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Abstract: - In this paper, we present the results of a numerical solution to ill-posed systems of linear algebraic 
equations (SLAEs) with  positive definite symmetric matrices by a r egularization method. In the paper it is 
shown that for the regularization of a computational process by the Tikhonov method it is sufficient to replace  
matrix 𝐴𝐴𝑛𝑛of the system by  matrix 𝐴𝐴𝑛𝑛 + 𝛼𝛼𝐸𝐸𝑛𝑛  where  𝐸𝐸𝑛𝑛  is the unit matrix, and 𝛼𝛼 is some positive numbers (the 
regularization parameters) that tend to zero. 
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1 Introduction 
In the process of solving various physical problems, 
it is necessary to solve systems of linear algebraic 
equations with positive definite symmetric ill-posed  
matrices.  Such SLAEs arise, for example, when a 
function is approximated by algebraic polynomials 
using the metric of space 𝐿𝐿2(0,1). In this case this 
approximation generates Hilbert matrices. Such 
SLAEs also arise during the solution of ordinary 
differential equations by the Ritz method, which 
leads to Gram matrices. These matrices of  order n 
are symmetric and positively defined, but with an 
unlimited increase of n, the smallest eigenvalue  
tends to zero, which leads to the instability of the 
decision process. Usually, to obtain a reliable 
solution, regularization methods are used. A 
common strategy is to use Tikhonov’s stabilizer  [1]  
or its modifications [2-19]. In this paper we consider 
the features of the numerical solution of systems of 
linear equations with a positive definite symmetric 
matrix using the regularizer proposed by prof. 
Ryabov V.M. In the next sections we show that for 
the regularization of a computational process by the 
Tikhonov method it is sufficient to replace  matrix 
𝐴𝐴𝑛𝑛of the system by  matrix 𝐴𝐴𝑛𝑛 + 𝛼𝛼𝐸𝐸𝑛𝑛  where  𝐸𝐸𝑛𝑛  is 
the unit matrix, and 𝛼𝛼 is some positive numbers (the 
regularization parameters) that tend to zero. 
Thus, we reduce the conditional number of SLAE, 
which increases the stability. 
 
2 Problem Formulation 
   Let A be a n on-degenerate real square matrix of 
size 𝑛𝑛, det𝐴𝐴 ≠ 0. In this case the solution to the 

system of linear algebraic equations 
                              𝐴𝐴𝐴𝐴 = 𝑓𝑓                                 

exists and  is unique. Various modifications of the 
Gauss method for solving systems of SLAE are 
known, for example the Gauss method with a choice 
of  l eading element, etc. Suppose   c onditional 
number 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 (𝐴𝐴) = ‖𝐴𝐴‖ ∙ ‖𝐴𝐴−1‖ of  m atrix A is 
very large, i.e. the matrix of the system of equations 
is ill-conditioned. The solution of the ill-conditioned 
SLAE by the Gauss method does not always give a 
satisfactory solution. For example, suppose 
     

 A = �
0.0000001 333 555
33333333 1 70
55555555 70 32

� , 𝑓𝑓 =

�
888

33333404
55555657

�. 

. 
The condition number of matrix 𝐴𝐴 (𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 𝐴𝐴) equals 
𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 𝐴𝐴 = 1314691.460. Solving this system 
according to the scheme of single division without 
permutations (using a program written in C++ with 
real numbers of  d ouble type), we obtain 𝐴𝐴 =
(1.0, 1.555556, 0.666667)𝑇𝑇, which is 
significantly different from the exact solution 
(1.0, 1.0, 1.0)𝑇𝑇 . A similar example was 
considered in [10]. These examples show that it is 
necessary to avoid dividing by small elements of 
absolute value in the process of solving. Using the 
modified Gauss method -  the choice of  leading 
element being the greatest of the absolute values of 
the elements   in a column (Wilkinson's strategy) or 
the greatest of the absolute values of the elements in 
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the entire matrix of the remaining equations 
(Jordan’s strategy of complete ordering) helps to 
avoid this situation. The application of the Gauss 
method with a choice of  leading element gives the 
solution 𝐴𝐴 = (1.0, 1.0, 1.0)𝑇𝑇 .  
   If a system of equations is ill-conditioned, for 
example, in the case of SLAEs with  the Hilbert 
matrix 𝐻𝐻𝑛𝑛 = (ℎ𝑖𝑖𝑖𝑖 )𝑖𝑖 ,𝑖𝑖=1

𝑛𝑛   of order 𝑛𝑛 with elements 
1/ ( 1)ijh i j= + − ,  then it is practically impossible 

to obtain an acceptable SLAE solution by known 
methods (direct methods such as the Gauss method, 
square root method, iterative method etc). Table 1 
shows the values of the condition numbers for  
Hilbert matrices of orders  3 to 20, calculated with 
the Maple package, Digits=50.   Table 2 s hows  
solution of SLAEs (1) with Hilbert matrices 𝐻𝐻𝑛𝑛 , 
obtained by the Gauss method. 

