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1 Introduction
We investigate the existence of positive solutions for
the following fractional differential equations con-
taning p-Laplacian operator (PFDE, for short) and
infinite-point boundary value conditions

Dβ
0+(ϕp(D

α
0+u(t))) + f(t, u(t)) = 0,

0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dα
0+u(0) = 0, u(i)(1) =

∞∑
j=1

αju(ξj),

(1)

where Dα
0+, D

β
0+ is the standard Riemann-Liouville

derivative, ϕp(s) = |s|p−2s, p > 1, f ∈ C((0, 1) ×
J, J), J = (0,+∞), R+ = [0,+∞), h ∈ L1[0, 1] is
nonnegative. f(t, u) may be singular at t = 0, 1 and
u = 0, i ∈ [1, n − 2] is a fixed integer, n − 1 < α ≤
n, n ≥ 3, 0 < β ≤ 1, αj ≥ 0, 0 < ξ1 < ξ2 <
· · · < ξj−1 < ξj < · · · < 1 (j = 1, 2, . . .),∆ −
∞∑
j=1

αjξj
α−1 > 0,∆ = (α− 1)(α− 2) · · · (α− i).

In recent years, many excellent results of fraction-
al differential equations have been widely reported
for their numerous applications such as in electrody-
namics of complex medium, control, electromagnetic,
polymer rheology, and so on, see [1-3] for an exten-
sive collection of such results. In [4-6], by means of
fixed point theorem and theory of fixed point index to-
gether with eigenvalue with respect to the relevant lin-
ear operator, the existence and multiplicity of positive
solutions, pseudo-solutions are obtained for m-point

boundary value problem of fractional differential e-
quations

Dα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1 (A)

subject to the following boundary conditions

u(0) = · · · = u(n−2)(0) = 0, u(1) =
m∑
i=1

αiu(ξi).

(B1)
Similar results are extended to more general bound-
ary value problems in [7]. Motivated by [8], by in-
troducing height functions of the nonlinear term on
some bounded sets, we considered local existence and
multiplicity of positive solutions for BVP (A) with
infinite-point boundary value conditions in [9]. On
the other hand, there have been some papers dealing
with the fractional differential equations involving p-
Laplacian operator [10-16]. The purpose of this paper
is to study the existence of at least one solution for
PFDE (1) by means of the upper and lower solutions
and the Schauder fixed point theorem.

Compared to [5-7], this paper admits the follow-
ing three new features. Firstly, the facts p-Laplacian
operator is involved in differential operator and infi-
nite points is contained in boundary value problems
make the problem considered more general. Second-
ly, nonlinear term permits singularities with respect to
both the time and space variables.
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2 Preliminaries and several lemmas
Let E be the Banach space of continuous function-
s u : [0, 1] → R equipped with the norm ‖u‖ =
max0≤t≤1 |u(t)|. Here, we list some definitions and
useful lemmas from fractional calculus theory.

Definition 1 ([3]) The Riemann-Liouville fractional
integral of order α > 0 of a function y : (0,∞)→ R
is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds

provided the right-hand side is pointwise defined on
(0,∞).

Definition 2 ([3]) The Riemann-Liouville fractional
derivative of order α > 0 of a continuous function
y : (0,∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)

( d

dt

)n ∫ t

0

y(s)

(t− s)α−n+1
ds

where n = [α] + 1, [α] denotes the integer part of the
number α, provided that the right-hand side is point-
wise defined on (0,∞).

Now, we consider the linear fractional differential
equation

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(i)(1) =
∞∑
j=1

αju(ξj).
(2)

Lemma 3 ([9]) Given y ∈ C[0, 1], then the unique
solution of the problem

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(i)(1) =
∞∑
j=1

αju(ξj),
(3)

can be expressed by

u(t) =

∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =
1

p(0)Γ(α)



tα−1p(s)(1− s)α−1−i

−p(0)(t− s)α−1,
0 ≤ s ≤ t ≤ 1,

tα−1p(s)(1− s)α−1−i,
0 ≤ t ≤ s ≤ 1,

(4)

where p(s) = ∆ −
∑
s≤ξj

αj
(
ξj−s
1−s

)α−1
(1 − s)i. Obvi-

ously, G(t, s) is continuous on [0, 1]× [0, 1].

