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Abstract: We study the well-posedness of an optimal control problem described by semi-linear parabolic equation.
The control functions are represented by the coefficients λ(u, v) and β(u, v) which appear in the nonlinear part of
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1 Introduction
Optimal control problems for systems with distributed
parameters are often encountered in various applica-
tions. These problems for parabolic equations are of
great practical importance, which occur in optimiza-
tion problems of thermal and plasma physics, diffu-
sion, filtering etc., and also in solving coefficient-wise
inverse problems for parabolic equations in variation-
al formulations [6].

The precise mathematical formulations of these
problems depend, in general, on where the control
functions occur [1]. The problems can be divided into
two groups. The first group includes problems where
the control functions occur in free coefficients of the
state equations of boundary conditions. Currently,
these problems have received most attention. The sec-
ond group contains problems where the control func-
tions occur in the state equation coefficients, including
coefficients of higher order derivatives. These prob-
lems have been studied as a little.

In the present paper, we study a problem where
the control functions are represented by the coeffi-
cients λ(u, v) and β(u(x, t; v), v) which appear in
the nonlinear part of the state problem and inside the
source strength, respectively. These coefficients de-
pend on the control function v. This will help us to
solve a large amount of problems in this field of the

optimal control problems.

Abdelhamid, et. al. [16, 17, 18, 19, 20, 21] have
computed the gradient formulas in the optimization-
s problems for estimating the unknown parameters.
Furthermore, the authors studied the differentiability
results for the objective functions. In these problem-
s, we assumed that the coefficients of the control and
their generalized first order derivatives are essentially
bounded functions. Also, the well-posedness of the
problem, the existence and uniqueness are investigat-
ed. Finally, we prove the differentiability of the ob-
jective functional to obtain a formula for its gradient,
and establish the necessary optimality conditions.

2 Mathematical formulation

Let Ω = (0, l) be a bounded domain of En, QT =
{(x, t) : x ∈ Ω, t ∈ (0, T )}, and V = {v : v =
(v1, v2, . . . , vn) ∈ l2, ‖v‖l2 ≤ R}, where R and T are
a fixed numbers, QT = Ω× (0, T ].

Let a control process be described in QT by
the following initial boundary value problem for a
parabolic equation with control coefficients λ(u, v)
and β(u, v) depending on the solution of the state
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u(x, t) and the control v.

∂u

∂t
− ∂

∂x
(λ(u, v)

∂u

∂x
) = f(x, t, β(u, v)), (x, t) ∈ QT ,

(2.1)
with initial and boundary conditions

u(x, 0) = φ(x), 0 < x < l,

λ(u, v)ux|x=0 = ψ0(t), λ(u, v)ux|x=l = ψ1(t),
(2.2)

where φ(x) ∈ L2(0, T ), ψ0(t) and ψ1(t) ∈ L2(0, T )
for any T > 0 are given functions. The function-
s λ(u, v) and β(u, v) are continuous on (u, v) ∈
[r1, r2] × l2 and have continuous derivatives in u,
∀(u, v) ∈ [r1, r2] × l2 satisfy a Lipschitz condition.
Here ν0, ν1, ρ0, and ρ1 are given numbers. Besides the
above conditions, we use the additional restrictions

ν0 ≤ λ(u, v) ≤ ν1, ρ0 ≤ β(u, v) ≤ ρ1. (2.3)

We consider a generalized solution of the problem
(2.1)-(2.3) from the energetic class, i.e., the function
u(x, t) ∈ V 1,0

2 (QT ), where QT = (0, l)× (0, T ) (see
[10]).

We define some spaces and inequalities we need
them later.

(a) V 1,0
2 (QT ) is a Banach space consisting of ele-

ments from W 1,0
2 (QT ) having a finite norm

|u(x, t)|QT
= ess sup

0<t<T
‖u(x, t)‖2,(0,l)+‖ux(x, t)‖2,QT

,

and traces from L2(0, l) on the sections of (0, l)
continuously varying in t ∈ [0, T ].

(b) The space which consisting of all the conver-
gence number series ζ1, ζ2, · · · , ζi, · · · is the
Hilbert space l2 with

〈β, η〉l2 =
n∑
i=1

βiηi, ‖ζ‖l2 = [〈ζ, ζ〉l2 ]
1
2 .