Table 1. The conditional numbers of the Hilbert 
matrices 𝐻𝐻𝑛𝑛  

n cond(𝑯𝑯𝒏𝒏) n cond(𝑯𝑯𝒏𝒏) 
3 748 12 4.1154·1016 
4 28375 13 1.3244·1018 
5 9.4366·105 14 4.5378·1019 
6 2.9070·107 15 1.5392·1021 
7 9.8519·108 16 5.0628·1022 
8 3.3873·1010 17 1.6808·1024 
9 1.0996·1012 18 5.7661·1025 

10 3.5357·1013 19 1.9258·1027 
11 1.2337·1015 20 6.2836·1028 

 
 
Table 2. Solutions of SLAEs with  𝐻𝐻𝑛𝑛  . 

n=10 n=12 n=14 n=20 
1.000000 
1.000000 
0.999998 
1.000020 
0.999903 
1.000267 
0.999563 
1.000421 
0.999779 
1.000048 

1.000000 
1.000003 
0.999916 
1.001125 
0.991859 
1.035385 
0.902315 
1.175419 
0.795768 
1.148663 
0.938525 
1.011022 

1.000000 
0.999990 
1.000310 
0.996220 
1.019948 
0.981738 
0.675197 
2.922896 

-4.498100 
10.515965 
-9.428208 
8.094763 

-1.740964 
1.460245 

1.000000 
1.000075 
0.997232 
1.043007 
0.657461 
2.485524 

-2.218021 
2.012694 

11.914026 
-20.728838 

5.732215 
34.233277 

-42.153623 
18.727738 
2.721547 

-16.803379 
49.405743 

-57.516277 

33.288344 
-5.798746 

 
The solutions presented in Table 2 are far from the 
true solutions. In the following sections we present 
the regularization method, with the help of which 
we obtain solutions of initial system (1) with Hilbert 
matrices. 
 
3 Problem Solution 
Various approaches to solving systems of equations 
with ill-conditioned matrices are known [2-6]. In 
this paper, to obtain an acceptable solution to 
SLAEs, we consider the application of the 
modification of the regularization method proposed 
by professor of Saint Petersburg State University 
V.M.Ryabov.   

   A well-known standard Tikhonov regularization 
method consists of finding the approximation of a 
normal solution of system 𝐴𝐴𝐴𝐴 = 𝑓𝑓. It is based on 
finding the element on which the functional 

𝑀𝑀𝛼𝛼(𝐴𝐴,𝐴𝐴,𝑓𝑓) = ‖𝐴𝐴𝐴𝐴 − 𝑓𝑓‖2 + 𝛼𝛼 ‖𝐴𝐴‖2 

reaches the smallest value for fixed positive α .  
   For obtaining a normal solution, we have to solve 
the Euler equation 

(𝐴𝐴∗𝐴𝐴 + 𝛼𝛼𝐸𝐸)𝐴𝐴 = 𝐴𝐴∗𝑓𝑓. 

The solution of the Euler equation depends on the 
conditional number of matrix 𝐴𝐴∗𝐴𝐴. 
This number can be very large. If  matrix 𝐴𝐴 is 
symmetric and positive definite, we propose to find 
a normal solution in another way. In this paper we 
propose to find a normal solution by solving a 
system of equations for which the conditional 
number  is much smaller. 

   Let  matrix 𝐴𝐴 of the SLAE 

𝐴𝐴𝐴𝐴 = 𝑓𝑓                             (1) 

be symmetric and positive definite (for example, the 
Hilbert matrix). In our case, there exists a unique 
positive definite root of  matrix   𝐵𝐵 = √𝐴𝐴,  i.e.  
positive definite matrix 𝐵𝐵  is such that   𝐵𝐵2 = 𝐴𝐴. Let 
us establish  a r elation between eigenvalues and 
eigenvectors of matrices 𝐴𝐴 and 𝐵𝐵: let µ and 𝑥𝑥 be 
eigenvalue and eigenvector of matrix 𝐵𝐵: 

               𝐵𝐵𝑥𝑥 = µ𝑥𝑥.                                   (2) 
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Multiplying (2) by B  we get 

             𝐴𝐴𝑥𝑥 = µ𝐵𝐵𝑥𝑥,                                 (3) 

