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Abstract: General technical problems of obtaining coefficients of reliability polynomials for different reliability
indices, such as all-terminal reliability, average pairwise reliability and average size of a connected sub-graph con-
taining a special node are discussed in the paper. It is shown that one of possible forms of a reliability polynomial
presentation helps in considerable speeding up of its obtaining by using an intentional meaning of coefficients.
Procedure of calculations in this case can be reduced to summarizing parts of vectors of binomial coefficients.
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1 Introduction
This paper is generalization and extension of authors’
results in obtaining and usage reliability polynomials
of random graphs [14, 15, 11, 12].

Reliability polynomial of random graphs with un-
reliable elements are investigated for a long time and
by many authors [2, 6, 7, 1, 9, 8], but most papers
concerns theoretical aspects only but not algorithms of
their obtaining, mainly in connection with Tutte poly-
nomials [4].

We use mostly common and well-explored model
of a random multi-graph withn reliable nodes andm
unreliable edges that may fail independently with a
probabilityq = 1 − p, wherep is named edge’sreli-
ability. Full denotation for such graph isG(n,m, p),
but for short we useG or G(n,m) if rest parameters
are clear from a context.

Most often polynomials for all-terminal reliabil-
ity (ATR) of a random graph with unreliable edge are
considered. In [9] reliability polynomials are used for
estimating an “edge’s impotence” in a graph’s struc-
ture: edge, whose removal leads to a maximal de-
creasing of a polynomial’s plot, is considered as con-
tributed maximal income into graph’s reliability. At
the same time it is known that for some indices relia-
bility polynomials for graphs with the same number of
nodes and edges may intersect (see [11, 6, 7], for ex-
ample). Thus as choice of optimal structure, as finding
edges’ “significance” depends on edges’ reliability. In
[2] different forms of presentation of these polynomi-
als are presented and usage of coefficients for graph’s
properties analysis is discussed. In [12] one of the au-
thors of current paper had shown how the meaning of

coefficients of a reliability polynomial for ATR in one
of its forms can be used for considerable speeding up
of their obtaining. Hereafter we show how meaning
of coefficients can be practically used for their faster
obtaining in the case of some other reliability indices.

In the current paper we consider common and
special technical problems of obtaining polyno-
mials for all-terminal reliability (ATR-polynomial,
R(G, p)), mathematical expectation of a number
of disconnected pairs of nodes (EDP-polynomial,
N(G, p)), and mathematical expectation of a num-
ber of nodes in a connected subgraph that con-
tains some special node (control center in an unreli-
able network, hereafter referred as c-node) (MENC-
polynomial,C(G, p)).

Note, that we consider EDP-polynomials because
the task of obtaining this index is equivalent to the
task of obtaining average pairwise connectivity (APC,
R̄(G)). Indeed, the following equations are clear:

R̄(G) =
C2

n −N(G)
C2

n

, (1)

N(G) = C2
n

(
1− R̄(G)

)
. (2)

From this we have that if EDP-polynomial is

N(G, p) =
m∑

i=0

ni(1− p)ipm−i,

then APC-polynomial is

R̄(G, p) =
m∑

i=0

C2
n − ni

C2
n

(1− p)ipm−i. (3)

WSEAS TRANSACTIONS on MATHEMATICS Alexey S. Rodionov, Olga Rodionova

E-ISSN: 2224-2880 450 Volume 15, 2016



EDP was examined in [10, 5].
Most of proposed solutions may be efficiently

used for obtaining polynomials for other indices of
random graphs.

The rest of the paper is organized as follows. In
Section 2 we present main denotations and assump-
tions used in the paper. In Section 3 the factoring
method is described in connection with polynomial’s
representation. Sections from 4 to 9 are devoted to
treating different structural particularities of graphs.
Section 10 shows how to obtain some coefficients by
analyzing initial graph’s structure without complex
calculations. In Section 11 we show how to obtain
coefficients of different reliability polynomials on the
example of small graph with chains in its structure,
while the last Section is a brief conclusion.

2 Main denotations and assumptions

For further derivations we need the following denota-
tions:

k — set(1, . . . , k);

i, j — set(i, . . . , j), i ≤ j;

G(n,m) = (V, U,Λ,WT ) — non-oriented multi-
graph with a set of nodesV , set of edgesU , ma-
trix of edges multiplicitiesΛ and vector of nodes
weightsWT . An edge is usually denoted aseij ,
that means that it connects nodesvi andvj , but
sometimes it is more convenient denote it asei

(i-th edge). Corresponding multiplicity may be
denoted asλij or λi;

T(n,Λ),C(n,Λ) — n-nodes tree or cycle of multi-
edges;

n = |V |, m = |U | — number of nodes and edges, re-
spectively;

wi = w(vi) — weight of a node vi, WT =
w1, . . . , wn;

W (G) — total weight of all nodes ofG;

W ∗(G) — total sum of pairwise productions of
weights of all nodes ofG (if all wi = 1, then
W ∗(G) = C2

n );

k-multi-edge — multi-edge with multiplicityk;

p — probability of an edge being existent (being in a
working state, edge’sreliability), q = 1− p;

Chk — chain, composed ofk edgese1, . . . , ek;

G/Ch (G/e) — network, obtained fromG by con-
tracting pair of nodes by a chainCh (edgee);

G\C (G\e) — subnetwork ofG, obtained by delet-
ing chainCh (edgee);

S(U) — sum of multiplicities of edges with numbers
from setU ;

L(~S) — number of elements in a vector~S (its dimen-
sion).