Lemma 4 [7] The function G(t, s) defined by (4) has
the following properties:
(1) p(0)Γ(α)G(t, s) ≥ m1s(1− s)α−1−itα−1,∀ t,
s ∈ [0, 1];
(2) p(0)Γ(α)G(t, s) ≤ [M1 + p(0)n] (1− s)α−1−i

tα−1, ∀ t, s ∈ [0, 1];
(3) p(0)Γ(α)G(t, s) ≤ [M1 + p(0)n]s(1− s)α−1−i,
∀ t, s ∈ [0, 1];
(4) G(t, s) > 0, ∀ t, s ∈ (0, 1)

where M1 = sup
0<s≤1

p(s)−p(0)
s ,m1 = inf

0<s≤1

p(s)−p(0)
s

are positive numbers.

Proof. The proof of (1) and (3) is almost as the same
as that in [7] and (4) is obvious. To get (2), check the
proof of Lemma 2.4 in [7]. For 0 < s ≤ t ≤ 1, we
get that

p(0)Γ(α)G(t, s) = p(s)(1− s)α−1−itα−1

−p(0)(t− s)α−1

= [p(s)− p(0)](1− s)α−1−itα−1

+p(0)[(1− s)α−1−itα−1

−(t− s)α−1]

≤ M1s(1− s)α−1−itα−1

+p(0)(1− s)α−1−itα−1

[1− (1− s

t
)][1 + (1− s

t
) +

(1− s

t
)2 + · · ·+ (1− s

t
)n−1]

≤ M1s(1− s)α−1−itα−1

+p(0)(1− s)α−1−itα−2sn

≤ M1s(1− s)α−1−itα−1

+p(0)(1− s)α−1−itα−2tn

≤ [M1 + p(0)n](1− s)α−1−itα−1.

For 0 < t ≤ s ≤ 1, we have that

p(0)Γ(α)G(t, s) = p(s)(1− s)α−1−itα−1

= [p(s)− p(0)](1− s)α−1−itα−1

+p(0)(1− s)α−1−itα−1

≤ [M1 + p(0)n](1− s)α−1−itα−1.

Let q > 1 satisfy 1
p + 1

q = 1. Then, ϕ−1
p (s) =

ϕq(s). To study the PFDE (1), we first consider the
associated linear PFDE
Dβ

0+(ϕp(D
α
0+u(t))) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dα
0+u(0) = 0, u(i)(1) =

∞∑
j=1

ηju(ξj),
(5)

for y ∈ L1[0, 1] and y ≥ 0.

WSEAS TRANSACTIONS on MATHEMATICS Qiuyan Zhong, Xingqiu Zhang

E-ISSN: 2224-2880 45 Volume 17, 2018



Lemma 5 The unique solution for the associated lin-
ear PFDE (5) can be written by

u(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

·ϕ−1
p

( ∫ s

0
(s− τ)β−1y(τ)dτ

)
ds.

Proof. Let w = Dα
0+u, v = ϕp(w). Then, the initial

value problem{
Dβ

0+v(t) + y(t) = 0, t ∈ (0, 1),
v(0) = 0

(6)

has the solution v(t) = c1t
β−1 − Iβy(t), t ∈ [0, 1].

Noticing that v(0) = 0, 0 < β ≤ 1, we have that
c1 = 0. As a consequence,

v(t) = −Iβy(t), t ∈ [0, 1]. (7)

Considering that Dα
0+u = w,w = ϕ−1

p (v), we have
from (7) that

Dα
0+u(t) = ϕ−1

p (−Iβ(y(t))), 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(i)(1) =
∞∑
j=1

ηju(ξj).
(8)

By Lemma 3, the solution of (8) can be expressed by

u(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

·ϕ−1
p

( ∫ s

0
(s− τ)β−1y(τ)dτ

)
ds.