Using (2), we rewrite (3) as  𝐴𝐴𝑥𝑥 = µ2𝑥𝑥.                                
This equality means that the eigenvectors of 
matrices 𝐴𝐴 and 𝐵𝐵 are the same, and eigenvalues of  
matrix 𝐴𝐴 are equal to squares of the eigenvalues of  
matrix 𝐵𝐵. Multiplying (1) by 𝐵𝐵−1  we get 

𝐵𝐵𝐴𝐴 = 𝐵𝐵−1𝑓𝑓.                           (4) 

We write the Euler equation for minimizing the 
smoothing functional 𝑀𝑀𝛼𝛼(𝐴𝐴,𝐵𝐵,𝐵𝐵−1𝑓𝑓) =
‖𝐵𝐵𝐴𝐴 − 𝐵𝐵−1𝑓𝑓‖2 + 𝛼𝛼‖𝐴𝐴‖2:  it has the form: 

(𝐵𝐵∗𝐵𝐵 + 𝛼𝛼𝐸𝐸)𝐴𝐴𝛼𝛼 = 𝐵𝐵∗(𝐵𝐵−1𝑓𝑓),            𝛼𝛼 > 0.        (5) 

In the case of  symmetric matrix A,  matrix B is 
selfadjoint, therefore we obtain the equation  

                     (𝐴𝐴 + 𝛼𝛼𝐸𝐸)𝐴𝐴𝛼𝛼 = 𝑓𝑓.                         (6) 

Formally, the shift in the original system is carried 
out, but in fact this is the regularization method for 
equation (5) with the same solution as S LAE (1).  
Numbers are usually stored in computer memory 
with some error. We assume that the matrix and the 
vector are given approximately. Later (see section 5) 
the convergence of the method will be  pr oved. It 
should be noted that convergence holds only when 
𝛿𝛿 → 0,  with an unlimited increase in the accuracy 
of the initial information (matrix A and right-hand 
side 𝑓𝑓: ‖𝐴𝐴 − 𝐴𝐴𝛿𝛿‖ ≤ 𝛿𝛿, ‖𝑓𝑓 − 𝑓𝑓𝛿𝛿‖ ≤ 𝛿𝛿), which we 
can not practically achieve, so the results may be far 
from the desired solutions. Solving  ( 6), we obtain 
an approximate solution of  system (1). 
   Remark. If matrix A is symmetric, we don’t need 
to  c ompute matrix B. The application of 
regularization to  equation (1) will  just increase the 
conditional number of the resulting system, and that 
is unprofitable. In the case of a nonsymmetric 
positive definite matrix, the Euler equation for 
system (1) has the form (5).  
   The convergence of the regularization method is 
stated in [1]. Unlike the standard approach of the 
regularization procedure this representation also has 
a reduced conditional number, which is very 
important. But, in contrast to  symmetric matrices    
it is necessary to know  matrix B in the case of  
nonsymmetric matrices. The last requirement 
complicates the application of this method in 
practice. 
     A series of computational experiments on the 
application of the regularization method for solving 

SLAE with the Hilbert matrices of order 𝑛𝑛 =
2, 3, … , 20      were conducted. 
4 Results of the Application of  
the Regularization Method for SLAEs  
with  Hilbert Matrices 𝑯𝑯𝒏𝒏 
     Table 3 shows the results of applying the 
regularization method for various parameters 
𝛼𝛼 = 1.0, 10−1, 10−2, … , 10−15  for solving 
perturbed SLAE (𝐻𝐻𝑛𝑛 + 𝛼𝛼𝐸𝐸𝑛𝑛)𝐴𝐴 = 𝑓𝑓, where the 
matrix of the original system 𝐻𝐻𝑛𝑛 = (ℎ𝑖𝑖𝑖𝑖 )𝑖𝑖,𝑖𝑖=1

𝑛𝑛  is  the 
Hilbert matrix of order 𝑛𝑛. The solution of the 
perturbed system was calculated by the Gauss 
method  with a choice of  leading element. An exact 
solution of the original unperturbed system 𝐻𝐻𝑛𝑛𝐴𝐴 = 𝑓𝑓 
is known: that is an n-dimensional vector of units: 
 𝐴𝐴𝑡𝑡 = (1.0, 1.0, … ,1.0)𝑇𝑇 .  
   The error in the solution was calculated using the 
Euclidean norm. Calculating the solution of the 
perturbed SLAE for different values of 𝛼𝛼, we find 
the optimal value of the parameter at which the error 
of the solution has a minimum value.  Thus, to solve  
system of equations (1), it is necessary to solve 
several systems of equations for different α.  The 
norms of the approximate solutions obtained could 
be calculated, and, in our case,  the solutions whose 
norm is the smallest corresponds to the optimal  α, 
as it is shown in Tables 3, 4. The last rows in Tables 
3, 4 show the error  in  solutions calculated without 
regularization. In Tables 3, 4 the smallest error 
value for a given 𝑛𝑛 corresponding to the optimal 
value of  perturbation parameter α is shown in bold 
type. 