Some polynomials are frequently used in our deriva-
tions so we give them special denotations:

Qs(p) = (1− p)s; (4)

Ms(p) = 1−Qs(p) = I(s)− (1− p)s

=
s−1∑

i=0

Ci
sp

s−i(1− p)i; (5)

D(~S, p) =
L(~S)∏

i=1

Msi(p); (6)

Z(~S, p) =
L(~S)∑

i=1

Qsi(p)
L(~S)∏

j=1, j 6=i

Msi(p). (7)

Qs(p) corresponds to the probability that multi-
edge with the multiplicitys fails completely, while
Ms(p) shows the probability that al least one of its
edges is in working state. Note thatQk+l(p) =
Qk(p)Ql(p).

Note also thatD(~S, p) is the RP of a tree while
D(~S, p) + Z(~S, p) is the RP of a cycle with vector of
edges’ multiplicities~S (these cases are discussed in
Section 6 in details).

For short, if it does not lead to variant reading,
then we use “edge” for “multi-edge” in the paper. If it
does matter, we use “multi-edge” or “single edge”.

In some of following equations we need use pow-
ers of polynomials, let us denote power of a polyno-
mial Pol(p) as↑Pol(p).

For shortening some expressions we assume that
if j > k, then

∏k
i=j pi = 1.

Though a node’s weight is a polynomial or frac-
tional polynomial in general case, we usually skip ar-
gument for shorten expressions.

3 Factorization Method and Polyno-
mial Representation

As it is noted in [2], there are various ways of a reli-
ability polynomial representations. In some cases co-
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efficients have intensional meaning. In [12] the pre-
sentation

R(G, p) =
m∑

i=0

ai(1− p)ipm−i, (8)

had been efficiently used for speeding up obtaining
coefficients of ATR-polynomial. It is known thatai is
equal to a number of connected sugraphs (subgraphs
on complete set of nodes), that may be obtained by
removing exactlyi edges. Coefficients of polynomial
in its classic presentation

R(G, p) =
m∑

i=0

bip
i (9)

are connected with those in (8) by the following equa-
tions:

b0 = am;

bm−i =
m∑

j=i

(−1)i+jCi
jaj , i = 0, . . . ,m− 1; (10)

am = b0;

ai = bm−i+
m∑

j=i+1

(−1)i+j−1Ci
jaj , i=m−1, . . . 0.(11)

Note that the meaning of coefficients in (8) usually al-
lows obtaining some coefficients directly and may be
used for derivation of finite expressions for graphs of
small dimension (2-5 nodes) or of some special kind
(trees, cycles) only. At the same time this presen-
tation well corresponds for the factorization method
[14, 16]:

R(G, p) = pR(G/eij) + (1− p)R(G\{eij}). (12)

We use this method as basic one hereafter.

3.1 Supporting right kind of a polynomial

In (8) all summands have the same total power ofp
and (1 − p), while during possible decompositions
and reductions of intermediate graphs, obtained dur-
ing calculations, we can obtain polynomials with dif-
ferent powers between and inside them. For equal-
izing powers, polynomials or summands with lesser
power are multiplied by the special polynomial of the
kind (8) that is identically equal to one (its power is
equal to a difference of powers):

I(n) ≡ 1 ≡ 1n ≡ (1− p + p)n

=
n∑

i=0

Ci
npi(1− p)n−i,

I(0) = 1. (13)

For example,

p(1− p) + p(1− p)3 = I(2)p(1− p) + p(1− p)3

= [p2 + 2p(1− p) + (1− p)2]p(1− p) + p(1− p)3

= p3(1− p) + 2p2(1− p)2 + 2p(1− p)3.

Most important is that obtaining coefficients of
some polynomial

P (p) =
k∑

i=1

aiI(si)pui(1− p)m−si−ui

we can reduce to summarizing shifted vectors
aiBin(si), whereBin(n) is a vector of binomial co-
efficientsCi

n, i = 1, . . . , n. Next highly important
point is that we need not calculate those coefficients,
that can be obtained beforehand by their meaning,
thus reducing number of operations when summariz-
ing vectors: parts of vectors that corresponds to un-
known coefficients must be treated only. High effi-
ciency of this approach is shown in [12] on example
of ATR-polynomial.

Note. Shift of a vector of binomial coefficients
depends on power of(1−p) only, thus only this power
must be traced in the calculation process.
General scheme of the factorization method

General recursive scheme of the method is as fol-
lows:

1. Check if a graph allows direct obtaining of co-
efficients. If YES, then calculate them and exit,
else go to the next step.

2. Check if graph’s reduction is possible. If YES,
then do it and go back to the step 1, else go to the
next step.

3. Choose a pivot element and execute factoriza-
tion, that is prepare pair of graphs and make re-
cursive calls of the procedure.

