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Abstract:In this paper, the ill-conditioning diagnosis and processing of Kalman filter are combined. First, 
the ill-conditioning of Kalman filter and the disadvantage of ridge-type Kalman filter are analyzed. Then t
he signal-to-noise ratio(SNR) statistic is introduced to measure how much each parameter suffers from the
 ill-conditioning. Accordingly, all parameters are divided into two parts, named involved parameters and n
on-involved parameters respectively. Then, the two parts of parameters are corrected with two ridge para
meters of different size. This method is named double-parameter ridge-type Kalman filter and can reduce 
the bias introduced in ridge-type Kalman filter while reducing the variance of the state parameter estimati
on. Combined with the idea of generalized ridge estimation, the selection method of two ridge parameters
 are given. Finally, the example illustrates the new algorithm can effectively overcome the influence of th
e ill-condition on K alman filter and the reduce the bias in ridge-type Kalman filter, which improves the a
ccuracy of the estimates of parameters. 
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Kalman filter is one of the most commonly used 
methods in dynamic data processing. It has been 
studied and widely used in geodesy, satellite 
navigation and satellite orbit [1-5]. In order to 
overcome the influence of the observation matrix 
ill-conditioning and improve the accuracy of the 
parameter estimation, many scholars have given the 
improved algorithms [6-10]. At present, some 
scholars have proposed some methods from the 
perspective of biased estimation to solve the 
ill-conditioned problems in the discrete dynamic 
system. Tan [8] proposed biased Kalman filter by 
combining biased estimations with Kalman filter. 
Han Songhui et al. [10] combined the ridge 
regression with Kalman filter to overcome the 
adverse effects of the observation matrix 
ill-conditioning on the filtered values by correcting 

the gain matrix. Li Yongming [11] proposed biased 
Kalman filter and ridge-type Kalman filter as well 
as their algorithms by combining biased estimation 
and ridge regression with Kalman filter, and also 
gave the selection methods of the compression 
coefficient and the ridge parameter. 

One of the common shortcomings of the above 
methods is that the diagnosis and processing of the 
discrete system ill-conditioning is not combined 
together. It is not considered that different 
parameters suffer differently from the 
ill-conditioning. The actual experience shows, the 
harm of the observation matrix ill-conditioning to 
each parameter is different. The size of this harm is 
related to the size of the parameter itself, but also to 
the degree the corresponding observation matrix 
data column involved in the collinearity [1]. In this 
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paper,the processing of Kalman filter 
ill-conditioning is combined with the harm 
measurement. The signal-to-noise ratio statistic is 
used to measure how much parameters suffering 
from ill-conditioning. According to the measured 
results, the corresponding measure is adopted to 
improve the ridge Kalman filter algorithm, which 
further reduces the effect of ill-conditioning on 
estimation. 

 

1 Kalman filter algorithm and 

ill-conditioning analysis 

 
1.1. Discrete dynamic systems and Kalman 
filter basic equations 

Consider the dynamic system described by the 
following state space model [1]. 

    1 1= +k k+ ,k k kX X+ Φ W               (1)  

+Y H Xk k k k= V                 (2)  

In the formula, k is the discrete time, n
kX R∈  

is the state of the system in the time kt ; m
kY R∈ is 

the corresponding observed signal; 1 ,k+ ,kΦ the 

×p p dimension non-singular matrix, is the 

one-step transition matrix from time kt to +1kt ; kH is 

the observation matrix; r
kW R∈ is the input white 

noise; formula (1) is the state equation, and 
formula (2) is the observation equation. 

kW  and kV meet 

  

T

T

T

( ) 0,C ov( , ) ( )

( ) 0,C ov( , ) ( )

C ov( , ) ( ) 0

k k j k j k kj

k k j k j k kj

k j k j

E W W W E W W Q

E V V V E V V R

W V E W V

δ

δ

= = =

= = =

= =  
(3)  

In the formula, the variance matrix of the input 

noise kQ is assumed to be a nonnegative matrix, and 

the variance matrix of the observed noise kR is 

assumed to be a positive definite matrix. It can be 

seen from Eq. (3) that kW and kV are uncorrelated 

white noises with zero mean, and that kQ and kR are 

variance matrixes of kW and kV . 

