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Abstract: We present two general sequences of positive linear operators. The first is introduced by using a class of
dependent random variables, and the second is a mixture between two linear operators of discrete type. Our goal is
to study their statistical convergence to the approximated function. This type of convergence can replace classical
results provided by Bohman-Korovkin theorem. A particular case is delivered.
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1 Introduction
Since the fifties, positive linear operators (PLOs) play
an important role in approximating a real valued func-
tion. Korovkin-type theorems furnish useful tools
in order to establish whether a sequence of PLOs is
an approximation process this meaning that it con-
verges strongly to the identity operator. The genuine
Bohman-Korovkin’s theorem asserts: if the positive
linear operators Ln, n ∈ N, map C([a, b]) into it-
self such that (Lnek)n≥1 converges to ek uniformly
on [a, b], k ∈ {0, 1, 2}, for the test functions

e0(x) = 1, e1(x) = x, e2(x) = x2,

then (Lnf)n≥1 converges to f uniformly on [a, b] for
each f ∈ C([a, b]). Here C([a, b]) is the space of all
real-valued and continuous functions defined on the
interval [a, b].

Lately, new research directions targeting this area
have been developed. One of them is given by re-
placing the uniform convergence by statistical conver-
gence. The remembering of this concept will be made
in the next section.

In this note we focus on the presentation of some
linear positive processes and on their study in terms of
statistical convergence.

2 Preliminaries
Following H. Fast [4], a sequence of real numbers
(xn)n≥1 is said to be statistical convergent to a real

number L, if, for every ε > 0,

δ({n ∈ N : |xn − L| ≥ ε}) = 0,

where

δ(S) = lim
N→∞

1

N

N∑
j=1

χS(j)

is the density of the set S ⊆ N and χS stands for
the characteristic function on S. For δ(S) also uses
the term asymptotic density. We use the notation st−
lim
n→∞

xn = L.
The following characterization of statistical con-

vergence (cf. [6, Lemma 1.1]) takes place. A se-
quence of real numbers (xn)n≥1 converges statisti-
cally to L ∈ R if and only if there is a set of indices
M = {nj : nj < nj+1, j ∈ N} ⊂ N with the
property

δ(M) = 1 and lim
j→∞

xnj = L.

The main idea of statistical convergence of a sequence
is that the majority, in a certain sense, of its elements
converges and we are not interested in what happens
to the remaining elements. Actually, the sequences
that come from the real life sources are not conver-
gent in the strictly mathematical sense. The advantage
of replacing the uniform convergence by statistical
convergence consists in the fact that the second con-
vergence is efficient in summing divergent sequences
which may have unbounded subsequences.
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In Approximation Theory by linear positive oper-
ators, the statistical convergence has been examined
for the first time in 2002 by A.D. Gadjiev and Ci-
han Orhan. Bohman-Korovkin criterion via statistical
convergence will be read as follows.

Theorem 1 ([5, Theorem 1]). If the sequence of pos-
itive linear operators Ln : C([a, b]) → B([a, b]) sat-
isfies the conditions

st− lim
n→∞

‖Lnej − ej‖ = 0, j ∈ {0, 1, 2},

then, for any function f ∈ C([a, b]), we have

st− lim
n→∞

‖Lnf − f‖ = 0.

In the above B([a, b]) stands for the real val-
ued functions bounded on the domain [a, b]. We get
C([a, b]) ≤ B([a, b]) and B([a, b]) is endowed with
the uniform norm (or the sup-norm) ‖ · ‖, where

‖f‖ = sup
f∈B([a,b])

|f(x)|.

3 Two classes of operators
We follows closely the construction of the operators
given at [2]. Let J be given interval of the real line.
Since an affine substitution maps (a, b), −∞ ≤ a <
b ≤ ∞, onto (0, 1), R∗+ = (0,∞) or R, it is enough
to consider these intervals as being int(J).

Let In, n ∈ N, be the sets of indices such that
In ⊂ In+1 holds. We consider two variants. In is
finite, thus a model can be chosen {0, 1, . . . , sn} or
{−sn, . . . , 0, . . . , sn}. In is infinite, thus our model
can be considered N0 = {0}∪N or Z. For each integer
n ≥ 1 we consider a net on J namely (kn−β)k∈In ,
where β > 0 is a fixed number.

