Inclusion Properties for a Certain Class of Analytic Function Related to Linear Operator

F. G+ \$ 1,0
University of Sharjah
Department of Mathematics
College of Sciences, Sharjah
UNITED ARAB EMIRATES
fgahmed@sharjah.ac.ae

Abstract: In this paper, we introduce a new class of analytic functions define by a new convolution operator $L_{a}^{t}(\alpha, \beta)$. The new class of analytic functions $\Sigma_{\alpha, \beta}^{a, t}(\rho ; h)$ in $U^{*}=\{z: 0<|z|<1\}$ is define by means of a hypergeometric function with an integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. The authors also introduces and investigates various properties of certain classes of meromorphically univalent functions.

Key-Words: Analytic function; Convex function; Starlike function; Prestarlike function; Meromorphic function; Hurwitz Zeta function; Linear operator; Hadamard product.

1 Introduction

A meromorphic function is a single-valued function that is analytic in all but possibly a discrete subset of its domain, and at those singularities it must go to infinit like a polynomial (i.e., these exceptional points must be poles and not essential singularities). A simpler definitio states that a meromorphic function $f(z)$ is a function of the form

$$
f(z)=\frac{g(z)}{h(z)},
$$

where $g(z)$ and $h(z)$ are entire functions with $h(z) \neq 0$ (see [1], p. 64). A meromorphic function therefore may only have finite-orde, isolated poles and zeros and no essential singularities in its domain. An equivalent definitio of a meromorphic function is a complex analytic map to the Riemann sphere. For example the Gamma function is meromorphic in the whole complex plane C (see [2], [3] and [4]).

Let A be the class of analytic functions $h(z)$ with $h(0)=1$, which are convex and univalent in the open unit disk $U=U^{*} \cup\{0\}$ and for which

$$
\begin{equation*}
\Re\{h(z)\}>0 \quad(z \in U) . \tag{1}
\end{equation*}
$$

For functions f and g analytic in U, we state that f is subordinate to g and write

$$
f \prec g \quad \text { in } \quad U \text { or } \quad f(z) \prec g(z) \quad(z \in U)
$$

if there exists an analytic function $w(z)$ in U such that $|w(z)| \leq|z|$ and $f(z)=g(w(z)), \quad(z \in U)$.

Furthermore, if the function g is univalent in U, then
$f(z) \prec g(z) \Leftrightarrow f(0)=g(0)$ and $f(U)=g(U)$, $(z \in U)$.

In the present paper, we initiate the study of functions which are meromorphic in the punctured disk $U^{*}=\{z: 0<|z|<1\}$ with a Laurent expansion about the origin, see [5]. Also, we shall use the operator $L_{a}^{t}(\alpha, \beta) f(z)$ to introduce some new classes of meromorphic functions. We also, introduce and investigate various inclusion relationships and convolution properties of a certain class of meromorphic functions, which are define in this paper by means of a linear operator.

2 Preliminaries

Let Σ denote the class of meromorphic functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, \tag{2}
\end{equation*}
$$

which are analytic in the punctured unit disk

$$
U^{*}=\{z: z \in C \quad \text { and } \quad 0<|z|<1\} U \backslash\{0\},
$$

C being (as usual) the set of complex numbers. We denote by $\Sigma S^{*}(\beta)$ and $\Sigma K(\beta)(\beta \geq 0)$ the subclasses of Σ consisting of all meromorphic functions which are, respectively, starlike of order β and convex of or$\operatorname{der} \beta$ in U^{*} (see also the recent works [6] and [7]).