Basic equations of  Kalman filter are as 
bellows: 
One-step state prediction: 

        1/ 1
ˆˆ =k k k+ ,k kX X+ Φ              (4)  

Covariance matrix of one-step prediction: 

    
T

1/ 1 1k k k+ ,k k k+ ,k kP P Q+ = +Φ Φ         (5)  

Filter gain matrix: 
T T -1

1 1/ 1 1 1/ 1 1[ ]k k k k k k k k kK P H H P H R+ + + + + + += +  (6)  

Status update: 

   1 1/ 1 1 1 1/
ˆˆˆ = ( )k k k k k k k kX X K Y H X+ + + + + ++ −     (7)  

Covariance matrix of state estimation: 
T T

1 1 1 1/ 1 1 1 1 1=( ) ( )k k k k k k k k k kP I K H P I K H K R K+ + + + + + + + +− − +                                    
(8)  

(4)~ (8) are the basic equations of recursive 

Kalman filter. Given the initial value 0X̂ , 0P , and 

the observation at time +1kt , the state estimation can 

be recursively calculated. 
 
 
1.2. The influence of observation matrix 
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ill-conditioning on Kalman filter state 
estimation 

By Kalman filter basic equation [12], the state 

estimation of the moment +1kt can also be 

expressed as: 

     

T -1 1 1
1 1 +1 +1 1/

T -1 1
1 +1 +1 1/ 1/

ˆ =( )
ˆ( )

k+ k+ k k k k

k+ k k k k k+ k

X H R H P

H R Y P X

− −
+

−
+

+

+       
(9)  

It is the solution of Eq. (10). 

        

T -1 1
1 +1 +1 1/ 1

T -1 1
1 +1 +1 1/ 1/

ˆ( )
ˆ=( )

k+ k k k k k+

k+ k k k k k+ k

H R H P X

H R Y P X

−
+

−
+

+

+        
(10)  

Among them, T -1 1
+1 1 +1 +1 1/k k+ k k k kN H R H P−

+= + ，

T -1 1
+1 1 +1 +1 1/ 1/

ˆ
k k+ k k k k k+ kl H R Y P X−

+= + . +1kN is called the 

normal matrix of Kalman filter, and can be proved 
as a nonnegative matrix [1]. The 

eigen-decomposition of +1kN is as below: 

      
T

1 1 1 1k k k kN U U+ + + += Λ            (11)  

Then 
T -1 1 1 T -1 1

1 1 +1 +1 1/ 1 +1 +1 1/ 1/

-1 T T -1 1
1 1 1 1 +1 +1 1/ 1/

T T -1 1
1 1 1 +1 +1 1/ 1/

1 1

ˆˆ =( ) [ ]
ˆ       = []

1 ˆ      ( ) [ ]

k+ k+ k k k k k+ k k k k k+ k

k k k k+ k k k k k+ k
t

i i
k k k+ k k k k k+ ki

i k

X H R H P H R Y P X

U U H R Y P X

u u H R Y P X
σ

− − −
+ +

−
+ + + +

−
+ + +

= +

+ +

+

= +∑

Λ

 
(12)  

among them, 
1 2 T

1 1 1 1 1 1( , , ..., ); ,t
k k k k k k tU u u u U U I+ + + + + += =

1 2
1 1 1... 0t

k k kσσσ+ + +≥ ≥ ≥ >

1 2
1 1 1 1diag( , ,..., )t

k k k kσσσ+ + + +=Λ . 

If the observation matrix is ill-conditioned, then the 

combined effect of +1kH  and 1
1/k kP−
+  is likely to 

make +1kN  also ill-conditioned. Actual work 

shows that the ill-conditioning of the observation 

matrix is weekly controlled by 1
1/k kP−
+ , and its 

adverse effect on the state estimation cannot be 

eliminated by 1
1/k kP−
+ [11]. So, if +1kN  has one or 

more small eigenvalues, and there is a small 
observation error or deviation, the reciprocal of the 
small eigenvalue in equation (12) will amplify the 
error or deviation, so that the evaluation deviates 
from the true value far.  
 
 

2 Double-parameter ridge-type 

Kalman filter based on SNR test 

 

 
2.1. Ridge-type Kalman filter 

The complete algorithm of ridge-type Kalman 
filter (RTKF) is given in [11]. The ridge-type 
Kalman filter state estimation can be expressed as: 

( )
( ) ( )

( )

T -1 -1 -1 T -1 1
1 1 1 1 1/ 1 1 +1 +1 1/ 1/

-1 T -1 1
1 1 1 +1 +1 1/ 1/

T T -1 1
1 1 1 +1 +1 1/ 1/

1 1 1

ˆˆ =( + )

ˆ=

1 ˆ( )

k+ k k k k k k k+ k k k k k+ k

k k k+ k k k k k+ k

t
i i
k k k+ k k k k k+ ki

i k k

X H R H P I H R Y P X

N I H R Y P X

u u H R Y P X
σ

α

α

α

−
+ + + + + +

−
+ + +

−
+ + +

= + +

+ +

+ +

= +
+∑

　

     
(13)  

1kα + is the ridge parameter. Ridge-type Kalman 

filter is to use the ridge parameter to suppress the 
small eigenvalues and reduce the estimated 
variance, thus weakening the amplification of the 
observation error. 