(c) Cauchy’s inequality with ε takes the form

| ab |≤ ε

2
| a |2 +

1

2ε
| b |2,

which holds for all ε > 0 and for arbitrary a and
b.

(d) For the space L2(D), Cauchy Bunyakoviskii in-
equality takes the form

|
∫
D
uvdx |≤ (

∫
D
u2dx)

1
2 (

∫
D
v2dx)

1
2 .

Here and in what follows, we use the notation

‖u(x, t)‖2,(0,l) = (

∫ l

0
u2(x, t)dx)1/2,

‖ux(x, t)‖2,QT
= (

∫
QT

u2
x(x, t)dxdt)1/2.

Consider the following problem: for an arbitrary
c ∈ (0, T ) and on the solution u(x, t) = u(x, t; v)
of problem (2.1)-(2.4) corresponding to all admissible
controls v ∈ V , minimize the functional

J [v] = α0

∫ l

0
(u(x, c; v)− z(x))2dx

+α1

∫ l

0
f(x, T, β(u, v))dx+ α‖v − ω‖2l2 . (2.4)

where u(x, c; v) and z(x) are given functions and α0,
α1 ≥ 0 and α0 +α1 6= 0 and α ≥ 0. Hence, ω ∈ l2 is
given such that ω = (ω1, ω2, . . . , ωn).
Definition 2.1: The problem of finding a function
u = u(x, t) ∈ V 1,0

2 (QT ) from conditions (2.1)-(2.4)
given v ∈ V is called reduced problem (see [3]).
Definition 2.2: A solution of the boundary value
problem (2.1)-(2.4) corresponding to a control v ∈ V
is defined as a function u = u(x, t; v) in V 1,0

2 (QT )
satisfying the integral identity

∫ l
0

∫ T
0 [uηt − λuxηx + ηf(x, t, β(u, v))]dxdt

=
∫ T

0 η(0, t)ψ0(t)dt−
∫ T

0 η(l, t)ψ1(t)dt (2.5)

for all η(x, t) ∈ W 1,1
2 (QT ) equal to zero at t = T .

Let V be a closed and bounded subset of l2. The func-
tion f(x, t, β(u, v)) is given continuous function for
almost all (x, t) ∈ QT , bounded and measurable in
(x, t) ∈ QT .

Under the above assumptions [6], the boundary
value problem (2.1)-(2.4) be exist and has a unique
solution in V 1,0

2 (QT ) for each v ∈ V and ‖ux‖ ≤ C0,
for all (x, t) ∈ QT and C0 is a certain constant.
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3 The existence and uniqueness
theorems

Optimal control problems of the coefficients of d-
ifferential equations do not always have solution [8].
Examples in [10] and elsewhere of problems of the
type (2.1)-(2.4) having no solution for α = 0. A prob-
lem of minimization of a functional is said to be unsta-
ble, when a minimizing sequence does not converge
to an element minimizing the functional [6]. To prove
the existence we need the following theorem:
Theorem 3.1 Under the above assumptions for every
solution of the reduced problem (2.1)-(2.4) the follow-
ing estimate is valid:

‖δu‖
V 1,0
2 (Ω)

≤ C[µ0‖δλux‖2L2(QT )+µ1‖δf‖2L2(QT )]
1/2,

(3.6)
where C, µ0 and µ1 are positive constants indepen-
dent on the control function v.
Proof
Set δu(x, t) = u(x, t, v + δv) − u(x, t; v), u ≡
u(x, t; v). From (2.5) it follows the function δu(x, t)
satisfies the identity∫ l

0

∫ T

0
[−ηtδu+

∂λ(u+ θ1δu, v + δv)

∂u

∂u

∂x

∂η

∂x
δu

+ δλ
∂u

∂x

∂η

∂x
+ λ

′ ∂δu

∂x
ηx − ηδf

− ∂f(x, t, β)

∂β

∂β(u+ θ2δu, v + δv)

∂u
ηδu]dxdt = 0,

(3.7)

for all η = η(x, t) ∈ W 1,1
2 (QT ) and η(x, T ) = 0.