For functions $f_{j}(z)(j=1,2)$ define by

$$
f_{j}(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n, j} z^{n} \quad(j=1,2)
$$

we denote the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ by

$$
\left(f_{1} * f_{2}\right)(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n, 1} a_{n, 2} z^{n}
$$

Let us consider the function $\widetilde{\phi}(\alpha, \beta ; z)$ define by

$$
\begin{gathered}
\widetilde{\phi}(\alpha, \beta ; z)=\frac{1}{z}+\sum_{n=0}^{\infty} \frac{(\alpha)_{n+1}}{(\beta)_{n+1}} a_{n} z^{n} \\
\left(\beta \in C \backslash Z_{0}^{-} ; \alpha \in C\right),
\end{gathered}
$$

where

$$
Z_{0}^{-}=\{0,-1,-2, \cdots\}=Z^{-} \cup\{0\}
$$

Here, and in the remainder of this paper, $(\lambda)_{\kappa}$ denotes the general Pochhammer symbol defined in terms of the Gamma function, by

$$
\begin{gathered}
(\lambda)_{\kappa}:=\frac{\Gamma(\lambda+\kappa)}{\Gamma(\lambda)} \\
= \begin{cases}1 & (\kappa=; \lambda \in C \backslash\{0\}) \\
\lambda(\lambda+1)(\lambda+n-1) & (\kappa=n \in N ; \lambda \in C)\end{cases}
\end{gathered}
$$

it being understood conventionally that $(0)_{0}:=1$ and assumed tacitly that the Γ-quotient exists (see, for details, [8, p. 21 et seq.]), N being the set of positive integers.

We recall here a general Hurwitz-Lerch-Zeta function, which is define in [[9], [10]] by the following series:

$$
\begin{equation*}
\Phi(z, t, a)=\frac{1}{a^{t}}+\sum_{n=1}^{\infty} \frac{z^{n}}{(n+a)^{t}} \tag{3}
\end{equation*}
$$

$\left(a \in C \backslash Z_{0}^{-}, Z_{0}^{-}=\{0,-1,-2, \ldots\} ; t \in C\right.$ when $z \in U=U^{*} \cup\{0\} ; \Re(t)>1$ when $\left.z \in \partial U\right)$

Important special cases of the function $\Phi(z, t, a)$ include, for example, the Reimann zeta function $\zeta(t)=\Phi(1, t, 1)$, the Hurwitz zeta function $\zeta(t, a)=\Phi(1, t, a)$, the Lerch zeta function $l_{t}(\zeta)=$
$\Phi\left(\exp ^{2 \pi i \xi}, t, 1\right),(\xi \in \mathbf{R}, \Re(t)>1)$, the polylogarithm $L_{t}^{i}(z)=z \Phi(z, t, a)$ and so on. Recent results on $\Phi(z, t, a)$, can be found in the expositions [[11], [12]]. By making use of the following normalized function we define

$$
\begin{align*}
G_{t, a}(z)= & (1+a)^{t}\left[\Phi(z, t, a)-a^{t}+\frac{1}{z(1+a)^{t}}\right] \\
& =\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{1+a}{n+a}\right)^{t} z^{n} \tag{4}
\end{align*}
$$

$\left(z \in U^{*}\right)$.
Using the functions $G_{t, a}(z)$ with the Hadamard product for $f(z) \in \Sigma$, a new linear operator $L_{t, a}(\alpha, \beta)$ on Σ will be defin by the following series::

$$
L_{a}^{t}(\alpha, \beta) f(z)=\phi(\alpha, \beta ; z) * G_{t, a}(z)=
$$

$$
\begin{equation*}
\frac{1}{z}+\sum_{n=1}^{\infty} \frac{(\alpha)_{n+1}}{(\beta)_{n+1}}\left(\frac{1+a}{n+a}\right)^{t} a_{n} z^{n} \tag{5}
\end{equation*}
$$

$\left(z \in U^{*}\right)$.
Many papers considered the above operator along with the meromorphic functions and generalized hypergeometric functions, see for example [[6], [13], [14], [15],[16], and [17]].

It follows from (5) that

$$
\begin{gather*}
z\left(L_{a}^{t}(\alpha, \beta) f(z)\right)^{\prime}= \\
\alpha\left(L_{a}^{t}(\alpha+1, \beta) f(z)\right)-(\alpha+1) L_{a}^{t}(\alpha, \beta) f(z) \tag{6}
\end{gather*}
$$

Let Ω represent the class of analytic functions $h(z)$ with $h(0)=1$, which are convex and univalent in the open unit disk $U=U^{*} \cup\{0\}$.