Ridge-type Kalman filter has two defects. One is 
not using pathological information and making the 
same correction for all parameters, resulting in 
blindness of the correction for parameters; The 
other is the introduction of deviation by the ridge 
parameter. The deviation may be amplified in the 
continuous recursive process, thus affecting the 
accuracy of the estimation. Therefore, in order to 
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improve the accuracy of the estimation, the 
introduction of bias should be minimized. Based on 
the above two aspects, double-parameter ridge-type 
Kalman filter based on SNR test is proposed. The 
idea is to divide the state parameters into two parts 
according to the ill-conditioned information and 
correct them in different intensities. By such fine 
processing, the introduction of bias is reduced while 
effectively reducing the influence of 
ill-conditioning. 

 
 

2.2. Duoble-parameter ridge-type Kalman 
filter based on SNR test 

From the above analysis, the state parameters of 

time +1kt are estimated as the solution of the 

equation (10). If the normal matrix +1kN is 

ill-conditioned, the state estimation of +1kt time 

will become extremely unstable. This is how the 
ill-conditioning of the observation matrix affect the 
state estimation. The reason for the existence of 

ill-conditioning in normal matrix +1kN is that there 

is a l inear relationship between the data columns, 

which leads to the state estimation of +1kt time is 

not so accurate. But not all the state estimations are 
not satisfactory. Study found that the 
ill-conditioning in normal matrix has a large effect 
on the estimation of the state parameters 
corresponding to the data columns involved in 
collinearity, and a small effect on the estimation of 
the state parameters corresponding to the data 
columns not involved in collinearity.[13]. 

As is shown in equation (14), by calculating the 
SNR statistic of each state estimation component, 
the estimated effect of each parameter is 
distinguished.

 

1 1 1 1
1

1ˆˆˆ( Var ( * ˆVar
i i 2 i i 2

k k k k i
k

F X / X X
X+ + + +

+

= ）（）=）
（）  

(14)   

+1
ˆ i

kX  is the Kalman filter estimation of the thi  

parameter at time +1kt . 1
i

kF +  obeys the non-central 

distribution 2
1 τ，χ , and 1 1= Vari i

k k
ˆX / Xτ + +（）  is the 

non-center parameter. 
Equation (14) is called the SNR statistic of 

parameter i . And then use the test rule in [13]: 

when ( )2
i 1Fω τ≤ ，χ , it is considered that the 

corresponding parameter is influenced more 
seriously by the collinearity, and its estimation 

effect is not good; When ( )2
i 1Fω τ> ，χ , it is 

considered that the collinearity has little harm to 
the corresponding parameters, and its estimation is 

good.ω is the significance level; ( )2
1 ωτ，χ is the 

upper ω quantile of the non-central distribution

2
1 τ，χ . In practice, the selection of the threshold can 

be determined flexibly according to the specific 
situation, and it is not necessary to stick to the 
quantile determined by the significance level. The 
specific selection method can be found in the 
literature [13]. 

By calculating the SNR statistic, the state 

parameters of time +1kt can be divided into two 

parts 1 2( , )X X X= T T T .The parameters with small 

SNR statistics are 1X and they are more harmful by 

the collinearity, called as involved parameters; 

Other parameters with lager SNR statistics are 2X

and they are less harmful by the multicollinearity, 

known as non-involved parameters. For 1X ,due to 
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its poor estimation, this part of parameters is more 

greatly modified; For 2X , it is modified relatively 

slightly. Accordingly, the correction matrix is 
structured as below: 

1
1

1
1

1 2
1

2
1

0 0 0
0 0

( 1)

0 0
0 0 0

k+

th
k+

k+ th
k+

k+

the  s   line
Z the  s  

 line

α

α
α

α

 
 
 
 

= + 
 
 
 
  





 





                                     

(15)   

 1
1k+α and 2

2k+α are both ridge parameters, and

2 2
1 2k+ k+α α> .Then the state estimation of 

double-parameter ridge-type Kalman filter based 
on SNR test (DPRTKF) is given: 