Here θ1, θ2 ∈ (0, 1) are some positive numbers, and

δf = f(x, t, β(u, v + δv))− f(x, t, β(u, v))

λ
′

= λ(u+ δu, v+ δv), δλ = λ(u, v+ δv)−λ(u, v),

δu = u(x, t; v + δv)− u(x, t; v),

Let us consider the function

η(x, t) =

{
0 t ∈ [t1, T ]∫ T
t η(x, τ)dτ t ∈ [0, t1]

where η(x, t) ∈ W 1,1
2 (QT ) and it has the generalized

derivatives
ηt = −η(x, t),

and

ηx =

∫ T

t
ηx(x, τ)dτ.

Put δu instead of η(x, t) for (x, t) ∈ Qt and
η(x, T ) = 0.

Following the method of [11], we obtain∫
Ω

(δu(x, t1))2dx+

∫
Qt

[
∂λ(u+ θ1δu, v + δv)

∂u

∂u

∂x

∂δu

∂x
δu

+ δλ
∂u

∂x

∂δu

∂x
+ λ

′ ∂δu

∂x

∂δu

∂x
]dxdt

−
∫
Qt

[
∂f(x, t, β)

∂β

∂β(u+ θ2δu, v + δv)

∂u
δuδu

+ δuδf ]dxdt = 0 (3.8)

Hence, from the above assumptions and applying
Cauchy Bunyakoviskii inequality, we obtain∫

Ω(δu(x, t1))2dx+ ν0

∫
Qt

(∂δu∂x )2dxdt

≤ C1(
∫
Qt

(∂δu∂x )2dxdt)1/2(
∫
Qt

(δu(x, t))2dxdt)1/2

+C2(
∫
Qt

(δλ∂u∂x)2dxdt)1/2(
∫
Qt

(∂δu∂x )2dxdt)1/2

+(
∫
Qt

(δf)2dxdt)1/2(
∫
Qt

(δu)2dxdt)1/2

+C3

∫
Qt

(δu)2dxdt, (3.9)

where C1, C2, and C3 are positive constants indepen-
dent of δv.

Applying Cauchy’s inequality with ε and com-
bine similar terms, then multiply both sides by two,
we get

‖δu(x, t1)‖2L2(Ω) + ν0‖∂δu∂x ‖
2
L2(Qt)

≤ C1ν
2 ‖

∂δu
∂x ‖

2
L2(Qt)

+C1
2ν ‖δu‖

2
L2(Qt)

+ C2ν
2 ‖δλux‖

2
L2(Qt)

+ C2
2ν ‖

∂δu
∂x ‖

2
L2(Qt)

+ν
2‖δf‖

2
L2(Qt)

+ 1
2ν ‖δu‖

2
L2(Qt)

+C3‖δu‖2L2(Qt)
, (3.10)

Combining the similar terms, we get

‖δu(x, t1)‖2L2(Ω) + ν0‖
∂δu

∂x
‖2L2(Qt)

≤ C4‖
∂δu

∂x
‖2L2(Qt)

+ C5‖δu‖2L2(Qt)
+ µ0‖δλux‖2L2(Qt)

+ µ1‖δf‖2L2(Qt)
,

(3.11)
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where C4 = (C1ν
2 + C2

2ν ), C5 = (C1
2ν + 1

2ν + C3),
µ0 = C2ν

2 , µ1 = ν
2 . C4, C5, µ0, and µ1 are positive

constants not depending on δv.

Now, we replace ‖δu‖2L2(Qt)
= ty2(t), where

y(t) ≡ max
0≤τ≤t

‖δu(x, t)‖L2(Ω),

‖δu(x, 0)‖2L2(Ω) = y(t)‖δu(x, 0)‖L2(Ω), and let

j(t) = µ0‖δλux‖2L2(Qt)
+ µ1‖δf‖2L2(Qt)

,

Then, we obtain

‖δu(x, t1)‖2L2(Ω) + ν0‖
∂δu

∂x
‖2L2(Qt)

≤ C4‖
∂δu

∂x
‖2L2(Qt)

+C5ty
2(t) + j(t).