Definition 1 A function $f \in \Sigma$ is said to be in the class $\Sigma_{\alpha, \beta}^{a, t}(\rho ; h)$, if it satisfies the subordination condition

$$
\begin{gather*}
(1+\rho) z\left(L_{a}^{t}(\alpha, \beta) f(z)\right)+\rho z^{2}\left(L_{a}^{t}(\alpha, \beta) f(z)\right)^{\prime} \\
\prec h(z) \tag{7}
\end{gather*}
$$

where ρ is a complex number and $h(z) \in \Omega$.

Let A be class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{8}
\end{equation*}
$$

which are analytic in U. A function $h(z) \in A$ is said to be in the class $S^{*}(\gamma)$, if

$$
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\gamma \quad(z \in U)
$$

For some $\gamma(\gamma<1)$. When $0<\gamma<1, S^{*}(\gamma)$ is the class of starlike functions of order γ in U. A function $h(z) \in A$ is said to be prestarlike of order γ in U, if

$$
\frac{z}{(1-z)^{2(1-\gamma)}} * f(z) \in S^{*}(\gamma) \quad(\gamma<1)
$$

where the symbol $*$ is used to refer to the familiar Hadamard product (or convolution) of two analytic functions in U. We denote this class by $R(\gamma)$. A function $f(z) \in A$ is in the class $R(0)$, if and only if $f(z)$ is convex univalent in U and

$$
R\left(\frac{1}{2}\right)=S^{*}\left(\frac{1}{2}\right)
$$

3 Main results

In order to establish our main results, the following lemmas will be required:

Lemma 2 (See [18]) Let $g(z)$ be analytic in U, and $h(z)$ be analytic and convex univalent in U with $h(0)=g(0) . I f$,

$$
\begin{equation*}
g(z)+\frac{1}{\mu} z g^{\prime}(z) \prec h(z) \tag{9}
\end{equation*}
$$

where $\Re \mu \geq 0$ and $\mu \neq 0$, then

$$
g(z) \prec \widetilde{h}(z)=\mu z^{-\mu} \int_{0}^{z} t^{\mu-1} h(t) d t \prec h(z)
$$

and $\widetilde{h}(z)$ is the best dominant of (9).
Lemma 3 [19] Let $\Re \alpha \geq 0$ and $\alpha \neq 0$. Then,

$$
\Sigma_{\alpha, \beta}^{a, t}(\rho ; h) \subset \Sigma_{\alpha, \beta}^{a, t}(\rho ; \widetilde{h}),
$$

where

$$
\widetilde{h}(z)=\alpha z^{-\alpha} \int_{0}^{z} t^{\alpha-1} h(t) d t \prec h(z) .
$$

Lemma 4 [19] Let $f(z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; h), g(z) \in \Sigma$ and

$$
\Re(z g(z))>\frac{1}{2} \quad(z \in U)
$$

Then,

$$
(f * g)(z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; h)
$$

Lemma 5 (See [19]) Let $a<1, f(z) \in S^{*}(a)$ and $g(z) \in R(a)$. For any analytic function $F(z)$ in U, then

$$
\frac{g *(f F)}{g * f}(U) \subset \overline{c o}(F(U)),
$$

where $\overline{c o}(F(U))$ denotes the convex hull of $F(U)$.
Theorem 6 Let $f(z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; h)$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{\mu-1}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t \quad(\Re \mu>1) \tag{10}
\end{equation*}
$$

is in the class $\Sigma_{\alpha, \beta}^{a, t}(\rho ; \widetilde{h})$, where

$$
\widetilde{h}(z)=(\mu-1) z^{1-\mu} \int_{0}^{z} t^{\mu-2} h(t) d t \prec h(z)
$$

Proof: For $f(z) \in \Sigma$ and $\Re \mu>1$, we fin from (10) that $F(z) \in \Sigma$ and

$$
\begin{equation*}
(\mu-1) f(z)=\mu F(z)+z F^{\prime}(z) \tag{11}
\end{equation*}
$$

$F(z) \in \Sigma$.
Defin $G(z)$ by

$$
z G(z)=(1+\rho) z\left(L_{a}^{t}(\alpha, \beta) F(z)\right)
$$

$$
\begin{equation*}
+\rho z\left(L_{a}^{t}(\alpha, \beta) F(z)\right)^{\prime} . \tag{12}
\end{equation*}
$$