Note that in some cases reduction leads to obtaining
more than one graph of smaller dimension and, con-
sequently, several calls of basic procedure are needed.

One can see that the factoring method is more ef-
fective if:

1. Factoring is terminated on the highest possible
level;

2. Dimension of a graph under consideration can be
reduced.

Thus the general scheme of construction a factor-
ing algorithm for obtaining polynomial for some new
reliability (and not only reliability) index includes the
following steps:
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1. Obtaining polynomials for graphs of small di-
mensions (usually up to 5 nodes).

2. Obtaining polynomials for graphs of special
kinds (trees, cycles, ladders, etc.).

3. Finding ways for reducing graph’s dimension
(removing dangling nodes, replacing chains by
edges, etc.).

4. Finding ways for graph’s decomposition by us-
ing graph’s particularities, such as cutnodes,
bridges and node cuts.

5. Design of effective algorithms for program real-
ization of mentioned reduction and decomposi-
tion, if ways are found.

6. Examination of coefficients’ meaning and find-
ing values and expressions for some of them thus
allow their obtaining directly before executing
main procedure.

4 Handling dangling nodes

Dangling nodes (for short we will name it as d-node
further on) are common in a structure of real networks.
In most cases such nodes can be deleted from a graph
before calculations.

4.1 ATR-polynomial

This case is simplest and obvious one: for all-terminal
connectivity an edge (e) that is incidental to a d-node
must exist. If not, then a graph is disconnected. Thus,
from (12) we have that

R(G, p) = pR(G/e). (14)

If d-node is connected with the rest of a graph by a
multi-edgeE of multiplicity k, then

R(G, p) = [I(k)− (1− p)k]R(G/E). (15)

Note, that for ATRG/e (G/E) means that d-node and
its adjacent node are contracted.

4.2 EDP-polynomial

As it is shown in [10], we can remove a dangling node
(vt) by contracting it with its adjacent node (vs) using
the following rule:

N(G, p) = N(G∗, p) + Qλst(p)wt, (16)

whereG∗ has the structure ofG/est and weight of
a nodevs equal tow∗s = ws + pstwt. Weight of

a node means expected value of a number of nodes,
contracted into it during factoring and reduction pro-
cesses. Initially allwi are equal to one, but then they
are polynomialswi(p), in general case. In our caseest

may be a multi-edgeE of multiplicity k, thus

N(G, p) = N(G∗, p) + (1− p)kwt(p)
= N(G∗, p)I(max(0, ↑N(G∗, p)− ↑wt(p)−k)) +

(1−p)kwt(p)I(max(0, ↑wt(p)+k− ↑N(G∗, p)), (17)

and

w∗s(p) = ws(p)I(max(0, ↑wt(p) + k− ↑ws(p)) +
k∑

i=1

Ci
kp

k−i(1− p)iwt(p)×

I(max(0, ↑ws(p)−k− ↑wt(p)). (18)

Note. More effective way of utilizing indepen-
dent of G summands is their separate accumulation
and addition of final sum to the result on the last stage.
In this case we need not spend efforts on equalizing
powers ofN(G∗, p) and(1− p)kwt(p).

4.3 MENC-polynomial

Similar to the previous index, MENC requires
weighted nodes. There are several ways of obtaining
this polynomial. Most obvious is through obtaining all
polynomials for two-terminal probabilistic connectiv-
ity R1i(G, p):

C(G, p) = w1 +
n∑

i=2

wiR1i(G, p). (19)

It is clear that if some nodevt is a d-node, then
Rst(p)=Rsx(p)Mxt(p), wherevx is adjacent tovt.
From this and remembering about nodes’ weights, we
have that any dangling node, if it is not a c-node, may
be deleted while its adjacent node increases its weight
by Mλst(p)wt. If vt is a c-node, then it is deleted,
andvs not only changes its weight, but became a new
c-node in a reduced graph.

5 Handling trees

If a graph is a tree of single edges, then it is usually an
obvious case. More complex it became if multi-edges
are allowed.
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5.1 ATR-polynomial

Equation for a tree of multi-edges is presented in [12].
In denotations of the current paper it looks as

R(T, p) = D(~Λ, p) =
m∑

i=0

Ci
mpi(1−p)m−i+

∑

U⊂n−1

(−1)|U |
S(U)∑

j=0

Cj
m−W (U)p

j(1−p)m−j . (20)

5.2 EDP-polynomial

N(T, p) =
n−1∑

i=1

n∑

j=i+1

wiwj

(
1−

∏

est∈Ptij

Mλst(p)
)
,

(21)
wherePtij is an unique path betweenvi andvj . thus,
if no multi-edges, then

N(T(n), p) =
n−1∑

i=1

n∑

j=i+1

wiwj

(
1− pdij

)
, (22)

wheredij is a number of edges betweenvi andvj . In
partial cases we have simpler equations.