Table 3. Errors in the solution by the Gauss method 
of a perturbed SLAE with the Hilbert matrices of 
order n=10, 12 for different values of parameter α. 

𝛼𝛼 n=10 n=12 
 10−12 
 10−11 
10−10 
10−8 
 10−7 
 10−6 
10−5 
 10−4 
10−3 
10−2 
10−1 

   0.1310−5 
0.14 ˑ10−6 
0.16 ˑ10−6 
0.16 ˑ10−3 
0.58 ˑ10−3 
0.17 ˑ10−2 
0.56 ˑ10−2 
0.18 ˑ10−1 
0.56 ˑ10−1 
   0.1799 
   0.5788 

0.22ˑ10−5 
0.69 ˑ10−7 
0.19 ˑ10−6 
0.20 ˑ10−3 
0.58 ˑ10−3 
0.19 ˑ10−2 
0.63 ˑ10−2 
0.19 ˑ10−1 
0.61 ˑ10−1 
   0.1985 
   0.6355 

Errors in the solution without regularization 
 0.71ˑ10−3 0.3306 
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Table 4. Errors in the solution by the Gauss method 
of a perturbed SLAE with the Hilbert matrices of of 
order n=14, 20  for different values of parameter α. 

𝛼𝛼 
 
n=14 

 
n=20 

10−12 
 10−11 
10−10 
10−8 
10−7 
 10−6 
10−5 
 10−4 
10−3 
10−2 
10−1 

0.19ˑ10−4 
0.27 ˑ10−6 
0.20 ˑ10−6 
0.20 ˑ10−3 
0.65 ˑ10−3 
0.21 ˑ10−2 
0.66 ˑ10−2 
0.21 ˑ10−1 
0.67 ˑ10−1 
0.2153 
0.6872 

0.17ˑ10−4 
0.23 ˑ10−6 
0.25 ˑ10−6 
0.25 ˑ10−3 
0.78 ˑ10−3 
0.25 ˑ10−2 
0.80 ˑ10−2 
0.25 ˑ10−1 
0.81 ˑ10−1 
0.2581 
0.8220 

Errors in the solution without regularization 
 17.0703 105.2819 

The accuracy of floating-point arithmetic can be 
characterized by machine-epsilon, the smallest 
positive floating-point number ε such that 1+ ε>1 
(see [20]). We can compute a machine epsilon. For 
example, in C++  64-bit doubles give ε ≈2.2ˑ10−16. 

   Тikhonov's theorem asserts that, theoretically, as  
𝛼𝛼 decreases, the regularized solution improves, but 
in practical calculations for sufficiently small 𝛼𝛼 
(within machine precision in C++), the rounding 
errors and   conditional number  of the matrix have a 
significant effect. It can be seen by examining  
results presented at the beginning of  Tables 3, 4. 

5 Nonsymmetric ill-posed matrix  

Now we consider a system of linear algebraic 
equations with positive definite nonsymmetric ill-
posed matrix 𝐴𝐴, det(𝐴𝐴) ≠ 0, 

𝐴𝐴𝐴𝐴 = 𝑓𝑓,                                               (7) 

thus this system has a unique solution. 
   In practical problems, it often happens that  matrix 
A and  vector of the right-hand side 𝑓𝑓 are given with 
some error 𝛿𝛿 > 0: 

‖𝐴𝐴 − 𝐴𝐴𝛿𝛿‖ ≤ 𝛿𝛿,  ‖𝑓𝑓 − 𝑓𝑓𝛿𝛿‖ ≤ 𝛿𝛿, 

and instead of  sy stem 𝐴𝐴𝐴𝐴 = 𝑓𝑓 we have a sy stem 
with a perturbed 𝐴𝐴𝛿𝛿  and 𝑓𝑓𝛿𝛿 : 

𝐴𝐴𝛿𝛿𝐴𝐴 = 𝑓𝑓𝛿𝛿 .                            (8) 

It is not known whether  system (8) has any solution 
or not, but many pseudo-solutions �̃�𝐴 can be 
constructed, i.e., such vectors �̃�𝐴, on which  
discrepancy norm  