(3.12)

This follows the two inequalities

‖∂δu
∂x
‖2L2(Qt)

≤ ν−1
0 j(t), (3.13)

and
y2(t) ≤ j(t). (3.14)

We take the square root of both sides of (3.12), (3.13),
and add together the resulting inequalities and ma-
jorize the right hand side in the following way [12]

y(t) + ‖∂δu
∂x
‖L2(Qt) ≤ (1 + ν

−1/2
0 )j1/2(t), (3.15)

then we obtain

‖δu‖
V 0,1
2 (Qt)

= max
0≤t≤t1

‖δu(x, t)‖L2(Ω)+‖
∂δu

∂x
‖L2(Qt),

(3.16)
and

‖δu‖
V 0,1
2 (Qt)

≤ Cj1/2(t), (3.17)

where C = (1 + ν
−1/2
0 ) is positive constant not de-

pending on δv. Theorem 3.1 is proved.
Lemma 3.1: ([10]) Under the above assumptions, the
boundary value problem (2.1)-(2.2) has a unique so-
lution in V 1,0

2 (QT ) for each v ∈ V , and this solution
belongs to W 1,1

2 (QT ) and admits the following esti-
mate

‖u‖2,QT
≤M1[‖ψ0‖2,(0,T ) + ‖ψ1‖2,(0,T )]. (3.18)

Here and in the following Mi, i = 1, 2, . . . are posi-
tive constants independent of the quantities to be es-
timated and admissible controls. It follows from the

estimate (3.18) that the functional (2.4) is defined on
V and takes finite values.
Note that the functional (2.4) is nonlinear, and it is d-
ifficult to analyze its convexity.
Corollary 3.1 Under the above assumptions [7], the
right part of estimate (3.6) converges to zero at
‖δv‖l2 → 0, therefore

‖δu‖
V 1,0
2 (QT )

→ 0 a ‖δv‖l2 → 0. (3.19)

Hence from the theorem on trace [13] we get

‖δu(0, t)‖L2(0,T ) → 0, ‖δu(l, T )‖L2(0,T ) → 0

as‖δv‖l2 → 0.
(3.20)

Now we consider the functional J0(v) of the form

J0(v) = α0

∫ l

0
(u(x, c; v)− z(x))2dx

+α1

∫ l

0
f(x, T, β(u, v))dx. (3.21)

Lemma 3.2 The functional J0(v) is continuous on V .
proof

Let δv = (δv0, δv1, . . . , δvn) be an increment of
control on an element v ∈ V such that v + δv ∈ V .
For the increment of J0(v) we have

δJ0(v) = J0(v + δv)− J0(v) =

2α0

∫ l

0
(u(x, c; v)− z(x))δu(x, c; v)dx

+α0

∫ l

0
(δu(x, c; v))2dx+

α1

∫ l

0

∂f(x, T, β(u+ θ3δu, v + θ3δv))

∂u
δu(x, T, β)dx

(3.22)

Applying the Cauchy-Bunyakovskii inequality, we
obtain

‖δJ0(v)‖ ≤ 2α0‖u(t, c; v)− z(x)‖L2(0,l)‖δu(x, c; v)‖L2(0,x)

+ α0‖δu(x, c; v)‖2L2(0,l)+

α1‖
∂f(x, T, β(u+ θ3δu, v + θ3δv))

∂u
‖L2(0,l)‖δu(x, c; v)‖2L2(0,l).

(3.23)

An application of the Corollary 3.1 completes the
proof.
Lemma 3.3 (Weierstrass theorem) Let V0 be a non
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empty compact subset of H and let f a real-valued
continuous function defined on V0. Then f assumes
its maximum and minimum values on V0, i.e. there
exist points x ∈ V0 and x̃ ∈ V0 such that.

f(x) = max{f(x) : x ∈ V0}.

and
f(x̃) = min{f(x) : x ∈ V0}.