5.2.1 Chain

Let us have a chainCh(n,m) with n nodes andn− 1
multi-edgesei with multiplicitiesλi. There arek − 1
pairs of nodes with distance 1,k − 2 pairs with dis-
tance 2, etc. Thus

N(Ch(n,m), p) = C2
n −

n−1∑

i=1

n∑

j=i+1

wiwj

[
1−

j−1∏

s=i

Mλs(p)
]
. (23)

If no multi-edges, then

N(Ch(n, n−1), p) = C2
k−

n−1∑

i=1

n∑

j=i+1

wiwj(1−pj−i),

(24)
and, if all weights are unit, then

N(Ch(n, n− 1), p) = C2
n −

n−1∑

i=1

i(1− pn−i). (25)

5.2.2 Star

Let us have a star-like graphS(n,m), in wich n − 1
nodes are adjacent to one (center). Thus we have a

nodev1 with weightw1, that is adjacent ton − 1 d-
nodesvi, i = 2, . . . , n with weightswi by edgese1i.
Using (21) we have:

N(S(n, m), p) =
n∑

i=2

w1wi[1−Mλi
(p)] +

n−1∑

i=2

n∑

j=i+1

wiwj [1−Mλi
(p)Mλj

(p)]. (26)

In the simplest case of no multi-edges and unit
weights we obtain

N(S(n,m), p) = C2
n − (n− 1)p + C2

n−1p
2. (27)

5.3 MENC-polynomial

This case differs from the previous one by consider-
ing only pathes from a c-node (let it bev1) to all rest
nodes, and by considering connection, not disconnec-
tion of nodes. Thus

C(T(n)) = w1 +
n∑

i=2

wi

∏

est∈Pt1i

Mλst(p), (28)

and, if no multi-edges, then

C(T(n), p) = w1 +
n∑

i=1

wjp
d1j . (29)

Equations for chain and star depends on place-
ment of a c-node.

5.3.1 Chain

If c-node has number 1, then

C(Ch, p) = w1I(m)+
n∑

i=2

wi

i−1∏

j=1

I(m−λi)Mλi(p).

(30)
In the case of no multi-edges we have

C(Ch, p) =
n∑

i=1

wiI(n− i)pi−1. (31)

Now let a c-node have number1 < s < k. With-
out loss of generality we assume thats ≤ n−s. Omit-
ting simple reasoning we have:

C(Ch, p) =
k∑

i=1

wi

max(s−1,i−s+2)∏

j=min(i,s)

Mλj
(p)×


1−

s−1∏

j=1

Mλj (p)
k−1∏

j=i

Mλj (p)


 . (32)
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If no multi-edges, then

C(Ch, p) =
k∑

i=1

wip
|s−i|(1− p|k−s+i−1|), (33)

or, considering ratio betweens andk,

C(Ch, p) = ws +
s−1∑

i=1

(wi + w2s−i)ps−i +

k∑

i=s+1

wip
i−s −

(
k∑

i=1

wi

)
pk. (34)

5.3.2 Star

There are two possible ways of a c-node placement.
Case 1: c-node is a central one, let it bev0. For

simple we denote edges(v0, vi), i = 1, . . . , k asei

their multiplicities and weights asλi andwi, corre-
spondingly. From this we have

C(G) = w0I(m) +
k∑

i=1

wiMλi(p)I(m− λi). (35)

If no multi-edges, then

C(G) = w0I(1) + p
k∑

i=1

wi = w0(1− p) + p
k∑

i=0

wi.

(36)
Case 2: c-node is a leaf. Let it bev0 and let cen-

tral node bev1. According to (19) and using (35) we
obtain

C(G) = w0I(n− 1) +

p[w1I(n− 2) +
k∑

i=2

wiI(m− λi)Mλi(p)]. (37)

If no multi-edges, then

C(G) = w0I(2) + I(1)pw1 + p2
k∑

i=1

wi

= w0(1−p)2+(2w0+w1)p(1−p)+

(
k∑

i=0

wi

)
p2.(38)

6 Handling Cycle-shaped graphs

6.1 ATR-polynomial

Equation for obtaining ATR-polynomial for a cycle of
multi-edges is presented in [12]. Let us cite it adopting

to denotations of current paper:

R(C(n, ~Λ) =
n∏

i=1

Mλi
(p) +

n∑

i=1

Qλi
(p)

n∏

j=1
j 6=i

Mλj
(p) = Z(~Λ, p) = I(m)+

∑

U⊂n

(|U |−1)(−1)|U |+1(1−p)S(U)I(S(n\U)). (39)

6.2 EDP-polynomial

Equation for this case may be found in [5]. In denota-
tions of current paper it looks as:

N(C(n,m), p) =
n−1∑

i=1

n∑

j=i+1

wiwj

[
1−

j−1∏

s=i

Mλs(p)
]
×

[
1−

n∏

s=j

Mλs(p)
i−1∏

s=1

Mλs(p)
]
. (40)

In the case of no multi-edges we obtain

N(C(n, n), p) =
n−1∑

i=1

n∑

j=i+1

wiwjI(n)−

I(n− j + i)pj−i − I(j − i)pn−j+i + pn.(41)

6.3 MENC-polynomial

Let v1 be a c-node. There are two pathes from it to
any other node of a cycle, thus

C(G, p) = w1 +
n∑

i=2

(
i−1∏

s=2

Mλs(p)+
n∏

s=i

Mλs(p)

)
−

(n− 1)
n∏

s=2

Mλs(p). (42)

7 Handling cutnodes

Let a graphG have a cutnodevx that connects two its
components:G1 andG2. Without loss of generality
we can assume that nodes fromv1 to vx−1 belongs to
G1, fromvx+1 tovn – toG2, whilevx belongs to both.