    

T -1 1 1
1 1 +1 +1 1/ 1

T -1 1
1 +1 +1 1/ 1/

ˆ =( + )
ˆ( )

k+ k+ k k k k k+

k+ k k k k k+ k

X H R H P Z

H R Y P X

− −
+

−
+

+

+     (16)  

 
 

2.3. The selection method of two ridge 
parameters 

It is a very important problem in application to 

determine the ridge parameters 1
1k+α and 2

1k+α of time 

+1kt reasonably. Noting that double-parameter ridge 

estimation is a special case of generalized ridge 
estimation, and referencing the idea of 
Hoerl-Kennard method for determining the ridge 
parameters, the following method is proposed to 

determine 1
1k+α and 2

1k+α [14-16]. 

Let T T
+1 +1 +1 +1 +1 +1= , =n

k k kk k k, , U X1 2( ⋅ ⋅ ⋅ )θ θ θ θ ,  

1k+θ  is called the normal parameter [17], whose 
least square estimation is 

 +1

T
+1 +1 +1 +1

1 Τ
1 1 k+1 +1

T
1 1 /+

= ,

= +
k / k

n
k k k k

k k k+ k+ k k

ˆˆˆˆ ,

XR

,

U H ˆY P−

1 2

+
1− −1

( ⋅ ⋅ ⋅ )

( )

θ θ θ θ

Λ
   

(17)  

Two ridge parameters 1
1k+α and 2

1k+α are taken as: 

1 max

1
1

k
+ ik =

θ̂
α

2
+

1
( )

， 2 1
1 1=k+ k+cα α∗  ，0 1c< <  (18)  

In summary, the complete algorithm of 
double-parameter Kalman filter based on SNR test 
is as follows: 

Step 1, initialize: give the initial value of state 

parameter ˆ
0X and its mean square error 0̂P  

Step 2, time update 

1/ /
ˆ

k̂ k k kX X+ = φ             (19)  

T T
1/ /k k k kP P Q+ = +φ φ Γ Γ     (20)  

Step 3, status update 

ˆˆˆ = ( )1 1/ 1 1 1 1/X X K Y H Xk k k k k k k k+ −+ + + + + +  
(21)  

T T 1
1 1/ 1 1 1/ 1 1[ ]k k k k k k k k kK P H H P H R −
+ + + + + + += +   (22)  

1
T

1 1 1/ 1 1
T

1 1 1

=( ) ( )
k

k k k k k k

k k k

P

I K H P I K H

K R K

+

+ + + + +

+ + +

− −

+
   (23)  

Step 4, determine whether the number of 
conditions in the matrix is greater than 500, if more 
than 500, then proceed Step 5, otherwise return to 
step 2. 

Step 5, use the signal to noise ratio test to 
determine the involved parameters and 
non-involved parameters. 

Step 6, determine the two ridge parameters 1
1k+α

and 2
1k+α . 

Step 7, use the DPRTKF estimation to correct 
the state estimation, and calculate the mean square 
error 
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DPRTKF T -1 1 1
1 1 +1 +1 1/ 1

T -1 1
1 +1 +1 1/ 1/

ˆ =( + )
ˆ( )

k k+ k k k k k+

k+ k k k k k+ k

X H R H P Z

H R Y P X

− −
+ +

−
+

+

+
(24)  

DPRTKF 1 T 1
1 1 1 1 1 1 1

1 T
1 1 1 1

T 1 T
1 1 1 1 1 1

     = ()k+ k k k k k k

k k k k

k k k k k k

P̂ M N X X I N M

M N X X

X X N M X X

− −
+ + + + + +

−
+ + + +

−
+ + + + + +

+

−

− +  

(25)  

among them 
T -1 1

+1 1 +1 +1 1/ 1= +k k+ k k k k k+M H R H P Z−
++      (26)  

Step 8, let DPRTKF DPRTKF
1 1    ,      k k+ k k+

ˆˆˆˆX X P P= = and return 

to step 2, then use Kalman filter to enter the next 
time state parameter estimation. 