Definition 6 A continuous function Ψ(t) is called a
lower solution of the PFDE (1) if it satisfies
−Dβ

0+(ϕp(D
α
0+Ψ(t))) ≤ f(t,Ψ(t)), 0 < t < 1,

Ψ(0) ≥ 0,Ψ′(0) ≥ 0, · · · ,Ψ(n−2)(0) ≥ 0,

Dα
0+Ψ(0) ≥ 0, Ψ(i)(1) ≥

∞∑
j=1

αjΨ(ξj).

Definition 7 A continuous function Φ(t) is called a
upper solution of the PFDE (1) if it satisfies
−Dβ

0+(ϕp(D
α
0+Φ(t))) ≥ f(t,Φ(t)), 0 < t < 1,

Φ(0) ≤ 0,Φ′(0) ≤ 0, · · · ,Φ(n−2)(0) ≤ 0,

Dα
0+Φ(0) ≤ 0, Φ(i)(1) ≤

∞∑
j=1

αjΦ(ξj).

Let

F = {u ∈ C([0, 1], R), u(0) = u′(0) = · · ·

= u(n−2)(0) = 0, u(i)(1) =
∞∑
j=1

αju(ξj)}.

Lemma 8 Let u ∈ F such that −Dα
0+u(t) ≥ 0, t ∈

[0, 1]. Then u(t) ≥ 0, t ∈ [0, 1].

Proof. Let −Dα
0+u(t) = h(t). Noticing that u ∈ F ,

by Lemma 3, we know that

u(t) =

∫ 1

0
G(t, s)h(s)ds.

It follows from Lemma 4 and h(t) ≥ 0 that u(t) ≥
0, t ∈ [0, 1].

Lemma 9 (Leray-Schauder fixed point theorem) Let
T be a continuous and compact mapping of a Banach
space E into itself, such that the set

{x ∈ E : x = σTx, for some 0 ≤ σ ≤ 1} (9)

is bounded. Then T has a fixed point.

3 Main results
Denote e(t) = tα−1,m = m1

p(0)Γ(α) ,M = M1+p(0)n
p(0)Γ(α) .

We list below some assumptions used in this paper.

(H0) 0 <

∫ 1

0
ϕ−1
p

( ∫ s

0
(s − τ)β−1f(τ, e(τ))

dτ
)
ds < +∞.
(H1) f ∈ C((0, 1) × J,R+), for any fixed

t ∈ (0, 1), f(t, u) is non-increasing in u, for any
c ∈ (0, 1), there exist λ > 0 such that for all (t, u) ∈
(0, 1]× J ,

f(t, cu) ≤ c−λf(t, u). (10)

From (10), it is easy to see that if c ∈ [1,+∞), then

f(t, cu) ≥ c−λf(t, u). (11)

Let

P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}.

Obviously, P is a normal cone in the Banach space E.
Now, define a subset D in E as follows

D = {u ∈ P : there exist two positive
numbers lu < 1 < Lu
such that lue(t) ≤ u(t)
≤ Lue(t), t ∈ [0, 1]}.

(12)

Obviously,D is nonempty since e(t) ∈ P.Now define
an operator A as follows:

(Au)(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s) (13)

·ϕ−1
p

( ∫ s

0
(s− τ)β−1

f(τ, u(τ))dτ
)
ds, t ∈ [0, 1].
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Theorem 10 Assume that (H0) and (H1)hold. Then
the PFDE (1) has at least one positive solution w∗ ∈
D, and there exist constants 0 < k < 1 and K > 1
such that ke(t) ≤ w∗(t) ≤ Ke(t), t ∈ [0, 1].

Proof. Firstly, we show that A : D → D is well
defined.