7.1 ATR-polynomial

Quite obviouslyR(G, p) = R(G1, p)R(G2, p).
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7.2 EDP-polynomial

Handling cutnodes for speeding up calculation of EDP
in case of different edges’ reliabilities have been dis-
cussed in [11]. In the case of equal reliabilities we
have:

N(G, p) = N(G1, p) + N(G2, p) +
x−1∑

i=1

n∑

j=x+1

wiwj

[
1−Rix(G1, p)Rxj(G2, p)

]
. (43)

7.3 MENC-polynomial

As usual, we considerv1 as a c-node. It is clear that

C(G, p)=C(G1, p)+R1x(G1, p)
n∑

i=x+1

Rx,i(G2, p)wi.

(44)

8 Handling bridges

If there is a bridge in a graph, then we make factor-
ing by it, thus obtaining a disconnected 2-component
graph (let components beG1 andG2) and a graph with
a cutnode. Last case have been discussed above, han-
dling a disconnected graph depends on index under
consideration. Without loss of generality we can as-
sume that nodes inG1 are numbered from 1 tos and
in G2 — from t = s + 1 to n, and thatest is a bridge.

8.1 ATR-polynomial

Quite obviously

R(G, p) = Mλst(p)R(G1, p)R(G2, p).

8.2 EDP-polynomial

Note that in a 2-component graph all pairs in which
nodes belongs to different components are discon-
nected. Thus

N(G, p) = Mλst(p)

{
N(G1, p) + N(G2, p) +

s∑

i=1

n∑

j=t

wiwj

[
1−Ris(G1, p)Rtj(G2, p)

]
}

+

Qλst(p)W (G1)W (G2). (45)

8.3 MENC-polynomial

As usual, we considerv1 as a c-node. It is clear that

C(G, p) = C(G1, p) +

+.R1s(G1, p)Mλst(p)

{
n∑

i=s+1

Rx,i(G2, p)wi

}
.(46)

9 Handling chains

While substituting chains by edges is very effective
when calculatingk-terminal reliability (probabilistic
connectivity), it is not so when obtaining reliability
polynomials, partially due to occurrence of interme-
diate fractional polynomials. Best choice in this case
is trying “branching by chain”.

9.1 ATR-polynomial

Main way of a graph’s dimension reduction is
“branching by chain” [13]. Let us cite the following
theorem from [12]:

Theorem 1 Let graphG have a chainCh, that con-
sists ofk multi-edgese1, e2, . . ., ek with multiplicities
λ1, λ2, . . ., λk, correspondingly, that connects nodes
vs andvt. Then

R(G, p)=
[
I(λst, p)

m∏

i=1

Mλi(p)+M(λst, p)×

k∑

i=1

N(λi, p)
∏

j 6=i

Mλi(p)
]
R(G/Ch, p) +

N(λst, p)
k∑

i=1

N(λi, p)
∏

j 6=i

Mλi(p)R(G\Ch, p), (47)

whereλst – multiplicity of edge that connects ending
nodes ofCh directly (zero if no such edge).

Proof of the theorem is based on consequent fac-
toring by edges of a pivot chain. After deleting of
an edge a graph with attached chain that ends by a d-
node is obtained, and after contracting pair of nodes
— a graph with shorter chain. If there exists an edge
directly connecting terminal nodes of a chain, then
first factoring is made by it and a graph is obtained
with cutnode between a cycle and a graph, in which a
chain is deleted and its terminal nodes are contracted.
After consequent using equations for deleting d-nodes
and handling cutnodes, and making final collecting of
terms we obtain what required.

The same scheme is used for obtaining equations
for branching by a chain in the case of other reliability
indices.
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9.2 EDP-polynomial

Because graphs, obtained after removing d-nodes dur-
ing factoring by chain’s edges, are similar in structure
but have different weights of chain’s terminal nodes
[11, 5], equations are rather complex and here we con-
sider the case of a 2-edge chain(esx, ext) and noest

only. First we cite the following theorem from [10]:

Theorem 2 If a connected random graph has a sim-
ple chainCh = (esx, ext) connecting nodess and t
through a nodevx with degree 2, then the following
equation is true:

N(G) =
[
pst(1− psxpxt) + psxpxt

]
N(G∗/Ch) +(

1− pst − psxpxt)N(Go\Ch)−

ast
(1− pst)psxpxt(1− psx)(1− pxt)

1− psxpxt
w2

x + (48)

(1− psx)(1− pxt)
(
W (G)− wx

)
wx.

whereast is a probability ofvs andvt being discon-
nected inG\Ch\est, G∗/Ch differs fromG/Ch by a
weight of joint node andGo\Ch differs fromG\Ch
by weights of terminal nodes of a chain:

WT (G∗, sxt) = ws + wt +
(psxpst + psxpxt + pstpxt − 2psxpstpxt)

pst + psxpxt − psxpstpxt
wx. (49)

WTs(Go) = ws + wx
psx(1− pxt)
1− psxpxt

; (50)

WTt(Go) = wt + wx
(1− psx)pxt

1− psxpxt
.