By differentiating both sides of (12) with respect to z, we get:

$$
z G^{\prime}(z)-G(z)=(1+\rho) z\left(L_{a}^{t}(\alpha, \beta)\left(z F^{\prime}(z)\right)\right)
$$

$$
\begin{equation*}
+\rho z^{2}\left(L_{a}^{t}(\alpha, \beta)\left(z F^{\prime}(z)\right)\right)^{\prime} . \tag{13}
\end{equation*}
$$

Furthermore, it follows from (11), (12) and (13) that:

$$
(1+\rho) z\left(L_{a}^{t}(\alpha, \beta) f(z)\right)+\rho z^{2}\left(L_{a}^{t}(\alpha, \beta) f(z)\right)^{\prime}
$$

$$
\begin{gather*}
=(1+\rho) z\left(L_{a}^{t}(\alpha, \beta)\left(\frac{\mu F(z)+z F^{\prime}(z)}{\mu-1}\right)\right) \\
+\rho z^{2}\left(L_{a}^{t}(\alpha, \beta)\left(\frac{\mu F(z)+z F^{\prime}(z)}{\mu-1}\right)\right)^{\prime} \\
=\frac{\mu}{\mu-1} G(z)+\frac{1}{\mu-1}\left(z G^{\prime}(z)-G(z)\right) \\
=G(z)+\frac{z G^{\prime}(z)}{\mu-1} \tag{14}
\end{gather*}
$$

Let $f(z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; h)$. Then, by (14)

$$
G(z)+\frac{z G^{\prime}(z)}{\mu-1} \prec h(z) \quad(\Re \mu>1)
$$

aby using Lemma 2, we get

$$
\begin{aligned}
G(z) \prec \widetilde{h}(z)= & (\mu-1) z^{1-\mu} \int_{0}^{z} t^{\mu-2} h(t) d t \\
& \prec h(z) .
\end{aligned}
$$

Hence, by Lemma 3, we arrive at:

$$
F(z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; \widetilde{h}) \subset \Sigma_{\alpha, \beta}^{a, t}(\rho ; h)
$$

Theorem 7 Let $f(z) \in \Sigma$ and $F(z)$ be defined as in Theorem 6. If

$$
\begin{align*}
(1+\gamma) z\left(L_{a}^{t}\right. & (\alpha, \beta) F(z))+\gamma z\left(L_{a}^{t}(\alpha, \beta) f(z)\right) \\
& \prec h(z) \quad(\gamma>0) \tag{15}
\end{align*}
$$

then $F(z) \in \Sigma_{\alpha, \beta}^{a, t}(0, \widetilde{h})$, where $\Re \mu>1$ and
$\widetilde{h}(z)=\frac{(\mu-1)}{\gamma} z^{\frac{1-\mu}{\gamma}} \int_{0}^{z} t^{\frac{\mu-1}{\gamma}-1} h(t) d t \prec h(z)$.
Proof: Let us define

$$
\begin{equation*}
G(z)=z\left(L_{a}^{t}(\alpha, \beta) F(z)\right) \tag{16}
\end{equation*}
$$

Then the analytic function $G(z)$ in the unit disk U, with $G(0)=1$, and

$$
\begin{equation*}
z G^{\prime}(z)=G(z)+z^{2}\left(L_{a}^{t}(\alpha, \beta) F(z)\right)^{\prime} \tag{17}
\end{equation*}
$$

Making use of (11), (15), (16) and (17), we deduce that:
$(1+\gamma) z\left(L_{a}^{t}(\alpha, \beta) F(z)\right)+\gamma z\left(L_{a}^{t}(\alpha, \beta) f(z)\right)$

$$
\begin{gathered}
=(1+\gamma) z\left(L_{a}^{t}(\alpha, \beta) F(z)\right)+ \\
\frac{\gamma}{\mu-1}\left(\mu z L_{a}^{t}(\alpha, \beta) F(z)\right)+z^{2}\left(L_{a}^{t}(\alpha, \beta) F(z)\right)^{\prime} \\
=G(z)+\frac{1}{\mu-1} z G^{\prime}(z) \prec h(z)
\end{gathered}
$$

for $\Re \mu>1$ and $\gamma>0$.
Thus, an application of Lemma 2 evidently completes the proof of Theorem 7.

