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Abstract— Motivated by the success of Shanno’s memoryless Conjugate Gradient (CG) methods [28,29], this paper derives three new 
scaled quasi-Newton like CG algorithm that utilize an update formula that is invariant to a scaling of the objective function. The computation of 
the search directions, at each iteration, is done in two steps. The aim of developing such self scaling Variable Metric CG methods is to improve 
the quality of the generated search direction vectors.  The computations involved are rather cheap as they merely involve a number of inner 
products and require just extra O(n) storage requirements. The extra requirements are shown to pay off when the algorithm is numerically 
compared to that developed by Shanno. 
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1 Introduction 
Conjugate Gradient (CG) methods were initially developed by 
Fletcher and Reeves [12] and were used to solve general 
unconstrained minimization problems. Those methods are still 
favored to the more rapidly convergent Quasi-Newton 
methods (QN) for big problems due to their low storage 
requirements (O(n)), instead of O(n2), as is the case with QN 
methods. This constitutes enough justification for constantly 
attempting to improve these methods. In this work the focus is 
rather on methods which combine the merits of both the CG 
and QN methods, as was done earlier by Perry [23] and 
Shanno [28,29]. Our derivation exploits the success of the 
multi-step QN methods [18,19] to derive a CG algorithm that 
utilizes data available from recent iterations so that 
convergence is numerically accelerated further.  Section 2 of 
this paper briefly introduces the CG methods and variants. 
Section 3 presents the idea of memoryless self scaling 
Variable-Metric CG methods. Section 4 focuses on the 
derivation of the new algorithms. Then, the numerical results 
are discussed in Section 4. 

 

 

 

2 Memoryless Self-Scaling 
Variable-Metric Conjugate Gradient
Methods 
 
For a symmetric positive definite matrix A, the finite set of 
non-null linearly independent vectors d1, d2, d3, … dk  is said to 
be conjugate if  

 
di

TAdj=0, ∀i≠j.         (1) 
CG- methods are iterative and generate a sequence of 
approximations to the minimum x* of a scalar function f (x) in 
order to solve 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥), 𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚 ,𝑤𝑤ℎ𝑚𝑚𝑒𝑒𝑚𝑚 𝑓𝑓:𝑅𝑅𝑚𝑚 → 𝑅𝑅. 
 

The sequence xi is defined by the following recurrence 
 
 

di= �
-gi,                 for i=0,
-gi+βi-1di-1,   for i ≥1,

�   (2) 

 
where gi  is the gradient of f (xi), 𝛽𝛽𝑚𝑚  is a positive scalar chosen 
to minimize f(x) along the search direction di, and the standard 
definition of βi  is given by  

 

βi=
yi

Tgi+1
di

Tyi
,                                                         (3) 

 
for  

  
yi=gi+1- gi.      (4) 

 
The definition of βi in (3) is the one given in Hestenes and 
Stiefel [17] and is a modification to the original CG method 
derived by Polak and Ribiére [24] and Polyak [25]. 

 
This choice for the scalar 𝛽𝛽𝑚𝑚  is such that to make the search 
vectors dk and dk+1 conjugate when the line searches are exact 
(ELS). However, since in practice line searches are not exact, 
Perry [23] rewrote (2) under the assumption of inexact line 
searches (ILS) as follows 

di+1=-[ I - siyi
T

yi
Tsi

+ sisi
T

yi
Tsi

]gi+1  ,                                          (5) 

        =Qi+1gi+1                              (6) 

for 
si=xi+1 - xi.     (7) 

 
The matrix Qi+1 satisfies a relation similar to the Secant 
relation, namely  

 
 Qi+1

Tyi=si.    (8) 

 

WSEAS TRANSACTIONS on MATHEMATICS Issam A. R. Moghrabi

E-ISSN: 2224-2880 440 Volume 16, 2017



Perry's method [23] performance is only slightly better than 
the standard CG-method. Besides, the matrix 𝑄𝑄𝑚𝑚+1 is not 
necessarily symmetric or positive definite so that the direction 
vector in (7) may not be a descent direction. 
Shanno [28] derived a similar algorithm that satisfies the 
Secant relation  

 
Hi+1

Tyi=si,                                                                (9) 
 

where Hi+1 is an approximation to the inverse Hessian.  
Shanno proposed 

 

Qi+1= I  - siyi
T+yisi

T

yi
Tsi

+[1+ yi
Tyi

yi
Tsi

] sisi
T

yi
Tsi

.  (10) 

 
Update formula (10) is actually the BFGS update formula with 
the update applied to the identity matrix at each iteration. 
 