 
 

3 Simulation and analysis 
 Computer simulations are used to verify the 

validity of the new algorithm described in the 
previous sections. We consider a d iscrete linear 
system described by the state equation (1) and 

observation equation (2), where state n
kX R∈ is 

estimated. The state transition matrix 1k+ ,kΦ , 

observation matrix kH , system noise covariance kQ

and observation noise covariance kR are set as 

follows: 

1

1.3108 0.1503 0.9499 0.2050 -0.1128
-0.3095 -0.2044 -0.5043 -0.4275 0.7652

= -0.5322 0.0568 0.0425 0.2323 -0.2351
-0.2435 -0.0473 0.4017 -0.5181 0.0249
-0.0572 0.3914 0.1991 -0.7387 -0.2515

Φ

 
 
 
 
 
 
 
 

k+ ,k

 
1 [15.57 44.02 20.42 18.74 49.20

44.92 55.48 59.28 94.39 128.02 96.00
131.42 127.21 252.90 409.20 463.70 510.22]

=k

T

a

 

2 [2643 2048 3940 6505 5723
11520 5779 5969 8461 20106 11113
10771 45543 36194 34703 39204 86533]

=k

T

a

 
4 [18.0 9.5 12.8 36.7 35.7

24.0 43.3 46.7 76.7 180.5 60.9
103.7 126.8 157.7 169.4 331.4 371.6]

=k

T

a

 
5 [4.45 6.92 4.28 3.90 5.50

4.60 5.62 5.15 6.18 6.15 5.88
4.68 4.88 5.57 10.78 7.05 6.35]

=k

T

a
 

3 1 42 0.5k k k ka a a e= + + ， 20 0 05k 17e N , . I( )  

1 2 3 4 5k k k k k kA a a a a a= [ ] , kQ I5= , 

k IR 2
17= 0.5 ×  

The initial value is 
Tˆ0 0= + 0.01×[1 1 1 1 1 1]x x , where

Τ
0 = [200 15 35 16 − 2.8 6]x and the initial 

error covariance matrix is P̂ I0 5= .The condition 

number of the normal matrix T -1
1 +1 +1k+ k kH R H is 

114.05 10× , which means that normal equation is 
ill-conditioned seriously. Choosing the ridge 

parameters 1
1k+α and 2

2k+α by means of method (18) 

and compared the new algorithm proposed in this 
paper with Kalman filter and Ridge-Type Kalman 
Filter, the results are described as Fig.1-Fig.3. 

 

Fig. 1: Comparison of condition number 

WSEAS TRANSACTIONS on MATHEMATICS
Hao Li, Yongwei Gu, 

Shumei Guo, Guochao Zhang

E-ISSN: 2224-2880 167 Volume 17, 2018



between   Kalman filter , ridge-type Kalman filter 
and DPRTKF filter. 

 

 Fig. 2: Comparison of between MSE Kalman, 
ridge-type Kalman filter and DPRTKF . 

 

Fig. 3: Comparison of Euclidean distance 
between Kalman filter , ridge-type Kalman filter 
and DPRTKF. 
 
It can be concluded from Fig.1-Fig.3 that: 

(1) The condition number of 
T -1 1

1 +1 +1 1/k+ k k k kH R H P−
++ is reduced by 1

1/k kP−
+ to some 

extent, compared with that of
T -1

1 +1 +1k+ k kH R H .However, it still has strong 

ill-condition, and both R-T KF algorithm and 
DPRTKF algorithm can reduce the condition 
number of  

T -1 1
1 +1 +1 1/k+ k k k kH R H P−

++ effectively. 

(2)The DPRTKF algorithm weakens the 
ill-condition of normal equation all the time and it 
works better than Kalman filter and ridge-type 

Kalman filter in the sense of the MSE. 
(3)Compared to the Kalman filter algorithm, the 

solution of R-T KF algorithm has a larger 
Euclidean distance with the true value because of 
the bias brought by the ridge parameter. However, 
the DPRTKF algorithm improves R-T KF 
algorithm by reducing both the variance of the state 
estimation and the deviation of the R-T KF 
estimation. So, the solution of DPRTKF algorithm 
has a shorter Euclidean distance with the true value 
than RTKF algorithm. 

 
 

4 Conclusion 
In this paper, the DPRTKF algorithm is used to 

combine the ill-conditioning diagnosis with the 
ridge-type Kalman filter. According to the SNR 
statistic of each parameter, all the parameters are 
divided into two parts, the involved parameters and 
the non-involved parameters, and the two parts of 
parameters are corrected with ridge parameters of 
different size. For the involved parameters, the 
corresponding ridge parameter is relatively large, 
and for the non-involved parameters, the 
corresponding ridge parameter is relatively small. 
This meticulous correction of the proposed method 
reduces the variation of the deviation in the ridge 
Kalman filter while reducing the variance of the 
state estimation in Kalman filter.  
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