In fact, for any u ∈ D, there exist two positive
numbers Lu > 1 > lu such that

lue(t) ≤ u(t) ≤ Lue(t), t ∈ [0, 1]. (14)

We have from (H0), (H1), Lemma 4, (10), (11), (14)
that

( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, u(τ))dτ

)
ds

≤
( 1

Γ(β)

)q−1
Mtα−1∫ 1

0
ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, lue(τ))dτ

)
ds

≤
( 1

Γ(β)

)q−1
l−λ(q−1)
u M

·
∫ 1

0
ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, e(τ))dτ

)
ds

·e(t)
< +∞,

and

( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, u(τ))dτ

)
ds

≥
( 1

Γ(β)

)q−1
L−λ(q−1)
u m ·

∫ 1

0
s(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, e(τ))dτ

)
ds · e(t).

By (H0), it is clear that

∫ 1

0
s(1− s)α−1−i

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, e(τ))dτ

)
ds

≤
∫ 1

0
ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, e(τ))dτ

)
ds

< +∞.

Thus, we have proved that A : D → D is well de-
fined.

By Lemma 5, we know that Au(t) satisfy the fol-
lowing equation

−Dβ
0+(ϕp(D

α
0+(Au)(t))) = f(t, u(t)),

0 < t < 1,
(Au)(0) = (Au)′(0) = · · ·

= (Au)(n−2)(0) = 0, Dα
0+(Au)(0) = 0,

(Au)(i)(1) =
∞∑
j=1

ηj(Au)(ξj).

(15)

Now, we are in position to find a pair of upper and
lower solutions for PFDE (1). Let

u0(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, e(τ))dτ

)
ds,

t ∈ [0, 1].

By Lemma 4, we get that

u0(t) ≥
( 1

Γ(β)

)q−1
m

∫ 1

0
ϕ−1
p

( ∫ s

0
(s− τ)β−1

f(τ, e(τ))dτ
)
ds · e(t), t ∈ [0, 1].

As a consequence, there exists a constant k0 ≥ 1 such
that

k0u0(t) ≥ e(t), ∀ t ∈ [0, 1]. (16)

It following from (H0), (H1) and (16) that A is de-
creasing on u, thus for k > k0, we have( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s
0 (s− τ)β−1f(τ, ku0(τ))dτ

)
ds

≤
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, k0u0(τ))dτ

)
ds

≤
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s
0 (s− τ)β−1f(τ, e(τ))dτ

)
ds < +∞,

and

u0(t) ≤
( 1

Γ(β)

)q−1
M

∫ 1

0
ϕ−1
p

( ∫ s

0
(s− τ)β−1

f(τ, e(τ))dτ
)
ds < +∞.

Let ρ =
( 1

Γ(β)

)q−1
M

∫ 1

0
ϕ−1
p

( ∫ s

0
(s − τ)β−1

f(τ, e(τ))dτ
)
ds+ 1. Take

k∗ = max
{
k0,
[( 1

Γ(β)

)q−1
m

∫ 1

0
ϕ−1
p

( ∫ s

0

(s− τ)β−1f(τ, ρ)dτ
)
ds
] 1
λ(q−1)

}
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Then, we have

+∞ >
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1

f(τ, k∗u0(τ))dτ
)
ds

≥ (k∗)−λ(q−1)
( 1

Γ(β)

)q−1
mtα−1∫ 1

0
ϕ−1
p

( ∫ s

0
(s− τ)β−1

f(τ, u0(τ))dτ
)
ds

≥ (k∗)−λ(q−1)
( 1

Γ(β)

)q−1
mtα−1∫ 1

0
ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, ρ)dτ

)
ds

≥ tα−1, ∀ t ∈ [0, 1].

(17)

Let

Φ(t) = k∗u0(t), Ψ(t) = (AΦ)(t). (18)

Then, it follows from (16) and (17) that

Φ(t) = k∗
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s) (19)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, e(τ))dτ

)
ds

≥ tα−1,

Ψ(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s) (20)

ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, k∗u0(τ))dτ

)
ds

≥ tα−1.

