Methods (LMMs) but 
utilizes data at both step and off-step points. Numerical tests on both linear and nonlinear Boundary Value 
Problems (BVPs) were presented using the HyBVMs of order 6 and order 4. The results were compared with 
the symmetric schemes: Extended Trapezoidal Rules (ETRs) of order 6 and order 4. 
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1 Introduction 

 
The numerical approximation of Differential 

Equations continues to be an active research as they 
arise from models from Applied Sciences, 
Engineering and Economics. Several authors have 
used introduced and applied several methods for the 
approximation differential problems [1 – 3].  

An Ordinary Differential Equation (ODE) is an 
equation with respect to its independent variable 
that involves an unknown function and its 
derivatives. This equation is classified into: Initial 
Value Problems (IVPs) and Boundary Value 
Problems (BVPs) based on the subsidiary conditions 
that accompany these problems [4]. 

The latter class of problem is more difficult to 
handle, since it is a broader class of continuous 
problems unlike the former and they are usually 
solved by the Shooting Method (SHM). This SHM 
works by first reducing the BVP to its equivalent 
system of IVPs, which makes it suffer from some 
numerical instability in the process of conversion 
[5]. 

A new scheme called Boundary Value Methods 
(BVMs) was proposed to remove this type of 
numerical instability and other ones familiar to the 
conventional methods used in approximating ODEs. 

The process of developing and applying this new 
scheme makes it suitable for solving the BVPs 
directly without necessarily converting them to their 
equivalent system of IVPs. For instance, in the 
derivation of the BVMs, the same continuous 
scheme e.g. a Linear Multistep Method (LMM) used 
to generate the main method is also used in 
generating the additional methods; these are then 
applied at the end points thereby avoiding some of 
the stability problems encountered e.g. in the 
application of the SHM to BVP. 

Lots of BVMs have been proposed by different 
authors and used for the approximation of different 
types of differential problems. Their convergence 
and stability properties have also been fully 
discussed [5-13]. 

Our focus in this work is to develop new class of 
BVMs that utilize data at off-step points and which 
will be called Hybrid Boundary Value Methods 
(HyBVMS). In deriving these methods, we will be 
adopting the Adams Moulton methods, which is a 
LMM of the form: 

1
0

k

n k n k i n i
i

y y h fβ+ + − +
=

− = ∑  (1)               

This is done by using the Adam Moulton 
Methods at both step and off-step points. These 
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methods are then applied as BVMs and used to 
solve the BVP of the form: 

( ) ( )( ),y x f x y x′ =  (2)             

( ) ( )
( ) ( )

0 0 0

1 1 1

0 0

1 1

a y b y

a y b y

α

α

± =

± =
 (3) 

where all 2 2:f →   are continuous functions that 
satisfy the existence and uniqueness conditions, 
guaranteed by Henrici in [14]. 

Several authors have proposed different hybrid 
formulas for both LMMs and BVMs and applied 
them to solve different differential problems [15 – 
22]. 

The application of BVMs for the numerical 
integration of BVPs was first proposed by Brugnano 
and Trigiante in [23] with the two symmetric 
schemes: Extended Trapezoidal Rule (ETRs) of 
order 4 and 6. 

The remaining part of the paper will be 
structured as follows: in section 2, we derive the 
HyBVMs of order 4 and 6 and also discuss some of 
their properties. In section 3, we apply the HyBVMs 
to solve some BVPs (both linear and nonlinear) and 
compare using tables and graphs with other 
methods. Finally, we give a concluding remark in 
section 4. 
 
 
2 Hybrid Boundary Value Methods 

In this section, we present the HyBVMs (of order 
4 and 6) with some of their properties. These 
methods were developed with Mathematica 9. 
  
2.1 Derivation of HyBVMs 
These HyBVMs are generalizations of the hybrid 
Adams-Moulton (AM) Methods. The hybrid AM 
can be written as: 

( )1
2

1
0

k

n k n k i n i
i

y y h fβ+ + − +
=

− = ∑   (4) 

These methods are normally used as IVMs but not 
as BVMs and have been used in the past for the 
approximation of ODEs and other differential 
problems. 
We begin by constructing the continuous Adams 
Moulton method (1) using the interpolation and 
collocation technique and evaluating at off-step 
point, which result into (4) above. 
However, if we choose k = v in (4) 
 
where   

,          if  is even
2

1,     if  is odd
2

k k
v

k k


=  +


   (5) 

we then obtain the HyBVMs. 
For instance, the HyBVMs with odd number (k=1) 
of steps have the form: 

( )1
2

2 1

1
0

v

n v n v r n r
r

y y h fβ
−

+ + − +
=

− = ∑   (6) 

with the polynomial of the form: ( ) ( )1 1vp z z z−= − . 
They are to be used with ( )1,v v−  boundary 
conditions with order 2k+2. 
Below are the two HyBVMs  
 
Example 1: The fourth order HyBVM is given as: 