In fact, a similar dual relationship to (9)-(10) can be exhibited 
for any member of Broyden's  θ-class update [5,8,20]. 

 
The CG-method for which the search direction is computed 
using 

di+1=-Qi+1
Tgi+1    (11) 

 
is referred to as a memoryless  BFGS method.  
        

 
  

The idea of self-scaling was originally developed by Oren [21] 
and Oren & Spedicato [22]. Oren modified in [21] the 
Broyden ϑ-class of updates as follows  

𝐻𝐻𝑚𝑚+1 = �𝐻𝐻𝑚𝑚 −
𝐻𝐻𝑚𝑚𝑦𝑦𝑚𝑚𝑦𝑦𝑚𝑚𝑇𝑇𝐻𝐻𝑚𝑚
𝑦𝑦𝑚𝑚𝑇𝑇𝐻𝐻𝑚𝑚𝑦𝑦𝑚𝑚

+ 𝜗𝜗𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑇𝑇� 𝜇𝜇𝑚𝑚 +
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑇𝑇

𝑦𝑦𝑚𝑚𝑇𝑇𝑠𝑠𝑚𝑚
, 

 
where  

𝑒𝑒𝑚𝑚 = �𝑦𝑦𝑚𝑚𝑇𝑇𝐻𝐻𝑚𝑚𝑦𝑦𝑚𝑚(
𝑠𝑠𝑚𝑚
𝑦𝑦𝑚𝑚𝑇𝑇𝑠𝑠𝑚𝑚

−
𝐻𝐻𝑚𝑚𝑦𝑦𝑚𝑚
𝑦𝑦𝑚𝑚𝑇𝑇𝐻𝐻𝑚𝑚𝑦𝑦𝑚𝑚

) 

     
 

and the specific value chosen for  𝜗𝜗𝑚𝑚  results in different update 
formula that belong to the Broyden family. For example, the 
BFGS update corresponds to 𝜗𝜗𝑚𝑚 = 1. The scaler  𝜇𝜇𝑚𝑚  is defined 
by (see [21]) 
 

𝜇𝜇𝑚𝑚 = 𝑦𝑦𝑚𝑚
𝑇𝑇𝑠𝑠𝑚𝑚

𝑦𝑦𝑚𝑚
𝑇𝑇𝐻𝐻𝑚𝑚𝑦𝑦𝑚𝑚

. 

 
Shanno [28] used this formula for 𝐻𝐻𝑚𝑚+1 to derive a modified 
CG-method with 𝐻𝐻𝑚𝑚  replaced by the identity matrix to 
eliminate the need for storing any matrices. This resulted in 
the following memoryless search direction formula  

 

𝑑𝑑𝑚𝑚+1 = −[𝑦𝑦𝑚𝑚
𝑇𝑇𝑠𝑠𝑚𝑚

𝑦𝑦𝑚𝑚
𝑇𝑇𝑦𝑦𝑚𝑚

𝑔𝑔𝑚𝑚+1 + �2𝑔𝑔𝑚𝑚+1
𝑇𝑇 𝑠𝑠𝑚𝑚
𝑠𝑠𝑚𝑚
𝑇𝑇𝑠𝑠𝑚𝑚

− 𝑔𝑔𝑚𝑚+1
𝑇𝑇 𝑦𝑦𝑚𝑚
𝑦𝑦𝑚𝑚
𝑇𝑇𝑦𝑦𝑚𝑚

� 𝑠𝑠𝑚𝑚 −
𝑔𝑔𝑚𝑚+1
𝑇𝑇 𝑠𝑠𝑚𝑚
𝑦𝑦𝑚𝑚
𝑇𝑇𝑦𝑦𝑚𝑚

𝑦𝑦𝑚𝑚]. 
                                                                          

This choice is equivalent to scaling the memoryless BFGS by 
by 𝜇𝜇𝑚𝑚 .   