We start from a sequence (Ln)n≥1 of linear posi-
tive operators of discrete type given by the formula

(Lnf)(x) =
∑
k∈In

an,k(x)f

(
k

nβ

)
, x ∈ J, (1)

where an,k ∈ C(J) and an,k ≥ 0 for every (n, k)
belonging to N × In. Here F belongs to a vectorial
subspace of RJ such that the operators Ln, n ≥ 1, are
well defined. Regarding the above operators we re-
quire the following conditions to be fulfilled for each
n ∈ N

Lne0 = e0, Lne1 = e1, (2)

Lne2 = e2 + ϕn, (3)

where ϕn ∈ C(J). Operators satisfying relations (2)
are called of Markov type. Further on, let X be a non

constant real random variable on a probability space
(Ω,F , P ). Denoting by ψ its probability density func-
tion, we assume that ψ ∈ L2(R) and ψ has a compact
support included in J . This implies ψ ∈ L1(R). Also,
ψ being a density function, one has ψ ≥ 0 and

‖ψ‖1 =

∫
R
ψ(t)dt = 1.

We set

E(X) = e, V ar(X) = σ2,

the expectation and the variance of X , respectively.
Starting from X we generate the random variables
Xn,k defined by

Xn,k =
1

nβ
(X + k − e), (n, k) ∈ N× In. (4)

SinceX is non-constant, by examining (4) we de-
duce that for any (k1, k2) ∈ In × In, the variables
Xn,k1 , Xn,k2 are not independent. All these variables
represent scaled versions of the same variableX , they
being obtained from it by contractions (n−β, n ∈ N)
and by translations ((k − e)n−β, k ∈ In).

We get

E(Xn,k) =
k

nβ
and V ar(X) =

σ2

n2β
. (5)

The expectations of Xn,k, k ∈ In, represent exactly
the mesh of Ln operator.

Letting

S :={f :R→R, E(|f◦Xn,k|)<∞,∀(n, k)∈N×In},

we introduce the operators Λn : S → C(J), n ∈ N,
as follows

Λnf =
∑
k∈In

an,kE(f◦Xn,k) =
∑
k∈In

an,k

∫
Ω
f◦Xn,kdP,

this meaning

(Λnf)(x) = nβ
∑
k∈In

an,k(x)

∫
R
f(t)ψ(nβt−k+e)dt,

(6)
x ∈ J.

It is easy to see that Λn operators are linear and
positive.

To present the next class of operators we return
to relation (1). The operators Ln, n ≥ 1, are fully
determined if we specify the interval J , the set of in-
dices In, the system of nodes considered and the func-
tions an,k, (n, k) ∈ N × In. This time we consider a
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completely arbitrary network nodes (xn,k). Also, in
relation (3) we assume that

ϕn(x) =
θn(x)

u(n)
, θn ∈ C(J)

and
u(n) = O(nα), n→∞,

for some constant α > 0. In short this information
will be write as follows

Ln : 〈J, In, xn,k, an,k, θn, u〉, (n, k) ∈ N× In.
Let be two sequences of this type, namely

L(1)
n : 〈[0, 1], In, xn,k, a

(1)
n,k, θ1,n, u1〉, (n, k) ∈ N×In,

L(2)
n : 〈[0,∞), Jn, xn,k, a

(2)
n,k, θ2,n, u2〉, (n, k)∈N×Jn,

such that 0 ∈ In ∩ Jn and xn,0 = 0. Regarding
these sequences we impose the following admissible
condition to be satisfied: for any n ∈ N, a function
θ̃n ∈ C([0,∞)) exists such that

xn,pθ2,p(x) = u2(p)
θ̃n(x)

u1(n)
, p ∈ In, x ≥ 0. (7)

If this condition is fulfilled then the pair (L
(1)
n , L

(2)
n )

forms a compatible couple of approximation pro-
cesses, see [1].

Finally we consider a function λ ∈ C([0,∞))
such that 0 ≤ λ(x) ≤ 1 for every x ≥ 0. The an-
nounced sequence of operators are defined as follows

(Ln,λf)(x) =
∑
p∈In

∑
k∈Jp

a(1)
n,p(λ(x))a

(2)
p,k(x)

× f(xn,pxp,k + (1− xn,p)x), (8)

x ≥ 0, where f belongs to a space such that the oper-
ators are well defined.