1
2

1 1 4
6n n n n n

hy y f f f+ + +
 − = + +    (7) 

which is to be used together in tandem with the final 
method: 

1 1
2 2

15 8
24N N NN N

hy y f f f−− −
 − = − +   (8) 

 
 
Example 2: The sixth order HyBVM is given as: 

1
2

3
2

1

2
2

7 32 12

32 745
n nn

n n
nn

f f fhy y
f f

++

+
++

+ + 
 − =
+ +  

  (9) 

which is to be used together in tandem with the 
initial methods: 

1
2 3

2

0 1
0

2

251 646 264
106 191440

f f fhy y f f
+ − 

− =  + −  
             (10) 

 
and the final methods 

1
2

3
2

1

1
2

29 124 24

4180
N NN

N N
NN

f f fhy y
f f

−−

−
−−

+ + 
 − = −
+ −  

    (11) 

1
2

3
2

3
2

1

2

27 102 72

42 3160
N NN

NN
NN

f f fhy y
f f

−−

−
−−

+ + 
 − = −
+ −  

    (12) 

 
2.2 Analysis of BVMs [24] 
 
Here, we highlight some of the properties associated 
with BVMs. 
 
Definition 1: A polynomial ( )p z  of degree 

1 2k k k= +  is an ,1 2k kS - polynomial if its roots are 
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such that     
1 11 2 k k 1 kz z z 1 z z+≤ ≤ ≤ < < ≤ ≤ 

. 
Definition 2: A polynomial ( )p z  of degree 

1 2k k k= +  is an ,1 2k kN - polynomial if its roots are 

such that     
1 11 2 k k 1 kz z z 1 z z+≤ ≤ ≤ ≤ < ≤ ≤   

with simple roots of unit modulus. 
 
Definition 3: A BVM with ( ),1 2k k - boundary 
conditions is ,1 2k k0 - stable if its corresponding 

polynomial ( )p z  is an ,1 2k kN - polynomial. 
 
Remark: The obtained formulas (7) and (9) have 
their first characteristic polynomials ( )p z z 1= −  
and ( )( )( )p z z 1 z 1= − + , respectively, which are 
both ,1 2k kN polynomials.  
Hence, they are ,1 2k k0  stable. 
 
 
3 Numerical Tests and Discussion 

In this section, we apply the HyBVMs of order 4 
and 6 stated in the section above to three (3) first 
order systems of BVPs using Mathematica software 
to generate the approximate values. Figures 1, 2 and 
3 show the relationship between the exact and the 
approximate solutions for the three cases 
respectively. Their maximum errors and Rate of 
Convergence (ROC) are also compared with the 
ETRs of order 4 and 6 in the tables below. 

 
Problem 1: Consider the nonlinear second order 
BVP [25]: 

( )2 2

2 x

y y
y

e
′ +

′′ =   ,     ( )0 1x ,∈  

with boundary conditions: 
( ) ( )0 0 0y y′− =   

( ) ( )1 1 2y y e′+ =   
and with exact solution:    ( ) xy x e=  
 
To solve, we first recast to its equivalent first 

order system: 
1 2y y′ =   

( ) ( )2 2
2 1

2 2 x

y y
y

e
+

′ =  

for ( )0 1x ,∈  
with boundary conditions: 

( ) ( )1 20 0 0y y− =  

( ) ( )1 21 1 2y y e+ =   
with exact solutions:    ( ) ( )1 2,   x xy x e y x e= =  
 
 

Problem 2: Consider the linear second order BVP 
[23]: 

2 44 16 12 4y y x x x′′ − = + −   ,     ( )0 1x ,∈  
with boundary conditions: 
( ) ( )0 1 0y y′= =  

with exact solution:     ( ) 4 4y x x x= −  
 
To solve, we first recast to its equivalent first 

order system: 
1 2y y′ =  

2 4
2 14 16 12 4y y x x x′ = + + −  

for ( )0 1x ,∈  
with boundary conditions: 

( )1 0 0y = ,  ( )2 1 0y =   
with exact solutions:    ( ) ( )1 2,   x xy x e y x e= =       
 
 

Problem 3: Consider the nonlinear BVP [25]: 

( )22

2

ye y
y

′+
′′ =   ,     ( )0 1x ,∈  

with boundary conditions: 
( ) ( )0 0 1y y′− =  

( ) ( ) 11 1 2
2

y y ln′+ = − −  

with exact solution:     ( ) 1log
1

y x
x

=
+

 

To solve, we first recast to its equivalent first 
order system: 

1 2y y′ =  

( )1
22

2
2 2

ye y
y

+
′ =  

for ( )0 1x ,∈  
with boundary conditions: 

( ) ( )1 20 0 1y y− =  

( ) ( )1 2
11 1 2
2

y y ln+ = − −   

with exact solutions: 