 
The results given by this modified CG-method in [27] were 
rather disappointing. 

 
 

Another memoryless Variable Metric (VM) method can be 
obtained by scaling, at each iteration, the update 

𝐻𝐻𝑚𝑚+1 = �𝐻𝐻𝑚𝑚 −
𝐻𝐻𝑚𝑚𝑦𝑦𝑚𝑚𝑦𝑦𝑚𝑚𝑇𝑇𝐻𝐻𝑚𝑚
𝑦𝑦𝑚𝑚𝑇𝑇𝐻𝐻𝑚𝑚𝑦𝑦𝑚𝑚

+ 𝜗𝜗𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑇𝑇� 𝜇𝜇𝑚𝑚 +
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑇𝑇

𝑦𝑦𝑚𝑚𝑇𝑇𝑠𝑠𝑚𝑚
, 

by a positive scalar σk  given by [27] 
 

𝜎𝜎𝑚𝑚 =
1
𝜇𝜇𝑚𝑚

. 

The parameter 𝜎𝜎𝑚𝑚  has the advantage of making the sequence of 
iterates invariant under multiplication of the objective function 
by a constant scalar. This results in the following memoryless 
VM search direction 

𝑑𝑑𝑚𝑚+1 = −𝑔𝑔𝑚𝑚+1 − [�2𝑦𝑦𝑚𝑚
𝑇𝑇𝑦𝑦𝑚𝑚𝑔𝑔𝑚𝑚+1

𝑇𝑇 𝑠𝑠𝑚𝑚
�𝑦𝑦𝑚𝑚

𝑇𝑇𝑠𝑠𝑚𝑚�
2 − 𝑔𝑔𝑚𝑚+1

𝑇𝑇 𝑦𝑦𝑚𝑚
𝑦𝑦𝑚𝑚
𝑇𝑇𝑠𝑠𝑚𝑚

� 𝑠𝑠𝑚𝑚 + 𝑔𝑔𝑚𝑚+1
𝑇𝑇 𝑠𝑠𝑚𝑚
𝑦𝑦𝑚𝑚
𝑇𝑇𝑠𝑠𝑚𝑚

]𝑦𝑦𝑚𝑚        (12) 

For exact line search, we have 𝑔𝑔𝑚𝑚+1
𝑇𝑇 𝑠𝑠𝑚𝑚 = 0 and hence 𝑑𝑑𝑚𝑚+1 

becomes 
 

𝑑𝑑𝑚𝑚+1 = −𝑔𝑔𝑚𝑚+1 +
𝑔𝑔𝑚𝑚+1
𝑇𝑇 𝑦𝑦𝑚𝑚
𝑦𝑦𝑚𝑚𝑇𝑇𝑠𝑠𝑚𝑚

𝑑𝑑𝑚𝑚 , 

       
 

which is the standard Hestenes & Stiefel CG-method [17] and 
therefore has n-step convergence to the minimum of a 
quadratic function. Thus the CG-method is defined precisely 
by this new VM update (12), where the approximation to the 
inverse Hessian is reset to the identity matrix at every step. 
 
The CG-algorithm defined by (2)-(4) exhibit a linear rate of 
convergence unless the method is restarted (generally every n 
steps) with direction dt=-gt, (see Powell [26], Biggs [3,4]). 
Powell suggests a restart every n steps or whenever  

 
�gi+1

Tgi�≥0.2�gi+1
Tgi+1�.    

 
Since the step taken in the direction of the negative gradient 
frequently results in a considerably small reduction in the 
objective function, Beale [2] derived a restart criterion 
intended to improve convergence rate. The restart step was 
taken to be the computed direction dt rather than −𝑔𝑔𝑡𝑡 . 
Subsequent non-restart steps are defined by (t being the index 
of the latest restart step): 

tiii ddd γβ ++= ++ 1i1i g- , 
where  

 
    )( / )(= Τ

1+
Τ

iiiii ydgyβ      
    

and 
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    )( / )(= Τ
1+

Τ
ttiti ydgyγ ,    

    
for i= t+1, t+2,……., t+n-1. 
                                  