From this we easily obtain

N(G, p) =
[
1−(1−p)λstZ(p)

]
N(G∗, p)+ (51)

(1−p)λstZ(p)N(Go, p)−ast(p)
(1−p)u [1−Z(p)]

Z(p)
w2

x+

[1− Z(p)]wx [W (G)− wx] ; (52)

WT (G∗, sxt)=ws+wt+
WP1(p)
WP2(p)

wx, (53)

where

Z(p) = Mλsx(p)Mλxt(p); (54)

WP1(p)=Mλst(p)Mλsx(p)+Mλst(p)Mλxt(p)+
Z(p)− 2Mλst(p)Mλsx(p)Mλxt(p),

WP2(p)=Mλst(p)+Z(p)−
Mλst(p)Mλsx(p)Mλxt(p)(p);

WTs(Go)=ws + wx

Mλsx(p)Qλxt(p)

1−Z(p)
; (55)

WTt(Go)=wt + wx

Mλxt(p)Qλst(p)

1−Z(p)
. (56)

Note. If we make not branching by a chain, but
make consequent factoring by its edges, then we do
not obtain fractional polynomials. So we can mark
the input point into branching and make reduction of
fractions after return from recursions.

9.3 MENC-polynomial

There are several ways of obtaining this polynomial.
Most obvious is through obtaining all polynomials for
two-terminal probabilistic connectivityR1i(G, p):

C(G, p) = w1 +
n∑

i=2

wiR1i(G, p). (57)

Serial-parallel reduction of a graph when obtaining
R1i(G, p) by using factoring method is highly effi-
cient and well-known technique [3] and is used when
terminal nodes do not considered as inner nodes of
chains.

Let vi be an inner node of some chain with termi-
nal nodesvs andvt. Without loss of generality we can
assume that nodes of a chain have numbers froms to
t in increasing order ands < i < t. Let edges of aCh
be es = (vs, vs+1), . . . , es+k−1 = (vs+k−1, vt). Let
A be an event that nodesv1 andvi are connected,B
andE — that pairs of nodesv1 – vs, andv1 – vt are
connected inG\Ch. We can obtain a probability ofA
as:

P (A) = P (BE)P (A|BE) + P (BĒ)P (A|BĒ) +
P (B̄E)P (A|B̄E). (58)

It is easy to see thatP (B∪E) = R1,(s,t)(G/Ch),
where(s, t) is a number of a node that is obtained
by contracting nodesvs andvt. From this and using
meaning of eventsB andE, we obtain that

P (BĒ) = R1,(s,t)(G/Ch)−R1t(G\Ch);

P (B̄E) = R1,(s,t)(G/Ch)−R1s(G\Ch);
P (BE) = R1t(G\Ch) + R1s(G\Ch)−

R1,(s,t)(G/Ch).
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Thus we have that

R1i =
[
R1t(G\Ch, p)+R1s(G\Ch, p)−

R1,(s,t)(G/Ch, p)
]( i−1∏

j=s

Mλj
(p)+

t−1∏

j=i

Mλj
(p)−

t−1∏

j=s

Mλj
(p)

)
+

[
R1,(s,t)(G/Ch, p)−R1t(G\Ch, p)

] t−1∏

j=i

Mλj
(p)+

[
R1,(s,t)(G/Ch, p)−R1s(G\Ch, p)

] i−1∏

j=s

Mλj
(p)

= R1s(G\Ch, p)
t−1∏

j=i

Mλj (p) +

R1t(G\Ch, p)
i−1∏

j=s

Mλj (p)−
[
R1t(G\Ch, p) + R1s(G\Ch, p)−

R1,(s,t)(G/Ch, p)
] t−1∏

j=s

Mλj (p) = Yi(G, p). (59)

Thus, for obtaining total income intoC(G, p) of
all pairs v1 – vi wherevi is a node of a chain we
need to obtainR1s(G\Ch, p), R1t(G\Ch, p), and
R1,(s,t)(G/Ch, p) only:

S(G,Ch, p) =

R1t(G\Ch, p)
t∑

i=s

wi

[
i−1∏

j=s

Mλj
(p)−

t−1∏

j=s

Mλj (p)

]
+

R1s(G\Ch, p)
t−1∑

i=s

wi

[
t−1∏

j=i

Mλj (p)−
t−1∏

j=s

Mλj (p)

]
+

R1,(s,t)(G/Ch, p)
t−1∏

j=s

Mλj (p)
t∑

i=s

wi. (60)

Now let us consider the case when a c-node is an inner
node of some chain. Let nodes of this chain be num-
bered from 1 tok and corresponding edges from 1 to
k − 1 and letvs, 1 < s < k be a c-node.