WSEAS TRANSACTIONS on MATHEMATICS Grace O. Akinlabi, Raphael B. Adeniyi

E-ISSN: 2224-2880 260 Volume 17, 2018



     
( )
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 = +

 = −
 +

 

 
 

 
RESULTS AND DISCUSSION 
  

 

 
Fig. 1: Exact and Approximate Solutions for 
Problem 1 
 
 
 

 , 

 
Fig. 2: Exact and Approximate Solutions for 
Problem 2 

 

,  
Fig. 3: Exact and Approximate Solutions for 
Problem 3 

 
 
 
Table 1: Maximum errors and ROC for HyBVM of 
order 4 for Problem 1 

 
 

N 
HyBVM of Order 4 

 
e

∞                      ROC 
20  4 286 08. e −  −  
40  2 734 09. e −  3 97.  
80  1 727 10. e −  3 98.  

160  1 085 11. e −  3 99.  
 
 
 
Table 2: Maximum errors and ROC for HyBVM of 
order 6 for Problem 1 

 
N 

HyBVM of Order 6 
 

e
∞                  ROC 

20  1 592 11. e −  −  
40  2 495 13. e −  6 00.  
80  4 082 15. e −  5 93.  

160  6 280 16. e −  2 70.  

 

Table 3: Maximum errors and ROC of ETR of 
order 6 for Problem 1 
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N 

ETR of Order 6 
 

           e
∞                           ROC 

20  7 448 08. e −  −  
40  1 480 09. e −  5 65.  
80  2 576 11. e −  5 84.  

160  4 234 13. e −  5 93.  
 
 
 
Table 4: Maximum errors and ROC of HyBVM of 
order 4 for Problem 2 
 

N 
HyBVM Order 4 

 
e

∞                       ROC 
4  4 385 4. e −  −  
8  2 848 5. e −  3 94.  

16  1 812 6. e −  3 97.  
32  1 143 7. e −  3 99.  
64  7 171 9. e −  3 99.  

 
 
 
Table 5: Maximum errors and ROC of HyBVM of 
order 6 for Problem 2 

 
N 

HyBVM Order 6 
 

       e
∞               ROC 

4  1 332 16. e −  −  
8  6 280 16. e −  1 08.  

16  4 965 16. e −  0 34.  
32  4 578 16. e −  0 12.  
64  1 831 15. e −  2 00.  

 
 
 
Table 6: Maximum errors and ROC of ETR of 
order 4 for Problem 2 

 
N 
 

ETR Order 4 
     

        e
∞                     ROC 

4  2 628 3. e −  −  
8  1 955 4. e −  3 75.  

16  1 359 5. e −  3 85.  

32  8 989 7. e −  3 92.  
64  5 785 8. e −  3 96.  

 
 
Table 7: Maximum errors and ROC of HyBVM of 
order 4 for Problem 3 
 

N 
HyBVM Order 4 

 
e

∞                       ROC 
4  1 642 5. e −  −  
8  1 074 6. e −  3 93.  

16  6 797 8. e −  3 98.  
32  4 264 9. e −  3 99.  
64  2 669 10. e −  4 00.  

 
 
Table 8: Maximum errors and ROC of HyBVM of 
order 6 for Problem 3 
 

N 
HyBVM Order 6 

 

       e
∞               ROC 

4  2 189 5. e −  −  
8  4 762 7. e −  5 52.  

16  9 261 9. e −  5 68.  
32  1 633 10. e −  5 83.  
64  2 719 12. e −  5 91.  

 
 
Tables 1, 2 and 3 concern problem 1 and they show 
the Rate of Convergence (ROC) with the maximum 
error for ETRs of order 6, HyBVM of order 4 and 
HyBVM of order 6. 
As seen from these tables, the ROC for HyBVM of 
order 4, 6 and the ETR of order 6 are all consistent 
with their order. 
Table 4 – 6 concern problem 2 and they show the 
ROC with the maximum error for ETRs of order 4, 
HyBVM of order 4 and HyBVM of order 6. 
These tables revealed that the ROC for HyBVM of 
order 4 and the ETR of order 6 are consistent with 
their order while the ROC for HyBVM of order 6 
does not appear to be consistent with its order. 
Moreover, the numerical tests show that the 
HyBVM of order 4 is more accurate than the other 
two methods. 
Table 7 – 8 concern problem 3 and they show the 
ROC with the maximum error for HyBVM of order 
4 and HyBVM of order 6. As seen from these tables, 
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the ROC for HyBVM of order 4 and order 6 are 
consistent with their orders. 
 
 
4 Conclusion 
In this work, we have applied a sixth-order HyBVM 
to two systems of BVPs and compared the 
maximum error and rate of convergence of the 
solutions with other two BVMs: ETR and TOM 
called symmetric schemes. In constructing these 
methods, we have adopted the Adams Moulton 
methods derived through interpolation and 
collocation procedure by utilizing data at both step 
and off-step points and implemented them as 
BVMs. 
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