Shanno [28], inspired by Beale’s approach [2], proposed 

 

di+1=-[I- diyi
T

yi
Tsi

+ dtyt
T

yt
Tst

] gi+1       (13) 

            
where yi is given in (4), si is as in (7) and t is the index of the 
last restart. The update matrix uses information from two prior 
points, namely xi and xt  where the information gathered at xt is 
critical and must be exploited. Shanno [28] defined, for k > t, 
the following double update scheme 

 

Ht=I- styt
T+ytst

T

yt
Tst

+[1+ yt
Tyt

yt
Tst

] stst
T

yt
Tst

  (14) 

 
and 

 

Hi+1=Ht-
siyi

THt+Htyisi
T

yi
Tsi

+[1+ yi
THtyi
yi

Tsi
] sisi

T

yi
Tsi

  (15) 

The search direction at iteration i is computed using 
 

di+1=-Hi+1gi+1. 
 

i
i

T
i

it
T

i

k
T

k

i
T

i

i
T

i

it
T

i
t

i
T

i

i
T

i
it

iii

s
ys
gHy

ys
gs

ys
yHy

yH
ys

gs
gH

gHd

i
))1(( 111

1

111

+++
+

+++

−+−+−=

−=  

     
The vector  

1+it gH  and 
i

yHt
are defined by   

 
 

t
t

T
t

i
T

t

t
T

t

i
T

t

t
T

t

t
T

t
i

t
T

t

i
T

t
iit v

yv
gy

yv
gv

yv
yyy

yv
gvggH ))1((' 111

11
+++

++ −++−=  

       
 

and 

.))1((' t
t

T
t

i
T

t

t
T

t

i
T

t

t
T

t

t
T

t

t
T

t

i
T

t
ttt v

yv
yy

yv
yv

yv
yyy

yv
yvyyH

t
−++−=            (35) 

 
In implementing this algorithm additional storage is required 
to store vectors xi+1, xi, gi+1, gi, di, dt, and yt  (a total storage 
still of order n). 
 
Another far more successful search direction, proposed by 
Shanno, is generated by using  update (15) in the computation 
of the search direction. This yield for i>t 

 

.]*['
t

T
t

T
tt

t
t

T
t

T
tt

t
T

t

T
tt

t
T

t

tttt
t yv

vv
yv

vv
yv

yy
yv

TvyTyv
IH ++

+
−= η  

    
 

Shanno therefore suggested scaling the matrix H’t with  
 

)yy ( / ) y (v  t
T

ti
T

it =η  
 

but not the matrix Hi+1. In this case the two additional vectors 
are defined by 
 

      −  +  −= +++
++ )2(' 111
11

t
T

t

i
T

t

t
T

t

i
T

t

t
T

t

i
T

t
itit yy

gy
yv
gvy

yy
gvggH

t
η      

   
 

and 
 

)2('     −  +  −=
t

T
t

i
T

t

t
T

t

i
T

t

t
T

t

i
T

t
itit yy

yy
yv
yvy

yy
yvyyH

t
η   .  

    
However, he also tested  the application of the Flecher [15] 
scaling in  his numerical  trials. In consequence he proposed 
using only the scaled H’t at restart steps, and at each non-
restart step to scale according to the following Flecher scaling 
criterion: 

 

 +++++ −= 11111 ]/)(2[' ii
T

iiii dgdffd  .     

The vectors that require retention in storage for this method 
are xi+1, xi, gi+1, gi, di, dt, and yt . 
 