Theorem 8 Let $F(z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; h)$. If the function $f(z)$ is defined by

$$
\begin{equation*}
F(z)=\frac{\mu-1}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t \quad(\mu>1) \tag{18}
\end{equation*}
$$

then,

$$
\sigma f(\sigma z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; h)
$$

where

$$
\begin{equation*}
\sigma=\sigma(\mu)=\frac{\sqrt{\mu^{2}-2(\mu-1)}-1}{(\mu-1)} \in(0,1) \tag{19}
\end{equation*}
$$

The bound σ is sharp when

$$
\begin{equation*}
h(z)=\delta+(1-\delta) \frac{1+z}{1-z} \quad(\delta \neq 1) \tag{20}
\end{equation*}
$$

Proof: For $F(z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; h)$, wecan verify that:

$$
\begin{aligned}
& F(z)=F(z) * \frac{z}{1-z} \text { and } z F^{\prime}(z)= \\
& F(z) *\left(\frac{1}{z(1-z)^{2}}-\frac{2}{z(1-z)}\right)
\end{aligned}
$$

Hence, by (18), we have:

$$
\begin{equation*}
f(z)=\frac{\mu F(z)+z F^{\prime}(z)}{\mu-1}=(F * g)(z) \tag{21}
\end{equation*}
$$

$\left(z \in U^{*}, \mu>1\right)$, where $g(z)=$

$$
\begin{equation*}
\frac{1}{\mu-1}\left(\frac{1}{(1-z)^{2}}+(\mu-2) \frac{1}{z(1-z)}\right) \in \Sigma \tag{22}
\end{equation*}
$$

We then show that:

$$
\begin{equation*}
\Re\{z g(z)\}>\frac{1}{2} \quad(|z|<\sigma) \tag{23}
\end{equation*}
$$

where $\sigma=\sigma(\mu)$ is given by (19). Setting

$$
\frac{1}{1-z}=\operatorname{Re}^{i \theta} \quad(R>0,|z|=r<1)
$$

we fin that:

$$
\begin{equation*}
\cos \theta=\frac{1+R^{2}\left(1-r^{2}\right)}{2 R} \text { and } R \geq \frac{1}{1+r} \tag{24}
\end{equation*}
$$

For $\mu>1$ it follows from (29) and (32) that:

$$
\begin{gathered}
2 \Re\{z g(z)\}= \\
\frac{2}{\mu-1}\left[(\mu-2) R \cos \theta+R^{2}\left(2 \cos ^{2} \theta-1\right)\right] \\
=\frac{1}{\mu-1}\left[(\mu-2)\left(1+R^{2}\left(1-r^{2}\right)\right)+\right. \\
\left.\left(1+R^{2}\left(1-r^{2}\right)\right)^{2}-2 R^{2}\right]= \\
\frac{R^{2}}{\mu-1}\left[R^{2}\left(1-r^{2}\right)^{2}+\mu\left(1-r^{2}\right)-2\right]+1 \geq \\
\frac{R^{2}}{\mu-1}\left[\left(1-r^{2}\right)^{2}+\mu\left(1-r^{2}\right)-2\right]+1= \\
\frac{R^{2}}{\mu-1}\left[(1-\mu) r^{2}+\mu-2 r-1\right]+1 .
\end{gathered}
$$

This evidently gives (31), which is equivalent to

$$
\begin{equation*}
\Re\{z \sigma g(\sigma z)\}>\frac{1}{2} \quad(z \in U) . \tag{25}
\end{equation*}
$$

Let $F(z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; h)$. Then, by using (28) and (33), an application of Lemma 4 yields:

$$
\sigma f(\sigma z)=F(z) * \sigma g(\sigma z) \in \Sigma_{\alpha, \beta}^{a, t}(\rho ; h) .
$$