For obtaining reliability of connection between c-
node and some other node of a chain (terminal nodes
included) we consider pseudo-cycle that consists of a
chainCh and pseudo-edgee1k whose reliability poly-
nomial is R1k(G\Ch, p). Thus total income of all

pairsv1 – vi, i ∈ 1, k\s into C(G, p) is

X(G,Ch, p) =
∑

i∈1,k\s
wi

[
s−1∏

j=i

Mλj
(p) +

i−1∏

j=1

Mλj
(p)

k−1∏

j=s

Mλj
(p)R1k(G\Ch, p)−

k−1∏

j=1

Mλj
(p)R1k(G\Ch, p)

]
. (61)

10 Obtaining some coefficients by
analyzing initial graph’s struc-
ture

10.1 ATR-polynomial

This case is well-known one. Allai = 0 for i >
m−n+1, am−n+1 is a number of covering trees, and
if there are at leastk edge-independent paths between
any pair of edges, then∀i∈[0, . . . , k−1] ai = Ci

m. In
particular, if there are no bridges in the graph, then
a1 = m.

10.2 EDP-polynomial

Let all edges fail. This means that all connections are
broken and their total number isnm = C2

n = n(n −
1)/2.

If only one edge remains, then we havem variants
of such event. In all these events only one connection
exists andC2

n − 1 are broken, thus

nm−1 = m(C2
n − 1) = m[n(n− 1)/2− 1]. (62)

In the case of two remaining edges we need
knowledge about nodes’ degrees inG. Let D2 be a
set of nodes with degrees exceeding one. Then total
number of chains with length two is

K2 =
∑

v∈D2

C2
deg(v), (63)

and for each such case we haveC2
n−3 + 3(n− 3) bro-

ken pairwise connections, while for non-adjacent pair
of edges —C2

n−4 +4(n−4)+4. From this we obtain

nm−2=K2

[
C2

n−3+3(n−3)
]
+

(
C2

m−K2

)[
C2

n−4+4(n−4)+4
]

=K2

(
C2

n−3
)
+(

C2
m−K2

)
(C2

n−2) = C2
m

(
C2

n−2
)−K2. (64)
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Derivation of the next from the end coefficient
(nm−3) requires additional knowledge about structure
of graphG, that means about existence and number of
triangles (their finding has square complicity). Com-
plete analysis of variants requires too much space, let
us present final equations.

LetD3 be a set of nodes with degrees not less than
three. Let us denote a set of edges that connects nodes
from D2 asU+ and consider a number of triangles
T as known. In this case total number of chains with
length three is equal to

K∼
3 =

∑

eij∈U+

[
(deg(vi)−1)(deg(vj)−1)

]−3T=S1−3T.

(65)
Using these information and considering cases

of non-adjacent remaining edges and of chain with
length two and separate edge, we obtain final

nm−3 = C3
m(C2

n−3)−K2(m−2)+6T −S1 . (66)

10.3 MENC-polynomial

If no edges fail, then all nodes are connected with a
c-node, thusC0 = n.

If all edges fail, then a c-node is isolated and
Cm = 1.

If all edges but one fail, then a connected sub-
graph with 2 nodes occurs in the case of an edge ad-
jacent to a c-node only (letv1 be a c-node), and in
m − deg(v1) cases c-node remains isolated. Thus
Cm−1 = m− deg(v1) + 2deg(v1).

If pair of edges remains only, then 3 nodes are
in a connected subgraph inC2

deg(v1) cases for sure, in

C2
m−deg(v1) cases c-node remains isolated, while for

obtaining rest cases for 3 nodes and, correspondingly,
number of 2-node connected subgraphs, we need find
number of all 2-edge chains for whichv1 is a terminal
node. This number may be easily found using square
of an adjacency matrix. Thus obtainingCm−2 has
complexityO(n2).

11 Examples

Let us consider graph in the Fig.1. Exhaustive search
requires consideration of29 = 512 possible sugraphs.

11.1 ATR-polynomial

The case is simple one. Our preliminary knowledge is
thatr0 andr1 are 1 and 8, and that fori > 2 all ri are
zeros. Obtainingr2 (number of covering trees) using
Kirchhoff theorem is possible also but is not neces-
sary for such a small graph. Thus exhaustive search

Figure 1: Test 7-node 8-edge graph

reduces to consideration ofC2
8 = 28 sugraphs. Using

our technique gives two possible ways of calculations:

1. make factoring by the edgee25 and thus obtain
with a probability1 − p a cycle of length 7, for
which equation (39) may be applied and, with a
probabilityp, 2 cycles of length 3 and 4, that are
connected through a cutnode, and thus equation
(43) is used;

2. make branching by one of two chains (3-4-5-6-7
or 7-1-2-3) using (47) thus reducing task to ob-
taining polynomials for a chain and cycle.

Both ways are similar in laboriousness. The resulting
polynomial is

R(G, p) = p8 + 8p7(1− p) + 19p6(1− p).