3 A new Memoryless Variable 
Metric CG Algorithm 
In this derivation, we start by presenting a new variable metric 
(VM) update formula that will be used in the derivation of the 
new memoryless VM CG method. The notion of self-scaling 
quasi-Newton algorithms was first proposed by Oren [21], and 
Oren & Spedicato [22]. The update formula used in this paper 
is a generalization of Oren’s update [21], modified to satisfy 

 
Hi+1u𝑚𝑚=σi𝑣𝑣𝑚𝑚 ,      (16) 

  

for σi=
𝑢𝑢 i

THi𝑢𝑢𝑚𝑚
𝑢𝑢 i

T𝑣𝑣𝑚𝑚
 , for some vectors 𝑢𝑢𝑚𝑚  and   𝑣𝑣𝑚𝑚  

 
The resulting update formula is given by 

 

Hi+1=Hi+
2ui

THiui

(ui
Tvi)

2 vivi
T- viui

THi+Hiuivi
T

ui
Tvi

.   (17) 

 
The parameter σi is introduced to make the method invariant 
under multiplication of the objective function by a constant. It 
is worth mentioning that the standard CG-method can be 
obtained from (17) if the approximation to the inverse Hessian 
Hi is taken to be the identity matrix and the vectors 𝑢𝑢𝑚𝑚  and   𝑣𝑣𝑚𝑚  
are chosen to be 𝑦𝑦𝑚𝑚  and 𝑠𝑠𝑚𝑚 , respectively. Like in (14), the 
matrix Ht is this given as 
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Ht=I+
2ut

Tut

(ut
Tvt)

2 vtvt
T-

vtut
T+utvt

T

ut
Tvt

. 

 
Ht=I+ 2ut

Tut

(ut
Tvt)

2 vtvt
T- vtut

T+utvt
T

ut
Tvt

.     (18) 

 
Consequently, 
 

Hi+1=Ht+
2ui

THtui

(ui
Tsi)

2 sisi
T- siui

THt+Htuisi
T

ui
Tsi

.  (19) 

 
The search direction, in this case, is defined by: 

 
di+1=-Hi+1gi+1     

   =Htgi+1+ vi
Tgi+1
ui

Tvi
Htui-

2ui
THtui-ui

THtgi+1
ui

Tvi
vi,    (20) 

 
where the two additional vectors that need to be stored to 
implement this method are defined by 

 

Htgi+1=gi+1- st
Tgi+1
yt

Tst
yt+

(2yt
Tyt)(st

Tgi+1)-yt
Tgi+1

yt
Tst

si   (21) 

    
and 

Htyi=yi-
yi

Tvt

yt
Tvt

yt+( 2yt
Tyt+vt

Tyi

�yt
Tvt�

2 - yt
Tyi

yt
Tvt

)vt.     (22) 

 
      

The following theorem reveals that the search direction (20) is 
a special case of the Beale’s 3-term CG method, given as 

          tiii ddd γβ ++= ++ 1i1i g- ,                                  (23) 
where  

 
 )( / )(= Τ

1+
Τ

iiiii ydgyβ  
and 

 
    )( / )(= Τ

1+
Τ

ttiti ydgyγ , 
 

for i= t+1, t+2,……., t+n-1. 
 
Theorem 1: If f(x) is quadratic and the vectors 𝑢𝑢𝑚𝑚  and   𝑣𝑣𝑚𝑚  are 
chosen to be 𝑦𝑦𝑚𝑚  and 𝑠𝑠𝑚𝑚 , respectively, the search direction given 
by (20) is equivalent to the 3-term search directions generated 
by Beale’s method [2] when the line searches are exact.  

 
Proof. From (20), and since an exact line search is used gives 

si
Tgi+1=0, we obtain  

 
 

di=-Htgi+1+ yi
THtgi+1

si
Tyi

si.    

 
We also note that for a quadratic function 

 

∑+=+∑+=+=
+=

+
+=

+++
k

ti
it

k

ti
itkk AvgbvxAbAxg

1
1

1
111 )( .   

    
Hence, for ELS and quadratic functions 

 
st

TAsk=0, for i=t+1,….,i.      
 

Thus,   
st

Tgi+1=st
Tgt+1=0.     (24) 

        
 

Now from (21), using (24), we have 
 

tt
T

ti
T

tiit vyvgyggH ]/[' 111 +++ −= .    (25) 
 

Substituting (25) in (23) we get 
 

i
t

T
ti

T
i

t
T

ii
T

t
i

k
T

i

i
T

i
t

t
T

t

i
T

t
ii s

ysys
sygys

yv
gys

ys
gygd   

))((
))((  111

11
+++

++ −++−=  . 

(26) 
 

By the conjugacy condition we have 
 

0=t
T

i sy . 
 