A particular case can be obtained by choosing
L

(1)
n ≡ Bn and L(2)

n ≡ Vn, Bernstein and Baskakov
operator of nth order, respectively. We recall

(Bnf)(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
,

x ∈ [0, 1],

(Vnf)(x) =

∞∑
k=0

(
n+ k − 1

k

)
xk

(1 + x)n+k
f

(
k

n

)
,

x ≥ 0.
We identify xn,k = k/n, u1(n) = n ∈ N,

u2(p) = p ∈ N0, θ2,p(x) = x + x2, x ≥ 0. Tak-
ing θ̃n(x) = x2 + x, x ≥ 0. condition (7) is fulfilled.
In this case the operators Ln,λ have been introduced
and studied by F. Altomare and E.M. Mangino [3].
We also mention that the operators defined by (8) are
positive and linear.

4 Approximation properties
The main results will be read as follows.

Theorem 2 Let Λn, n ∈ N, be the operators given at
(6) such that

st− lim
n→∞

‖ϕn‖K = 0. (9)

For any function f continuous on a compact K ⊂ J ,
the following relation

st− lim
n→∞

‖Λnf − f‖K = 0 (10)

takes place, where the norm ‖ · ‖K is computed only
for functions restricted to K.

Proof. At first step we estimate Λnej , j ∈ {0, 1, 2}.

Λne0 =
∑
k∈In

an,k = Lne0 = e0, (11)

see (2).

Λne1 =
∑
k∈In

an,kE(Xn,k)

=
∑
k∈In

an,ke1

(
k

nβ

)
= Lne1 = e1, (12)

see (5) and (2).

Λne2 =
∑
k∈In

an,kE(X2
n,k)

=
∑
k∈In

an,k(V ar(Xn,k) + E2(Xn,k))

=
σ2

n2β
Lne0 + Lne2 = e2 + ϕn +

σ2

n2β
, (13)

see (5) and (3).
Relying on what we have achieved in the previ-

ous step, we verify the accomplishment of conditions
required by Theorem 1. For j = 0 and j = 1, it is
clear ‖Λnej − ej‖K = 0. Also, by using (13), we get

‖Λne2 − e2‖K =

∥∥∥∥ϕn +
σ2

n2β

∥∥∥∥
K

≤ ‖ϕn‖K +
σ2

n2β
,

consequently st− lim
n→∞

‖Λne2 − e2‖K = 0. We used
relation (9).

Since the requirements of Theorem 1 are satisfied,
the identity (10) takes place and the proof is ended.
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Theorem 3 Let Ln,λ, n ∈ N, be the operators given
at (8), such that the functions θ̃n satisfy the property

∃ C > 0, |θ̃n(x)| ≤ C, x ≥ 0, n ∈ N,

where C is independent of n. For any function f con-
tinuous on a compact K ⊂ [0,∞), the following re-
lation

st− lim
n→∞

‖Ln,λf − f‖K = 0 (14)

takes place.

Proof. By using [1, Theorem 1] the following identi-
ties hold

Ln,λej = ej , j ∈ {0, 1}, Ln,λe2 = e2 +
λθ̃n
u1(n)

.

These imply ‖Ln,λej−ej‖K = 0 for j = 0 and j = 1.
Moreover,

‖Ln,λe2 − e2‖K =
1

|u1(n)|
‖λ‖K‖θ̃‖K .

Since 0 ≤ λ ≤ 1, θ̃n, n ∈ N, are equi-bounded and
u1(n) = O(nα), we have

st− lim
n→∞

‖Ln,λe2 − e2‖K = 0.

By applying Theorem 1, relation (14) follows.
Comments. At first glance, it is a discrepancy be-

tween the intricate construction of the operators and
the new results presented. The described construc-
tions have a higher expanse then the section which
collects our new results. The explanation is as fol-
lows. The described constructions in Section 3 tar-
get very general classes of operators. These classes
were investigated in [1], [2] from the point of view
of approximation properties relating to Korovkin pro-
cesses. Our new results aimed the statistical approach,
research direction that was not even created when the
mentioned classes have been defined.
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