For $h(z)$ given by (27). we consider the function $F(z) \in \Sigma$ define by:

$$
\begin{gather*}
(1+\lambda) z\left(L_{a}^{t}(\alpha, \beta) F(z)\right)+ \\
\lambda z^{2}\left(L_{a}^{t}(\alpha, \beta) F(z)\right)^{\prime}=\delta+(1-\delta) \frac{1+z}{1-z} \tag{26}
\end{gather*}
$$

$(\delta \neq 1)$. Then, by (34), (12) and (14) (used in the proof of Theorem thm1), we fin that:

$$
\begin{aligned}
& (1+\rho) z\left(L_{a}^{t}(\alpha, \beta) f(z)\right)+\rho z^{2}\left(L_{a}^{t}(\alpha, \beta) f(z)\right)^{\prime}= \\
& \delta+(1-\delta) \frac{1+z}{1-z}+\frac{z}{\mu-1}\left(\delta+(1-\delta) \frac{1+z}{1-z}\right)^{\prime}= \\
& \quad \delta+\frac{(1-\delta)\left(\mu+2 z-1+(1-\mu) z^{2}\right)}{(\mu-1)(1-z)^{2}}=\delta \\
& (\sigma=-z) .
\end{aligned}
$$

Therefore, we conclude that the bound $\sigma=\sigma(\mu)$ cannot be increased for each $\mu(\mu>1)$.

4 Inclusion relations

Theorem 9 Let $0 \leq \rho_{1}<\rho_{2}$. Then

$$
\Sigma_{\alpha, \beta}^{a, t}\left(\rho_{2} ; h\right) \subset \Sigma_{\alpha, \beta}^{a, t}\left(\rho_{1} ; h\right)
$$

Proof: Let $0 \leq \rho_{1}<\rho_{2}$ and suppose that:

$$
\begin{equation*}
g(z)=z\left(L_{a}^{t}(\alpha, \beta) f(z)\right) \tag{27}
\end{equation*}
$$

for $f(z) \in \Sigma_{\alpha, \beta}^{a, t}\left(\rho_{2} ; h\right)$. Then the function $g(z)$ is analytic in U with $g(0)=1$. Differentiating both sides of (27) with respect to z and using (6), we have:

$$
\begin{gather*}
\left(1+\rho_{2}\right) z\left(L_{a}^{t}(\alpha, \beta) f(z)\right)+\rho_{2} z^{2}\left(L_{a}^{t}(\alpha, \beta) f(z)\right)^{\prime} \\
 \tag{28}\\
=g(z)+\rho_{2} z g^{\prime}(z) \prec h(z) .
\end{gather*}
$$

Hence an application of Lemma 2 with $m=\frac{1}{\rho_{2}}>0$ yields:

$$
\begin{equation*}
g(z) \prec h(z) . \tag{29}
\end{equation*}
$$

Noting that $0 \leq \frac{\rho_{1}}{\rho_{2}}<1$ and that $h(z)$ is convex univalent in U, it follows from (27), (28 and (29) that:

$$
\begin{gathered}
\left(1+\rho_{1}\right) z\left(L_{a}^{t}(\alpha, \beta) f(z)\right)+\rho_{1} z^{2}\left(L_{a}^{t}(\alpha, \beta) f(z)\right)^{\prime} \\
=\frac{\rho_{1}}{\rho_{2}}\left[\left(1+\rho_{2}\right) z\left(L_{a}^{t}(\alpha, \beta) f(z)\right)\right. \\
\left.+\rho_{2} z^{2}\left(L_{a}^{t}(\alpha, \beta) f(z)\right)^{\prime}\right]+\left(1-\frac{\rho_{1}}{\rho_{2}}\right) g(z) \\
\prec h(z) .
\end{gathered}
$$

Thus, $f(z) \in \Sigma_{\alpha, \beta}^{a, t}\left(\rho_{1} ; h\right)$ and the proof of Theorem 9 is complete.