‖𝐴𝐴𝛿𝛿�̃�𝐴 − 𝑓𝑓𝛿𝛿‖ 

is minimal. We can choose a normal solution 𝐴𝐴0 of 
system (8) from the set of pseudo-solutions (a 
normal solution is a pseudo-solution with minimum 
norm). Normal solution 𝐴𝐴0 is unique. Further we 
take 𝛿𝛿 ∊ [0, 𝛿𝛿1], 𝛿𝛿1 > 0, 𝛿𝛿 tend to 0 in a way that 
normal solution (8) will tend to normal solution (7). 
    We consider the smoothing functional:  

 𝑀𝑀𝛼𝛼(�̃�𝐴,𝐴𝐴𝛿𝛿 ,𝑓𝑓𝛿𝛿) = ‖𝐴𝐴𝛿𝛿�̃�𝐴 − 𝑓𝑓𝛿𝛿‖2 + 𝛼𝛼‖�̃�𝐴‖2,       (9)          

where 𝛼𝛼 > 0. 

Let us consider the behavior of the functional 𝑀𝑀𝛼𝛼 , 
when the vector 𝐴𝐴 is changed to a vector 𝑡𝑡𝑡𝑡, where 𝑡𝑡 
is an arbitrary nonzero vector, 𝑡𝑡 is numeric 
parameter. We consider the function: 

Ф(𝑡𝑡) = 𝑀𝑀𝛼𝛼(𝐴𝐴 + 𝑡𝑡𝑡𝑡,𝐴𝐴,𝑓𝑓) = ‖𝐴𝐴(𝐴𝐴 + 𝑡𝑡𝑡𝑡)− 𝑓𝑓‖2 +
𝛼𝛼‖𝐴𝐴 + 𝑡𝑡𝑡𝑡‖2.                                                     (10) 

A necessary condition for an extremum is the 
vanishing of  derivative: 

�𝑐𝑐Φ(t)
𝑐𝑐𝑡𝑡 �

𝑡𝑡=0
= 0. 

Using the scalar product instead of norm in (9), 
(10), we get: 

Ф(𝑡𝑡) = (𝐴𝐴(𝐴𝐴 + 𝑡𝑡𝑡𝑡) − 𝑓𝑓,𝐴𝐴(𝐴𝐴 + 𝑡𝑡𝑡𝑡)− 𝑓𝑓) + 𝛼𝛼(𝐴𝐴
+ 𝑡𝑡𝑡𝑡, 𝐴𝐴 + 𝑡𝑡𝑡𝑡). 

We differentiate Ф(𝑡𝑡) by 𝑡𝑡 and calculate the 
derivative at the point 𝑡𝑡 = 0: 

Ф𝑡𝑡
′ (0) = 2(𝐴𝐴𝑡𝑡,𝐴𝐴𝐴𝐴 − 𝑓𝑓) + 2𝛼𝛼(𝑡𝑡, 𝐴𝐴) = 0. 

Thus, we obtain  relations: 
(𝐴𝐴𝑡𝑡,𝐴𝐴𝐴𝐴 − 𝑓𝑓) + 𝛼𝛼(𝑡𝑡, 𝐴𝐴)

= (𝑡𝑡,𝐴𝐴∗𝐴𝐴𝐴𝐴 − 𝐴𝐴∗𝑓𝑓) + (𝑡𝑡,𝛼𝛼𝐴𝐴)

= (𝑡𝑡,𝐴𝐴∗𝐴𝐴𝐴𝐴 − 𝐴𝐴∗𝑓𝑓 + 𝛼𝛼𝐴𝐴) = 0 ∀𝑡𝑡. 

The last equality is equivalent to the Euler equation: 

   (𝐴𝐴∗𝐴𝐴 + 𝛼𝛼𝐸𝐸)𝐴𝐴 = 𝐴𝐴∗𝑓𝑓,𝛼𝛼 > 0.                      (11) 
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  Matrix 𝐴𝐴∗𝐴𝐴 + 𝛼𝛼𝐸𝐸 𝑖𝑖𝑖𝑖 positive definite matrix, so 
(11) has a unique solution 𝐴𝐴𝛼𝛼  which will be the 
point of minimum  of  functional (9).  
 