Theorem 3.2 For any α ≥ 0, the problem (2.1)-(2.4)
has at least one solution.
proof The set of V is closed and bounded in l2. Since
J0(v) is continuous on V by Lemma 3.2, so

Jα(v) = J0(v) + α‖v − ω‖2l2 . (3.24)

Then from the Weierstrass theorem [15] it follows that
the problem (2.1)-(2.4) has at least one solution. This
completes the proof of Theorem 3.2.
According to the above discussions, we can easily ob-
tain a theorem concerning the uniqueness solution for
the considering optimal control problem (2.1)-(2.4).
Theorem 3.3 Let ω ∈ H be a given element, then
there exists a dense subset V0 of the spaceH such that
for any ω ∈ V0 with α > 0, the optimal control prob-
lem (2.1)-(2.4) has a unique solution.
proof (A corollary of the Goebel theorem [14]) As-
sume that H is a uniformly convex space and V is a
bounded and closed subset of H . A functional J0(v)
is lower semicontinuous and bounded from below on
V , and α > 0 is a given number. Then there exists
a dense subset V0 ⊂ H such that for any ω ∈ V0 the
functional

Jα(v) = J0(v) + α‖v − ω‖l2 .

Then the optimal control problem (2.1)-(2.4) has a u-
nique solution, and this completes the proof of the the-
orem.

4 The differentiability of the cost
functional and necessary optimal-
ity conditions

Now let us study the differentiability of the func-
tional and establish the necessary optimality condi-
tion in problem (2.1)-(2.4). We introduce the conju-
gate problem that implies the definition of functions
Θ = Θ(x, t, v) as the solution of the problem.
The lagrangian function L(x, t, u, v,Θ) is defined by

L(x, t, u, v,Θ) = Jα(v)

+

∫ l

0

∫ T

0
Θ[
∂u

∂t
− ∂

∂x
(λ(u, v)− f(x, t, β(u, v))]dxdt,

(4.25)

where Θ(x, t) ∈ V 1,0
2 is the generalized solution of

the boundary value problem conjugated to 2.1-2.4 as

∂Θ

∂t
−λu

∂Θ

∂x

∂u

∂x
+λ

′ ∂Θ

∂x
+Θ

∂f

∂u
= 2α0(u(x, c; v)−z(x)),

(4.26)
with initial and boundary conditions

Θ(x, t)|t=T = −α1
∂
∂uf(x, T, β(u, v)),

λ
′
Θx|x=0 = 0, λ

′
Θx|x=1 = 0, (4.27)

where u = u(x, t, v) is the solution of the problem
(2.1)-(2.2). A solution of the boundary value prob-
lem (4.26)-(4.27) corresponding to the control v ∈ V
is defined as a function Θ = Θ(x, t, v) in V 1,0

2 (QT )
satisfying the integral identity∫ l

0

∫ T
0 [−Θηt − λu ∂Θ

∂x
∂u
∂xη + λ

′ ∂Θ
∂x η + Θ∂f

∂uη]dxdt

= −2α0

∫ l
0(u(x, c; v)− z(x))ηdx

−α1

∫ l
0
∂f(x,T,β(u,v))

∂u ηdx, (4.28)

for any function η ∈ W 1,1
2 (QT ) that is zero for t=0.

It follows from the results of the monograph [10] that,
for each v ∈ V , the problem (4.26)-(4.27) has a u-
nique solution in V 1,0

2 (QT ). This solution belongs to
W 1,1

2 (QT ), satisfies (4.27) for almost all (x, t) ∈ QT ,
and admits the estimate

‖Θ‖2,QT
≤M2[α0‖u(x, c; v)− z(x)‖2,(0,l)

+α1‖fu(x, T, β(u, v))‖2,(0,l)]. (4.29)

By taking into account inequality (3.9) and the esti-
mates (3.8), we obtain the estimate

‖Θ‖2,QT
≤M3[‖ψ0‖2,(0,T ) + ‖ψ1‖2,(0,T )

+ α0‖z(x)‖2,(0,l) + α1‖fu(x, T, β(u, v))‖2,(0,l)].
(4.30)

The Gradient formula for the modified function:
The sufficient differentiability conditions of function
(3.22) and its gradient for formula will be obtained by
defining the Hamiltonian function [3] H(u,Θ, v) as
in the following theorem
Theorem 4.1: Suppose that the above assumptions
holds. Then, the gradient of the functional J(v) at an
arbitrary v ∈ V defined by the first derivative of the
Hamltonian function is ∂J(v)