Theorem 10 Let,

$$
\begin{gather*}
\Re\left\{z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)\right\}>\frac{1}{2} \tag{30}\\
\left(z \in U ; \alpha_{2} \notin\{0,-1,-2, \ldots\}\right)
\end{gather*}
$$

where $\widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)$ is defined as in (??). Then,

$$
\Sigma_{\alpha_{2}, \beta}^{a, t}(\rho ; h) \subset \Sigma_{\alpha_{1}, \beta}^{a, t}\left(\rho_{1} ; h\right)
$$

Proof:

For $f(z) \in \Sigma$, we can verify that:

$$
\begin{gather*}
z\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right) \\
=\left(z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right) *\left(z L_{a}^{t}\left(\alpha_{2}, \beta\right) f(z)\right)\right) \tag{31}
\end{gather*}
$$

and

$$
\begin{gather*}
z^{2}\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right)^{\prime} \\
=\left(z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right) * z^{2}\left(L_{a}^{t}\left(\alpha_{2}, \beta\right) f(z)\right)^{\prime}\right) . \tag{32}
\end{gather*}
$$

Let $f(z) \in \Sigma_{\alpha_{2}, \beta}^{a, t}(\rho ; h)$. Then from (31) and (32), we deduce that:

$$
\begin{gather*}
(1+\rho) z\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right)+\rho z^{2}\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right)^{\prime} \\
\quad=\left(z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)\right) * \Psi(z) \tag{33}
\end{gather*}
$$

and

$$
\begin{align*}
& \Psi(z)=(1+\rho) z\left(L_{a}^{t}\left(\alpha_{2}, \beta\right) f(z)\right) \\
& +\rho z^{2}\left(L_{a}^{t}\left(\alpha_{2}, \beta\right) f(z)\right)^{\prime} \prec h(z) \tag{34}
\end{align*}
$$

In view of (30), the function $z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)$ has the Herglotz representation:

$$
\begin{equation*}
z \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)=\int_{|x|=1} \frac{d m(x)}{1-x z} \quad(z \in U) \tag{35}
\end{equation*}
$$

where $m(x)$ is a probability measure define on the unit circle $|x|=1$ and

$$
\int_{|x|=1} d m(x)=1 .
$$

Since $h(z)$ is convex univalent in U, it follows from (33), (34) and (35) that:

$$
\begin{aligned}
(1+\rho) & z\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right)+\rho z^{2}\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right)^{\prime} \\
& =\int_{|x|=1} \Psi(x z) d m(x) \prec h(z)
\end{aligned}
$$

This shows that $f(z) \in \Sigma_{\alpha_{1}, \beta}^{a, t}(\rho ; h)$ and the theorem is proved.

Theorem 11 Let $0<\alpha_{1}<\alpha_{2}$. Then

$$
\Sigma_{\alpha_{2}, \beta}^{a, t}(\rho ; h) \subset \Sigma_{\alpha_{1}, \beta}^{a, t}(\rho ; h)
$$

Proof: Define

$$
\begin{aligned}
g(z) & =z+\sum_{n=1}^{\infty}\left|\frac{\left(\alpha_{1}\right)_{n+1}}{\left(\alpha_{2}\right)_{n+1}}\right| z^{n+1} \\
& \left(z \in U ; \quad 0<\alpha_{1}<\alpha_{2}\right) .
\end{aligned}
$$

Then,

$$
\begin{equation*}
z^{2} \widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)=g(z) \in A \tag{36}
\end{equation*}
$$

where $\widetilde{\phi}\left(\alpha_{1}, \alpha_{2} ; z\right)$ is define as in (??), and

$$
\begin{equation*}
\frac{z}{(1-z)^{\alpha_{2}}} * g(z)=\frac{z}{(1-z)^{\alpha_{1}}} . \tag{37}
\end{equation*}
$$

By (37), we see that:
$\frac{z}{(1-z)^{\alpha_{2}}} * g(z) \in S^{*}\left(1-\frac{\alpha_{1}}{2}\right) \subset S^{*}\left(1-\frac{\alpha_{2}}{2}\right)$
for $0<\alpha_{1}<\alpha_{2}$, which implies that:

$$
\begin{equation*}
g(z) \in R\left(1-\frac{\alpha_{2}}{2}\right) \tag{38}
\end{equation*}
$$