11.2 EDP-polynomial

By analyzing graph’s structure we can obtain thatn0

and n1 are zeros,n8 = C2
7 = 21, n7 = 8(C2

7 −
1) = 160. For obtainingn7 we find that all nodes
have degrees 2 or more (2,2,3,2,2,2, and 3), thusK2 =
1 + 1 + 3 + 1 + 1 + 1 + 3 = 11 andS1 = 15, and
n6 = C2

8 (C2
7 − 2)− 11 = 521. No triangles are in the

graph’s structure, thus

n5 = C3
8 (C2

6 − 3)− 11(8− 2)− 15 = 927.

Thus exhaustive search reduces to consideration of∑4
i=2 Ci

8 = 154 sugraphs. Let us use branching by
a chain and choose chain (1-2-3) as pivot one. First
we need obtain the probability ofv1 andv3 been dis-
connected inG\Gh. Several steps of serial-parallel
reduction and using (13) gives

a13 = p5(1−p)+9p4(1−p)2+16p3(1−p)3+
14p2(1−p)4+6p(1−p)5+(1−p)6.

According to (51) we need to obtain EDP-
polynomials for a 5-node cycle-shaped graph con-
nected with the d-nodev1 and cycle-shaped graph
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with one double edge. Both graphs have fractional-
polynomial weights of part of nodes.

1. Cycle with a d-node (pivot chain is deleted).
We need obtain new weights for terminal nodes

of the chain (vo
2 andvo

5). According to (55) and (56)
we have that

wo
1(p) = wo

3(p) = 1 +
p(1− p)
1− p2

= 1 +
p

1 + p
.

Then, using (16) we obtain a cycleGo
1 = (2−3−4−

5− 2) with new weight ofv7 equal to

w′7 = 1 + pwo
1(p) = 1 + p +

p2

1 + p
.

While obtaining this cycle we obtain independent
summand

∆ = (1−p)(4+wo
3(p))wo

1(p) =
5+11p−4p2−12p3

(1 + p)2
.

By using (41) for the cycle we obtain EDP-
polynomial:

N(Go
1, p) = (1− p)2(10p5 + 31p4 + 51p3 +

51p2 + 33p + 10)/(1 + p), (67)

thus total polynomial for a cycle with a d-node is

10p8+21p7+10p6−21p5−38p4−35p3+4p2+34p+15
(p+1)2

.

2. Cycle with a double edge (2 nodes are con-
tracted by the pivot chain)

First we obtain new weight of a joint node (let it
keep number 3). According to (53), because of noe13

we have simplyw∗3(p) = 3. Now nodesv3 andv7 are
connected by double edge with total reliability2p−p2.
Then we use (40) for obtaining EDP-polynomial of
this cycle:

N(G∗, p) = 18− 12p− 10p2 − 10p2 − 10p3 −
10p4 + 42p5 − 18p6. (68)

By substituting all these equations into (51) and
using (13) we obtain final

N(G, p) = 72p6(1−p)2+495p5(1−p)3+
941p4(1−p)4+927p3(1−p)5+
521p2(1−p)6+160p(1−p)7+21(1−p)8.

11.3 MENC-polynomial

For obtaining this polynomial we need or obtain all
polynomialsR1,j , i = 2, . . . , 7, that means solving
several similar tasks on initial graph, or use results of
Section 9.3. Really, we can simplify obtaining sum
of all polynomials after considering graphsG\Ch1,
G\Ch2 andG/Ch2, whereCh1 is (3-2-1-7) andCh2

is (4-4-5-6-7). All needed polynomials are obtained
trivially:

R37(G\Ch1, p) = p5+5p4(1−p)+6p3(1−p)2+
4p2(1−p)3 + p(1−p)4; (69)

R13(G\Ch2, p) = p4+4p3(1−p)+2p2(1−p)2;(70)

R17(G\Ch2, p) = p4+4p3(1−p)+3p2(1−p)2 +
p(1−p)3; (71)

R1,(37)(G/Ch2, p) = p3(1−p)+2p2(1−p) +

p(1−p)2. (72)

Then, using (60) and (61) we obtain

X(G,Ch1, p) = 2p+2p2+2p3−3p4+p5+
p6−5p7+3p8; (73)

S(G,Ch2, p) = 2p2+3p3+4p4+p5−4p6−8p7+6p8.

As all R1j are included in these sums, we simply
summarize them adding 1 as weight ofv1, and use (8)
for equalizing powers of summands. Thus

C(G, p) = 7p8+56p7(1−p)+174p6(1−p)2+
242p5(1−p)3+211p4(1−p)4+121p3(1−p)5+
45p2(1−p)6+10p(1−p)7+(1−p)8.

Numerical experiments are out of scope of current
paper. We can only mention that in [12] it was shown
that our methodology allows more than 1000 times
speeding up in obtaining ATR-polynomial in compar-
ison with Maple 11.

Conclusion

In this paper we show that the same methodology may
be applied to constructing algorithms for obtaining
polynomials for different reliability indices of random
graphs. Thorough examination of structural particu-
larities may help in significant speeding up of calcula-
tions. Our future works concerns parallel realizations
of our algorithms and consideration of reliability of
multi-layer networks.
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