∂v ≡
−∂H(u,v,Θ)

∂v .
proof. Suppose that v = (v1, v2, . . . , vn) ∈ l2, δv =
(δv1, δv2, . . . , δvn) δv ∈ l2, v + δv ∈ l2 δu =
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u(x, t; v + δv)− u(x, t; v).
The increment of the functional J(v) is

δJ(v) = J(v + δv)− J(v) =

= 2α0

∫ l

0
(u(x, c; v)− z(x))δu(x, c; v)dx

+α1

∫ l

0

∂f(x, T, β)

∂β

∂β

∂u
δu(x, T, β)dx

+α1

∫ l

0

∂f(x, T, β(u+ θ3δu, v + θ3δv))

∂β

∂β

∂u
δu(x, T, β)dx

−α1

∫ l

0

∂f(x, T, β)

∂β

∂β

∂u
δu(x, T, β)dx

+2α〈v − ω; δv〉l2 + α‖δv‖2l2
+α0‖δu‖22,(0,l),

(4.31)

where

δJ(v) = 2α0

∫ l

0
(u(x, c; v)− z(x))δu(x, c; v)dx

+ 2α〈v − ω; δv〉l2

+ α1

∫ l

0

∂f(x, T, β)

∂β

∂β

∂u
δu(x, T, β)dx+R1(δv),

(4.32)

and

R1(δv) = α1

∫ l
0 [∂f(x,T,β(u+θ3δu,v+θ3δv))

∂β
∂β
∂u

−∂f(x,T,β)
∂β

∂β
∂u ]δu(x, T, β)dx

+α0‖δu‖22,(0,l) + α‖δv‖2l2 . (4.33)

Using the obtained estimation (3.7), the inequality
|R1(δv)| ≤ C7‖δv‖l2 can be verified where C7 is a
constant not depend on δv.
If we put δu(x, t) = η(x, t) in identity (4.28),
η(x, t) = Θ(x, t) in (3.7) and add together we obtain

2α0

∫ l

0
(u(x, c; v)− z(x))δu(x, c; v)dx

+ α1

∫ l

0

∂f(x, T, β)

∂β

∂β

∂u
δu(x, T )dx

=

∫ l

0

∫ T

0
[δfΘ− δλuxΘx]dxdt+R2(δv), (4.34)

where

R2(δv) =
∫ l

0

∫ T
0 [[∂f(x,T,β(u+θ3δu,v+θ3δv))

∂β
∂β
∂u

−∂f(x,T,β)
∂β

∂β
∂u ]δu(x, T, β)

−(∂λ(u+θ1δu,v+θ1δv)
∂u − ∂λ(u,v)

∂u )∂u∂x
∂Θ
∂x δu(x, t)

−(∂δu∂x + δu(x, t))λ(u+ θ1δu, v + θ1δv)∂Θ
∂x

+(Θδu)t]dxdt, (4.35)

where θi, i = 1, 2, . . . are positive numbers, R2(δv)
is estimated as |R1(δv)| ≤ C8‖δv‖l2 , andC8 is a con-
stant not depend on δv. Using the above assumptions,
we have

δλ = 〈λv(u, v), δv〉l2 +O(‖δv‖l2),

δf = 〈fv(x, t, β(u, v)), δv〉l2 +O(‖δv‖l2).

Then we obtain

δJ(v) =

∫ l

0

∫ T

0
〈fv(x, t, β(u, v))Θ

− λv(u, v)uxΘx, δv〉l2 + 2α〈v − ω, δv〉l2 +R3(δv),
(4.36)

where

R3(δv) = R1(δv) +R2(δv) +O(‖δv‖l2).

From the formula of R3(δv), we have |R3(δv)| ≤
C9‖δv‖l2 , and C9 is a constant not depend on δv.
From (4.35)-(4.36) and using the function H(u,Θ, v)
[7], we have

δJ(v) = 〈−∂H(u,Θ, v)

∂v
, δv〉l2+O(‖δv‖l2), (4.37)

which shows the differentiability of the functional
J(v) and also gives the gradient formula of the func-
tional J(v) as

∂J(v)

∂v
= −∂H(u,Θ, v)

∂v
.

Hence, the theorem is proved.
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