Let $f(z) \in \Sigma_{\alpha_{2}, \beta}^{a, t}(\rho ; h)$. Then we deduce from (33), (34) and (36) that:

$$
\begin{align*}
(1+\rho) & z\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right)+\rho z^{2}\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right)^{\prime} \\
& =\frac{g(z)}{z} * \Psi(z)=\frac{g(z) *(z \Psi(z))}{g(z) * z} \tag{39}
\end{align*}
$$

where

$$
\begin{align*}
& \Psi(z)=(1+\rho) z\left(L_{a}^{t}\left(\alpha_{2}, \beta\right) f(z)\right) \\
& +\rho z^{2}\left(L_{a}^{t}\left(\alpha_{2}, \beta\right) f(z)\right)^{\prime} \prec h(z) \tag{40}
\end{align*}
$$

Since z belongs to $S^{*}\left(1-\frac{\alpha_{2}}{2}\right)$ and $h(z)$ is convex univalent in U, it follows from (38), (39), (40) and Lemma 5 that:

$$
\begin{aligned}
& \quad(1+\rho) z\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right) \\
& +\rho z^{2}\left(L_{a}^{t}\left(\alpha_{1}, \beta\right) f(z)\right)^{\prime} \prec h(z)
\end{aligned}
$$

Thus $f(z) \in \Sigma_{\alpha_{1}, \beta}^{a, t}(\rho ; h)$ and the proof is completed.

References:

[1] S. G. Krantz, Meromorphic functions and singularities at infinit, Handbook of Complex Variables. , Boston, MA: Birkhuser (1999),pp. 6368.
[2] F. Ghanim, Properties for Classes of Analytic Function Related to Integral Operator, WSEAS TRANSACTIONS on MATHEMATICS 13 (2014),Art. 46, 477-483.
[3] F. Ghanim, Some Properties on a Certain Class of Hurwitz Zeta function Related To linear operator,16th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS '14). 2014, 35-39.
[4] F. Ghanim, A study of a certain subclass of Hurwitz-Lerch-Zeta function related to a linear operator, Abstract and Applied Analysis, Online article (2013), http://www.hindawi.com /journals/aaa/2013/763756/abs/.
[5] A. W. Goodman, Functions typically-real and meromorphic in the unit circle, Trans. Amer. Math. Soc. 81 (1956), 92-105.
[6] H. M. Srivastava, S. Gaboury and F. Ghanim, Certain subclasses of meromorphically univalent functions define by a linear operator associated with the λ-generalized Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct. (Accepted).
[7] H. M. Srivastava, S. Gaboury and F. Ghanim, A unifie class of analytic functions involving a generalization of the Srivastava-Attiya operator, Applied Mathematics and Computation (Accepted).
[8] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwoord Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
[9] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms and Special Functions, 18(3), (2007), 207-216.
[10] H. M. Srivastava and J. Choi, Series associated with the Zeta and related functions, Kluwer Academic Publishers, (2001).
[11] H. M. Srivastava, D. Jankov, T. K. Pogany, and R. K. Saxena, Two-sided inequalities for the extended Hurwitz-Lerch Zeta function, Computers and Mathematics with Applications, 62 (1), (2011), 516-522.
[12] H. M. Srivastava, R. K. Saxena, T. K. Pogany, and R. Saxena, Integral transforms and special functions, Appl. Math. Comput., 22 (7), (2011), 487-506.
[13] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (1) (2003), 7-18.
[14] F. Ghanim and M. Darus,, New Subclass of Multivalent Hypergeometric Meromorphic Functions, , International J. of Pure and Appl. Math., 61 (3) (2010), 269-280.
[15] F. Ghanim and M. Darus, New result of analytic functions related to Hurwitz-Zeta function, The Scientific World Journal, vol. 2013, Article ID 475643, 5 pages, 2013. doi:10.1155/2013/475643.
[16] J. L. Liu and H. M. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput., 159, (2004), 485-493.
[17] J. L. Liu and H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function , Math. Comput. Modelling, 39 (1) (2004),21-34.
[18] S.S. Miller, P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math.J., 28(1981), 157-171.
[19] St. Ruscheweyh, Convolutions in Geometric Function Theory, Sem. Math. Sup. 83, Presses Univ. Montreal 1982.