   Theorem. Let the original problem 𝐴𝐴𝐴𝐴 = 𝑓𝑓   have 
a solution, 𝐴𝐴0 is a normal solution, 𝐴𝐴𝛼𝛼  is the solution 
of the Euler equation, 𝛿𝛿 ∊ [0, 𝛿𝛿1],. Let there be 
given two non-negative decreasing functions 
𝛽𝛽1(𝛿𝛿) ≥ 0, 𝛽𝛽2(𝛿𝛿) ≥ 0, 𝑖𝑖𝑠𝑠𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝛽𝛽1(0) = 0,
𝛽𝛽2(0) = 0 ,    𝛿𝛿2

𝛽𝛽1(𝛿𝛿)� ≤ 𝛽𝛽2(𝛿𝛿).  
There  exists 𝛼𝛼𝛿𝛿   such that 

𝛿𝛿2
𝛽𝛽1(𝛿𝛿)� ≤ 𝛼𝛼𝛿𝛿 ≤ 𝛽𝛽2(𝛿𝛿),   (12) 

 and let 𝐴𝐴𝛼𝛼𝛿𝛿  be a  solution of the Euler equation. 
Then     𝐴𝐴𝛼𝛼𝛿𝛿 → 𝐴𝐴0  𝑤𝑤ℎ𝑒𝑒𝑛𝑛   𝛿𝛿 → 0 . 

Proof . We have the following relations 

𝛼𝛼𝛿𝛿‖𝐴𝐴𝛼𝛼  ‖2 ≤ 𝑀𝑀𝛼𝛼𝛿𝛿 (𝐴𝐴𝛼𝛼𝛿𝛿 ,𝐴𝐴𝛿𝛿 ,𝑓𝑓𝛿𝛿)≤  𝑀𝑀𝛼𝛼𝛿𝛿 (𝐴𝐴0,𝐴𝐴𝛿𝛿 ,𝑓𝑓𝛿𝛿)=

‖𝐴𝐴𝛿𝛿𝐴𝐴0 − 𝑓𝑓𝛿𝛿‖2 + 𝛼𝛼𝛿𝛿‖𝐴𝐴0‖2 = 

= ‖(𝐴𝐴𝛿𝛿𝐴𝐴0 − 𝐴𝐴𝐴𝐴0) + (𝐴𝐴𝐴𝐴0 − 𝑓𝑓) + (𝑓𝑓 − 𝑓𝑓𝛿𝛿)‖2 +

𝛼𝛼𝛿𝛿‖𝐴𝐴0‖2 ≤ 𝛿𝛿2(1 + ‖𝐴𝐴0‖2) + 𝛼𝛼𝛿𝛿‖𝐴𝐴0‖2    (13) 

 
Here we used  

𝐴𝐴 𝐴𝐴0 − 𝑓𝑓 = 0, ‖𝐴𝐴 − 𝐴𝐴𝛿𝛿‖ ≤ 𝛿𝛿,    ‖𝑓𝑓 − 𝑓𝑓𝛿𝛿‖ ≤ 𝛿𝛿.     

Now we obtain  

𝛼𝛼𝛿𝛿‖𝐴𝐴𝛼𝛼  ‖2 ≤ 𝛿𝛿2(1 + ‖𝐴𝐴0‖2) + 𝛼𝛼𝛿𝛿‖𝐴𝐴0‖2.    (14) 

Using (12), (14) we get the following relations  
𝛿𝛿2

𝛼𝛼𝛿𝛿
≤ 𝛽𝛽1(𝛿𝛿), 

‖𝐴𝐴𝛼𝛼𝛿𝛿  ‖2 ≤ 𝛽𝛽1(𝛿𝛿)(1 + ‖𝐴𝐴0‖2) + ‖𝐴𝐴0‖2 ≤     

    𝛽𝛽1(𝛿𝛿1)(1 + ‖𝐴𝐴0‖2) + ‖𝐴𝐴0‖2 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖𝑡𝑡,          (15) 

when 𝛼𝛼𝛿𝛿  is such that  (12) is satisfied.  
    From (13)  for 𝛿𝛿 → 0 we have the relation 
𝑀𝑀𝛼𝛼𝛿𝛿 (𝐴𝐴𝛼𝛼𝛿𝛿 ,𝐴𝐴𝛿𝛿 ,𝑓𝑓𝛿𝛿)= �𝐴𝐴𝛿𝛿𝐴𝐴𝛼𝛼𝛿𝛿 − 𝑓𝑓𝛿𝛿�

2 + 𝛼𝛼𝛿𝛿�𝐴𝐴𝛼𝛼𝛿𝛿�
2  → 0, 

where the second term tends to 0,  so �𝐴𝐴𝛿𝛿𝐴𝐴𝛼𝛼𝛿𝛿 −
𝑓𝑓𝛿𝛿‖ → 0  for 𝛿𝛿 → 0, Furthermore, it is known, that if 
a sequence is   uniformly bound in 𝑅𝑅𝑛𝑛  then it will be 
compact (i.e. it contains a convergent subsequence). 
Now we can take subsequence {𝛼𝛼𝛿𝛿} such that 
𝐴𝐴𝛼𝛼𝛿𝛿 → 𝐴𝐴∗, and for 𝛿𝛿 → 0 we have  ‖𝐴𝐴𝐴𝐴∗ − 𝑓𝑓‖ = 0. 
From (15) for 𝛿𝛿 = 0 we receive   ‖𝐴𝐴∗‖ ≤ ‖𝐴𝐴0‖.  
Normal solution  is unique, therefore,  𝐴𝐴∗ = 𝐴𝐴0. 
Thus 𝐴𝐴𝛼𝛼𝛿𝛿 → 𝐴𝐴0  𝑤𝑤ℎ𝑒𝑒𝑛𝑛   𝛿𝛿 → 0. 

Example. Let us replace element ℎ20,1 = 1/20 of 
the matrix 𝐻𝐻20 with the element ℎ�20,1 = 1/(20.1) 
and replace element ℎ1,20 = 1/20 of the matrix 𝐻𝐻20 
with the element ℎ�1,20 = 1/(19.9). Now we obtain  
matrix 𝐻𝐻�20  in which all elements except ℎ�20,1 and 
ℎ�1 20 coincide with the elements of the matrix 𝐻𝐻20. 
Matrix 𝐻𝐻�20  is  not symmetric, �𝐻𝐻�20 −𝐻𝐻� ≤
0.00236 = 𝛿𝛿. Multiplying  matrix 𝐻𝐻�20   by  vector 
𝐴𝐴 = 𝐴𝐴20 = (1, … , 1)𝑇𝑇 ,  which  consists of ones, we 
obtain  v ector 𝑓𝑓. The solution of  system of 
equations 
                                     𝐻𝐻�20 𝐴𝐴 = 𝑓𝑓           (16) 
is presented in the first column of Table 5.  

Table 5. Solutions of SLAE (16) without 
regularization and with regularization 

Without 
regulari-
zation 

Regularization with  α  

α = 1.0 ˑ10−11 α = 1.0 ˑ10−12 

1.00  
1.00 
0.99999 
1.00  
0.99991 
1.00118 
0.98985 
1.06106 
0.73153 
1.87958 
-1.17803 
5.10402 
-4.88391 
7.36947 
-4.11708 
3.95614 
-1.16054 
1.27714 
0.96962 
0.99999 

0.99999 
1.00020 
0.99926 
1.00024 
1.00078 
1.00056 
0.99996 
0.99940 
0.99910 
0.99914 
0.99946 
0.99994 
1.00045 
1.00088 
1.00111 
1.00108 
1.00071 
0.99998 
0.99886 
0.99884 

0.99999 
1.00022 
0.99919 
1.00030 
1.00084 
1.00058 
0.99993 
0.99935 
0.99906 
0.99911 
0.99945 
0.99995 
1.00048 
1.00092 
1.00116 
1.00112 
1.00074 
0.99999 
0.99885 
0.99873 

Calculating in Maple with Digits=50 we obtain 
that 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐�𝐻𝐻�20� = 0.168ˑ1028  and eigenvalues 𝜆𝜆𝑖𝑖𝐻𝐻

�  of 
matrix 𝐻𝐻�20 are in interval [0.3ˑ10−26, 1.91]. To solve 
the system of equations 𝐻𝐻�20 𝐴𝐴 = 𝑓𝑓 by the 
regularization method, we have to calculate the 
conjugate matrix 𝐻𝐻�20

∗ = 𝐻𝐻�20
𝑇𝑇 , where the matrix 𝐻𝐻�20

𝑇𝑇 ,  
is transposed to   𝐻𝐻�20 . Let  𝜆𝜆𝑖𝑖   be eigenvalues of 
𝐻𝐻�20
𝑇𝑇 𝐻𝐻�20 .  It can be calculated that  𝜆𝜆𝑖𝑖 ∊

[0.98ˑ10−51, 3.63], and 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐(  𝐻𝐻�20
𝑇𝑇  𝐻𝐻�20) =
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0.128ˑ1053. Using the regularization method for the 
nonsymmetric matrix 𝐻𝐻�20   with α = 1.0  ˑ10−11     
and α = 1.0  ˑ10−12, we obtain  solutions of the 
SLAE 

(𝐻𝐻�20
𝑇𝑇 𝐻𝐻�20 + α𝐸𝐸20)𝐴𝐴 = 𝐻𝐻�20

𝑇𝑇 𝑓𝑓         (17) 

presented in Table 5. Using the regularization 
method for the nonsymmetric matrix 𝐻𝐻�20   with 
α = 1.0  ˑ10−11     and α = 1.0  ˑ10−12, we obtain  
solutions of the SLAE (17) presented in Table 6. 
Calculations were made in Maple with Digits=25. 
Here calculations were done with help of Maple 
function LinearSolve. 