Thus, (26) reduces to  
 

i
i

T
i

i
T

i
t

t
T

t

i
T

t
ii s

ys
gys

ys
gygd   11

11
++

++ ++−= .      (27) 

 
The search direction (27) is identical to the search direction of 
Beale’s method (23) (see [2]) and hence the proof is complete. 

 
Usually, conjugate gradient algorithms are periodically 
restarted. Powell’s restarting procedure [26], used in this 
algorithm, is for testing whether there is very little 
orthogonality left between the current gradient and the 
previous one. At step r when 

| 
�gr+1

T g𝑒𝑒�≥0.2�gr+1�
2
. 

 
the algorithm may be restarted using (18) with Ht set to I. For  
i = r +1, (20) is employed in the computation of the search 
direction.  
 

4 Choosing the vectors 𝒖𝒖𝒊𝒊 and   𝒗𝒗𝒊𝒊  
 
One obvious choice for the vectors is 
𝑢𝑢𝑚𝑚 = 𝑦𝑦𝑚𝑚  and   𝑣𝑣𝑚𝑚 = 𝑠𝑠𝑚𝑚 . This choice defines our first algorithm 
and for which a variant of the standard Secant equation is 
satisfied, namely 

Hi+1y𝑚𝑚=σi𝑠𝑠𝑚𝑚 ,    (MNEWH1) 
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for  

𝜎𝜎𝑚𝑚 =
𝑦𝑦𝑚𝑚𝑇𝑇𝐻𝐻𝑚𝑚𝑦𝑦𝑚𝑚
𝑠𝑠𝑚𝑚𝑇𝑇𝑦𝑦𝑚𝑚

. 

The other choice is inspired by the approach of Wei et al. [30]. 
Assuming that the objective function is smooth, then using the 
Taylor series for f(x) at the point 𝑥𝑥𝑚𝑚+1 gives 

𝑓𝑓(𝑥𝑥) ≅ 𝑓𝑓𝑚𝑚+1 + 𝑔𝑔𝑚𝑚+1
𝑇𝑇 (𝑥𝑥 − 𝑥𝑥𝑚𝑚+1)

+
1
2

(𝑥𝑥 − 𝑥𝑥𝑚𝑚+1)𝑇𝑇𝐺𝐺𝑚𝑚+1(𝑥𝑥 − 𝑥𝑥𝑚𝑚+1), 
where 𝐺𝐺𝑚𝑚+1 denotes the Hessian of f(x) at the point 𝑥𝑥𝑚𝑚+1. 
It follows that  

𝑓𝑓𝑚𝑚 ≅ 𝑓𝑓𝑚𝑚+1 − 𝑠𝑠𝑚𝑚𝑇𝑇𝑔𝑔𝑚𝑚+1 + 1
2
𝑠𝑠𝑚𝑚𝑇𝑇𝐺𝐺𝑚𝑚+1𝑠𝑠𝑚𝑚 . 

Thus, 
𝑠𝑠𝑚𝑚𝑇𝑇𝐵𝐵𝑚𝑚+1𝑠𝑠𝑚𝑚 = 2(𝑓𝑓𝑚𝑚 − 𝑓𝑓𝑚𝑚+1) + 𝑠𝑠𝑚𝑚𝑇𝑇(𝑔𝑔𝑚𝑚 + 𝑔𝑔𝑚𝑚+1) + 𝑠𝑠𝑚𝑚𝑇𝑇𝑦𝑦𝑚𝑚 . 

However, if the following special case Taylor series for f(x) is 
used 

𝑓𝑓𝑚𝑚(𝑥𝑥) ≅ 𝑓𝑓(𝑥𝑥) +
1
2

(𝑥𝑥 − 𝑥𝑥𝑚𝑚)𝑇𝑇𝐴𝐴𝑚𝑚(𝑥𝑥 − 𝑥𝑥𝑚𝑚), 
for 𝐴𝐴𝑚𝑚  being a symmetric positive definite matrix, and using 
the relationship obtained for 𝑠𝑠𝑚𝑚𝑇𝑇𝐵𝐵𝑚𝑚+1𝑠𝑠𝑚𝑚 , then the following 
modified version of the Secant equation is obtained 