In addition, by (15) and (18), we know that

Φ(0) = Φ′(0) = · · · = Φ(n−2)(0) = 0,

Dα
0+Φ(0) = 0, Φ(i)(1) =

∞∑
j=1

ηjΦ(ξj),

Ψ(0) = Φ′(0) = · · · = Ψ(n−2)(0) = 0,

Dα
0+Ψ(0) = 0, Ψ(i)(1) =

∞∑
j=1

ηjΨ(ξj).

By (18),

Ψ(t) = (AΦ)(t) =
( 1

Γ(β)

)q−1
∫ 1

0

G(t, s)ϕ−1
p

( ∫ s

0
(s− τ)β−1

f(τ, k∗u0(τ))dτ
)
ds

≤ k∗
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1

f(τ, u0(τ))dτ
)
ds

= Φ(t), ∀ t ∈ [0, 1].

(21)

Considering the fact that f is non-increasing in u, we
get from (18)-(21) that

Dβ
0+(ϕp(D

α
0+Ψ(t))) + f(t,Ψ(t))

= Dβ
0+(ϕp(D

α
0+(AΦ)(t))) + f(t,Ψ(t))

≥ Dβ
0+(ϕp(D

α
0+(AΦ)(t))) + f(t,Φ(t))

= −f(t,Φ(t)) + f(t,Φ(t)) = 0,

(22)

Dβ
0+(ϕp(D

α
0+Φ(t))) + f(t,Φ(t))

= Dβ
0+(ϕp(D

α
0+A(tα−1))) + f(t,Φ(t))

= −f(t, tα−1) + f(t,Φ(t))
≤ −f(t, tα−1) + f(t, tα−1) = 0.

(23)

By (22) and (23), we know that Φ,Ψ ∈ P are desired
upper and lower solutions of the PFDE (1), respective-
ly.

Define a function F as follows

F (t, u) =


f(t,Ψ(t)), u < Ψ(t),
f(t, u(t)), Ψ(t) ≤ u ≤ Φ(t),
f(t,Φ(t)), Φ(t) < u.

(24)

This together with (H1) shows that F : (0, 1)×R+ →
R+ is continuous.

In the following, we shall show that the fractional
boundary value problem

Dβ
0+(ϕp(D

α
0+u(t))) + F (t, u(t)) = 0,

0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dα
0+u(0) = 0, u(i)(1) =

∞∑
j=1

αju(ξj)

(25)

has a positive solution.
Let

(Tu)(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s) (26)

ϕ−1
p

( ∫ s

0
(s− τ)β−1

F (τ, u(τ))dτ
)
ds, t ∈ [0, 1].
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Then T : E → E and a fixed point of the operator T
is a solution of the PFDE (25). By (20), (21), the def-
inition of F and the fact that f(t, u) is non-increasing
in u, we have that

f(t,Φ(t)) ≤ F (t, u(t)) ≤ f(t,Ψ(t)), ∀ x ∈ E, (27)

and

f(t,Φ(t)) ≤ F (t, u(t)) ≤ f(t, tα−1), ∀ x ∈ E. (28)

By Lemma 4 and (28), for u ∈ E, we have

(Tu)(t) =
( 1

Γ(β)

)q−1
∫ 1

0
G(t, s)

ϕ−1
p

( ∫ s

0
(s− τ)β−1

F (τ, u(τ))dτ
)
ds

≤
( 1

Γ(β)

)q−1
Mtα−1∫ 1

0
ϕ−1
p

( ∫ s

0
(s− τ)β−1

f(τ, e(τ))dτ
)
ds < +∞,

(29)

which means that T is uniformly bounded. Consider-
ing the uniform continuity of G(t, s) on [0, 1]× [0, 1],
it can be easily seen that T : E → E is completely
continuous. In addition, we have from (29) that (9)
holds. Thus, Schauder fixed point theorem guarantees
that T has at least one fixed point w.