Table 6. Solutions of SLAE with regularization (17) 
Regularization with  α 

α = 1.0 ˑ10−19 α = 1.0 ˑ10−20 
 

0.99999999 
0.99999995 
1.00000086 
0.99999559 
1.00000814 
0.99999756 
0.99999792 
0.99999240 
0.99999483 
1.00002277 
1.00000180 
1.00000485 
0.99997911 
0.99998618 
1.00000875 
1.00000757 
0.99999990 
1.00001528 
0.99998635 
1.00000016 

 
0.99999999 
0.99999997 
1.00000056 
0.99999593 
1.00001490 
0.99996780 
1.00004035 
1.00000495 
0.99987202 
1.00018443 
0.99993786 
1.00003619 
0.99984255 
1.00002733 
1.00013538 
1.00003839 
0.99984772 
1.00004360 
1.00001002 
1.00000006 

 
Table 7 shows errors in the solution of SLAE (16) 
for different values of parameter α.The error in the 
solution was calculated using the Euclidean norm. 
Calculations were done in Maple, Digits=25.  

   We have 

 �𝐻𝐻�20 −𝐻𝐻� ≤ 0.00236 = 𝛿𝛿,  

where δ is small. We can obtain  solutions of system 
(16) using regularization method (6). Tables 8, 9 
show the results of calculations. Here we can see 
that solutions obtained with method (6) have smaller 
errors. 

Table 7. Errors in the solution of SLAE with 
regularization (17) for different values of  α. 

α Errors 
α = 1.0 ˑ10−10 
α = 1.0 ˑ10−12 
α = 1.0 ˑ10−15 
α = 1.0 ˑ10−17 
α = 1.0 ˑ10−18 
𝛂𝛂 = 𝟏𝟏.𝟎𝟎 ˑ𝟏𝟏𝟎𝟎−𝟏𝟏𝟏𝟏 
α = 1.0 ˑ10−20 
α = 1.0 ˑ10−21 

0.82 ˑ10−2 
0.17 ˑ10−2 
0.45 ˑ10−3 
0.10 ˑ10−3 
0.81 ˑ10−4 
𝟎𝟎.𝟒𝟒𝟒𝟒 ˑ𝟏𝟏𝟎𝟎−𝟒𝟒 
0.36 ˑ10−3 
0.35 ˑ10−2 

 
Table 8. Solutions of SLAE (16) with regularization 
method (6) 

Regularization with  α 
α = 1.0 ˑ10−19 α = 1.0 ˑ10−20 

 
1.00 
1.00 
1.00 
1.00 
1.00 

0.99999998 
1.00000005 
0.99999991 
0.99999997 
1.00000058 
0.99999849 
1.00000196 
0.99999878 
0.99999997 
1.00000045 
0.99999999 
0.99999969 
1.00000020 
0.99999999 

1.00 

 
1.00 
1.00 
1.00 
1.00 
1.00 

0.99999999 
1.00000005 
0.99999991 
0.99999995 
1.00000065 
0.99999839 
1.00000203 
0.99999882 
0.99999982 
1.00000063 
0.99999984 
0.99999978 
1.00000017 
0.99999996 

1.00 
 
Table 9. Errors in the solution of SLAE (16) for 
different values of parameter α in method (6). 

𝛼𝛼 Errors 
α = 1.0 ˑ10−19 
α = 1.0 ˑ10−20 

0.29 ˑ10−5 
0.30 ˑ10−5 

 
 
6 Conclusion 
In this paper we presented the results of a numerical 
solution to SLAEs with  positive definite symmetric 
(or nonsymmetric but almost symmetrical) ill-
conditioned matrices by the regularization method, 
modified by prof. of St. Petersburg State University 
Ryabov V.M. It is shown that the solution of SLAEs 
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with Hilbert matrices using the regularization 
method can be substantially improved.  
    It can be calculated that 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐(𝐻𝐻20) =
0.628 ˑ 1028, and 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐(𝐻𝐻20

𝑇𝑇 𝐻𝐻20) = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐(𝐻𝐻20
2 ) =

0.178ˑ 1058.  Therefore, for solving SLAE 𝐻𝐻20𝐴𝐴 =
𝑓𝑓 we should use method (6) instead of (11). The 
same for SLAE (16). The application of method 
(11) in these  cases requires a large number of 
additional arithmetic operations, which can lead to 
an increase in calculation errors. 
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