𝐵𝐵𝑚𝑚+1𝑠𝑠𝑚𝑚 = 𝑦𝑦�𝑚𝑚 ,      (28) 
for 

𝑦𝑦�𝑚𝑚 = 𝑦𝑦𝑚𝑚 + 𝜌𝜌𝑚𝑚
‖𝑠𝑠𝑚𝑚‖2 𝑠𝑠𝑚𝑚 , 

where 𝜌𝜌𝑚𝑚 = 2(𝑓𝑓𝑚𝑚 − 𝑓𝑓𝑚𝑚+1) + (𝑔𝑔𝑚𝑚 + 𝑔𝑔𝑚𝑚+1)𝑇𝑇𝑠𝑠𝑚𝑚 . 
 
Adopting this choice in our derivation, we have from (16) and 
(28) 

Hi+1𝑦𝑦�𝑚𝑚=σi𝑠𝑠𝑚𝑚 ,  (MNEWH2) 
for the choices  𝑢𝑢𝑚𝑚 = 𝑦𝑦�𝑚𝑚  and 𝑣𝑣𝑚𝑚 = 𝑠𝑠𝑚𝑚 . 
 

The last choice is based on the modified secant equation 
derived in [14,18,19]. The methods introduced by the authors 
utilize the step vectors  𝑠𝑠𝑚𝑚  and 𝑠𝑠𝑚𝑚−1 (along with the 
corresponding 𝑦𝑦𝑚𝑚  and 𝑦𝑦𝑚𝑚−1) in the construction of a variant to 
the standard quasi-Newton methods that are based on the 
classical secant equation. The idea is that previous iteration 
data is discarded after used once and that exploiting that data 
in the construction of the Hessian (or its inverse) 
approximation at each iteration pays off, as indicated by the 
results presented for the multi-step methods. The inverse 
Hessian approximation update generally satisfies: 

𝐻𝐻𝑚𝑚+1(𝑦𝑦𝑚𝑚 − 𝜇𝜇𝑚𝑚−1𝑦𝑦𝑚𝑚−1) = 𝑠𝑠𝑚𝑚 − 𝜇𝜇𝑚𝑚−1𝑠𝑠𝑚𝑚−1  (MNEWH3) 
or 

𝑣𝑣𝑚𝑚 = 𝐻𝐻𝑚𝑚+1𝑢𝑢𝑚𝑚  
where 

𝜇𝜇𝑚𝑚−1 =
𝛿𝛿𝑚𝑚−1

2

2𝛿𝛿𝑚𝑚−1 + 1
 

and 
 

𝛿𝛿 =
‖𝑠𝑠𝑚𝑚‖
‖𝑠𝑠𝑚𝑚−1‖

. 

This expression for 𝛿𝛿 may be generalized by introducing a 
scaling factor, 𝛾𝛾 ≥ 0 (see [18]) that provides a control 
mechanism for convenient easy switching to the standard 

secant equation update method obtained by setting the scalar 𝛾𝛾 
to zero. Therefore, 

𝛿𝛿 = 𝛾𝛾
‖𝑠𝑠𝑚𝑚‖
‖𝑠𝑠𝑚𝑚−1‖

. 

 
 
 
5 Numerical Results and Conclusion 
 
For the above memoryless QN-algorithms it is necessary to 
ensure that 

 
0  vu i

T
i >     for  𝑚𝑚 ≥ 0,   (29) 

 
so that the positive definiteness of the update matrix is 
maintained to ensure that the computed search vector is 
downhill. However, condition (29) is, in practice, replaced by 
a stronger line search criteria as follows 

 
  |  | < Τ

1+ ii gsρ|gs| 1i
T

i      (30) 
and  

 

ii gs Τ
2+  < ρ  f  -  f i1i .         (31) 

 
Conditions (30) and (31) are sufficient to ensure convergence 
of any descent method [16]. Shanno used ρ1=0.1 and 
ρ2=0.0001 and to test his double update algorithms and we use 
those same choices for our methods.   
In order to assess the performance of the new algorithms 
(MNEWH1, MNEWH2, MNEWH3), those are benchmarked 
against Shanno’s memoryless QN algorithm [28]. The 
methods are tested on a collection of 30 varied dimensionality 
test problems with dimensions ranging 2 ≤ n ≤ 1000. The test 
functions can be found in [13,14,15,18]. A cubic fitting 
technique line search strategy is used for all methods. The 
algorithms terminate when the gradient vector magnitude is 
less than 10-5. All methods are restarted every n iterations or 
whenever (12) is satisfied, with 

di+1=
di

Tdi

gi+1
T gi+1

𝑑𝑑𝑚𝑚 . 