Now, we are in position to show that

Ψ(t) ≤ w(t) ≤ Φ(t), t ∈ [0, 1]. (30)

Since w is a fixed point of T , we have by (25) that

w(0) = w′(0) = · · · = w(n−2)(0) = 0, (31)

Dα
0+w(0) = 0, w(i)(1) =

∞∑
j=1

αjw(ξj),

Φ(0) = Φ′(0) = · · · = Φ(n−2)(0) = 0, (32)

Dα
0+Φ(0) = 0, Φ(i)(1) =

∞∑
j=1

ηjΦ(ξj).

Let z(t) = ϕp(D
α
0+Φ(t))− ϕp(Dα

0+w(t)). Then

Dβ
0+z(t) = Dβ

0+(ϕp(D
α
0+Φ(t)))

−Dβ
0+(ϕp(D

α
0+w(t)))

= −f(t, tα−1) + F (t, w(t))
≤ 0, t ∈ [0, 1],

Dβ
0+z(0) = Dβ

0+(ϕp(D
α
0+Φ(0)))

−Dβ
0+(ϕp(D

α
0+w(0))) = 0.

By (6) and (8), we know that

z(t) ≤ 0,

which means that

ϕp(D
α
0+Φ(t))− ϕp(Dα

0+w(t)) ≤ 0.

We get from the fact that ϕp is monotone increasing

ϕp(D
α
0+Φ(t)) ≤ ϕp(Dα

0+w(t)),

i.e.,
−ϕp(Dα

0+(Φ− w))(t) ≥ 0.

It follows from Lemma 8, (32) and (33) that

Φ(t)− w(t) ≥ 0.

Thus, we have proved that w(t) ≤ Φ(t) on [0, 1].
Similarly, we can get that w(t) ≥ Ψ(t) on [0, 1].
As a consequence, (30) holds. So, F (t, w(t)) =
f(t, w(t)), t ∈ [0, 1]. Hence, w(t) is a positive so-
lution of the PFDE (1). Noticing that Φ,Ψ ∈ D,
by (30), we can easily know that there exist constants
0 < k < 1 and K > 1 such that

ke(t) ≤ w∗(t) ≤ Ke(t), t ∈ [0, 1].

4 An example
Example Consider the following singular PFDE

D
1
2
0+(ϕ3(D

7
2
0+u))(t) + 1

2 t
− 1

12u−
1
6 = 0,

0 < t < 1, u(0) = u′(0) = u′′(0) = 0,

D
7
2
0+u(0) = 0, u′(1) =

∞∑
j=1

2
j2
u(1

j ).

(33)

In this situation, f(t, u) = 1
2 t
− 1

12u−
1
6 , α = 7

2 , β =
1
2 , p = 3, e(t) = t

5
2 ,∆ = 5

2 , αj = 2
j2
, ξj = 1

j ,∑∞
j=1 αjξj

α−1 ≈ 2.109 < ∆. By simple computa-
tion, we have

0 <

∫ 1

0
ϕ−1
p

( ∫ s

0
(s− τ)β−1f(τ, e(τ))dτ

)
ds

=

∫ 1

0

(1

2

∫ s

0
(s− τ)−

1
2 τ−

1
12 τ−

5
12 dτ

) 1
2 ds

=

∫ 1

0

(1

2

∫ 1

0
(1− τ)−

1
2 τ−

1
2 dτ

) 1
2 ds

=

√
2π

2
< +∞.

Therefore, (H1) holds. It is easy to see that (H2) is
satisfied for λ = 1

6 . By Theorem 10, PFDE (33) has
at least one positive solution w∗ such that there ex-
ist constants 0 < k < 1 and K > 1 with ke(t) ≤
w∗(t) ≤ Ke(t), t ∈ [0, 1].
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