 
Performance of the algorithms is evaluated by considering 
both the total number of function evaluations (NOF) and the 
total number of iterations (NOI). The results are reported in 
Table 1.  

 
Analysis of this table shows that the three derived methods 
have a clear advantage over Shanno's method. When it comes 
to function/gradient evaluations, MNEWH3 seems to perform 
best (as it saves an overall about 28.4% in NOF). However, it 
only saves overall about 4.81% in NOI). When it comes to the 
number of iterations (NOI), MNEWH2 is the winner (as it 
saves an overall about 16.8% in NOF and saves overall about 
8.6% in NOI).  
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In conclusion, the new double update methods developed here 
are promising especially when the number of function/gradient 
evaluations is of significance. The number of extra vectors 
required is O(n). Specifically, the number of vectors required 
to keep in storage seems to be a reasonable tradeoff against the 
numerical gains incurred.  

TABLE I.  NUMERICAL COMPARISON OF THE ALGORITHMS 

function Size 
(n) 

MSHAN
O a 

MNEWH
1 a 

MNEWH
2 

MNEWH
3 

NOI(NOF) NOI(NOF) NOI(NOF) NOI(NOF) 

ROSEN 2 34(170) 31(105) 32(144) 36(141) 

CUBIC 2 19(128) 17(90) 21(111) 20(112) 

BEALE 2 10(43) 10(27) 11(39) 12(41) 

BOX 2 11(61) 11(57) 11(58) 11(57) 

FREUD 2 10(53) 10(29) 9(31) 11(29) 

BIGGS 3 12(42) 17(60) 16(51) 17(54) 

RECIPE 3 5(21) 5(19) 4(20) 5(19) 

HELICAL 3 29(127) 46(99) 33(101) 31(103) 

POWL3 3 14(48) 16(37) 15(35) 15(36) 

POWELL 4 59(277) 29(175) 31(181) 33(179) 

WOOD 4 23(83) 23(51) 23(55) 24(51) 

DIXON 10 23(69) 23(49) 23(48) 23(48) 

OREN 10 14(52) 14(60) 14(58) 16(55) 
EX-

POWELL 20 42(174) 40(109) 41(104) 39(106) 

EX-WOOD 20 25(103) 26(57) 25(66) 26(57) 
NON-
DIGN 20 27(134) 24(56) 25(78) 27(51) 

SUM-
QUAR 25 8(31) 8(38) 8(34) 9(30) 

OREN 30 25(76) 27(96) 26(80) 26(71) 

TRI-DIGN 30 31 (91) 31(64) 30(61) 31(60) 
SHALLO

W 40 8(31) 8(25) 7(23) 6(22) 

FULL 40 46(134) 46(95) 44(94) 44(91) 

OREN 50 35(115) 34 (133) 34(128) 33(111) 
EX-

ROSEN 60 29(136) 32(91) 30(95) 28(88) 

EX-WOOD 60 34(125) 33(82) 33(82) 31(78) 

WOLFE 80 49(147) 49(99) 48(101) 44(90) 
NON-
DIGN 90 27(155) 24 (58) 27(149) 22(51) 

EX-
ROSEN 100 29 (128) 30(174) 30(147) 29(111) 

EX-
POWELL 100 46(201) 41(131) 44(176) 41(119) 

EX-WOOD 100 36(140) 39(191) 37(180) 33(130) 

EXROSEN 100
0 30(127) 33(152) 34(151) 29(116) 

TOTAL      
NOI(NOF) 790(3222) 777(2491) 722(2681) 752(2307) 

a. algorithms terminate when the gradient vector magnitude is less than 10-5 
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